1
|
Santos da Silva T, da Silva-Júnior LN, Horvath-Pereira BDO, Valbão MCM, Garcia MHH, Lopes JB, Reis CHB, Barreto RDSN, Buchaim DV, Buchaim RL, Miglino MA. The Role of the Pancreatic Extracellular Matrix as a Tissue Engineering Support for the Bioartificial Pancreas. Biomimetics (Basel) 2024; 9:598. [PMID: 39451804 PMCID: PMC11505355 DOI: 10.3390/biomimetics9100598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic condition primarily managed with insulin replacement, leading to significant treatment costs. Complications include vasculopathy, cardiovascular diseases, nephropathy, neuropathy, and reticulopathy. Pancreatic islet transplantation is an option but its success does not depend solely on adequate vascularization. The main limitations to clinical islet transplantation are the scarcity of human pancreas, the need for immunosuppression, and the inadequacy of the islet isolation process. Despite extensive research, T1DM remains a major global health issue. In 2015, diabetes affected approximately 415 million people, with projected expenditures of USD 1.7 trillion by 2030. Pancreas transplantation faces challenges due to limited organ availability and complex vascularization. T1DM is caused by the autoimmune destruction of insulin-producing pancreatic cells. Advances in biomaterials, particularly the extracellular matrix (ECM), show promise in tissue reconstruction and transplantation, offering structural and regulatory functions critical for cell migration, differentiation, and adhesion. Tissue engineering aims to create bioartificial pancreases integrating insulin-producing cells and suitable frameworks. This involves decellularization and recellularization techniques to develop biological scaffolds. The challenges include replicating the pancreas's intricate architecture and maintaining cell viability and functionality. Emerging technologies, such as 3D printing and advanced biomaterials, have shown potential in constructing bioartificial organs. ECM components, including collagens and glycoproteins, play essential roles in cell adhesion, migration, and differentiation. Clinical applications focus on developing functional scaffolds for transplantation, with ongoing research addressing immunological responses and long-term efficacy. Pancreatic bioengineering represents a promising avenue for T1DM treatment, requiring further research to ensure successful implementation.
Collapse
Affiliation(s)
- Thamires Santos da Silva
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
| | - Leandro Norberto da Silva-Júnior
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
- Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (M.C.M.V.); (M.H.H.G.); (J.B.L.)
| | - Bianca de Oliveira Horvath-Pereira
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
| | - Maria Carolina Miglino Valbão
- Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (M.C.M.V.); (M.H.H.G.); (J.B.L.)
| | | | - Juliana Barbosa Lopes
- Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (M.C.M.V.); (M.H.H.G.); (J.B.L.)
| | - Carlos Henrique Bertoni Reis
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
- UNIMAR Beneficent Hospital (HBU), Medical School, University of Marilia (UNIMAR), Marilia 17525-160, Brazil
| | - Rodrigo da Silva Nunes Barreto
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal 14884-900, Brazil
| | - Daniela Vieira Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
- Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| | - Rogerio Leone Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil
| | - Maria Angelica Miglino
- Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (M.C.M.V.); (M.H.H.G.); (J.B.L.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
- Postgraduate Program in Animal Health, Production and Environment, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
| |
Collapse
|
2
|
Wu CC, Kuo CL, Fan FY, Yang KC. Strontium-impregnated bioabsorbable composite for osteoporotic fracture fixation. J Biomed Mater Res A 2015; 103:3355-63. [DOI: 10.1002/jbm.a.35471] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/24/2015] [Accepted: 03/30/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Chang-Chin Wu
- Department of Orthopedics; National Taiwan University Hospital, College of Medicine, National Taiwan University; Taipei 10002 Taiwan
- Department of Orthopedics; En Chu Kong Hospital; New Taipei City 23702 Taiwan
| | - Chih-Lin Kuo
- School of Dental Technology, College of Oral Medicine, Taipei Medical University; Taipei 11031 Taiwan
| | - Fang-Yu Fan
- School of Dental Technology, College of Oral Medicine, Taipei Medical University; Taipei 11031 Taiwan
| | - Kai-Chiang Yang
- School of Dental Technology, College of Oral Medicine, Taipei Medical University; Taipei 11031 Taiwan
| |
Collapse
|
3
|
Shyong YJ, Tsai CC, Lin RF, Soung HS, Hsieh HC, Hsueh YS, Chang KC, Lin FH. Insulin-loaded hydroxyapatite combined with macrophage activity to deliver insulin for diabetes mellitus. J Mater Chem B 2015; 3:2331-2340. [DOI: 10.1039/c4tb01639d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
InsHAP is engulfed by macrophages and the lysosome/endosome hybrid is broken down by osmosis, which facilitates delivery of insulin into the bloodstream.
