1
|
Yang J, Shi N, Wang S, Wang M, Huang Y, Wang Y, Liang G, Yang J, Rong J, Ma Y, Li L, Zhu P, Han C, Jin T, Yang H, Huang W, Raftery D, Xia Q, Du D. Multi-dimensional metabolomic profiling reveals dysregulated ornithine metabolism hallmarks associated with a severe acute pancreatitis phenotype. Transl Res 2024; 263:28-44. [PMID: 37619665 DOI: 10.1016/j.trsl.2023.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/29/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
To reveal dysregulated metabolism hallmark that was associated with a severe acute pancreatitis (SAP) phenotype. In this study, LC-MS/MS-based targeted metabolomics was used to analyze plasma samples from 106 acute pancreatitis (AP) patients (34 mild, 38 moderate, and 34 severe) admitted within 48 hours from abdominal pain onset and 41 healthy controls. Temporal metabolic profiling was performed on days 1, 3, and 7 after admission. A random forest (RF) was performed to significantly determine metabolite differences between SAP and non-SAP (NSAP) groups. Mass spectrometry imaging (MSI) and immunohistochemistry were conducted for the examination of pancreatic metabolite and metabolic enzyme alterations, respectively, on necrosis and paracancerous tissues. Simultaneously determination of serum and pancreatic tissue metabolic alterations using an L-ornithine-induced AP model to discover metabolic commonalities. Twenty-two significant differential metabolites screened by RF were selected to build an accurate model for