Collapse
Affiliation(s)
- Yen-Jye Shyong
- Institute of Biomedical Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Cheng-Chia Tsai
- Department of Neurosurgery
- Mackay Memorial Hospital
- Taipei City 10449
- Taiwan
- Graduate Institute of Injury Prevention and Control
| | - Rui-Feng Lin
- Department of Neurosurgery
- Mackay Memorial Hospital
- Taipei City 10449
- Taiwan
| | - Hung-Sheng Soung
- Department of Psychiatry
- Yuan-Shan br. of Taipei Veteran General Hospital
- Taiwan, ROC
| | - Hui-Chen Hsieh
- Institute of Biomedical Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Yu-Sheng Hsueh
- Institute of Biomedical Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Kuo-Chi Chang
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei
- Taiwan
| | - Feng-Huei Lin
- Institute of Biomedical Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
- Division of Medical Engineering
| |
Collapse
|
4
|
Yang KC, Wu CC, Qi Z, Chen JC, Sumi S, Lin FH. Comparison of bioartificial pancreas performance in the bone marrow cavity and intramuscular space. Arch Med Res 2010; 41:151-3. [PMID: 20682171 DOI: 10.1016/j.arcmed.2010.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 02/08/2010] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND AIMS Bone marrow with a widely distributed and well-vascularized microenvironment that is capable of sustaining grafts is a potential site for islet transplantation. The femur bone marrow cavity offers sufficient space that may also receive the implantation of bioartificial pancreas (BAP). METHODS Mouse insulinoma cells encapsulating in agarose gel were further enclosed in a calcium phosphate cement chamber to create a BAP. BAPs implanted into the femur bone marrow cavity of diabetics were compared with those implanted in the intramuscular space. Blood glucose level and C-peptide were determined perioperatively. RESULTS The blood glucose level of the diabetics receiving BAPs in the intramuscular space decreased from 413 +/- 24 to 285 +/- 47 mg/dL at 1 day post-surgery. However, the blood glucose level returned to 398 +/- 35 mg/dL with undetectable serum C-peptide at 2 weeks postoperatively that reveals implant failure. The blood glucose level of diabetics receiving BAPs into the femur bone marrow cavity decreased from 422 +/- 32 to 247 +/- 52 mg/dL and maintained in the range of 288 +/- 47 mg/dL during the experimental period with an increase in C-peptide level from 6.1 +/- 2.8 to 104.7 +/- 16.4 pmol/L. CONCLUSIONS This preliminary study indicates that the effectiveness of BAPs transplanted into the femur bone marrow cavity is superior to that implanted in the intramuscular space, which reveals the bone marrow may be a potential receptor site for the BAP transplantation.
Collapse
Affiliation(s)
- Kai-Chiang Yang
- Department of Organ Reconstruction, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
Clinical islet transplantation (CIT), the infusion of allogeneic islets within the liver, has the potential to provide precise and sustainable control of blood glucose levels for the treatment of type 1 diabetes. The success and long-term outcomes of CIT, however, are limited by obstacles such as a nonoptimal transplantation site and severe inflammatory and immunological responses to the transplant. Tissue engineering strategies are poised to combat these challenges. In this review, emerging methods for engineering an optimal islet transplantation site, as well as novel approaches for improving islet cell encapsulation, are discussed.
Collapse
Affiliation(s)
- Jaime A Giraldo
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | | | | |
Collapse
|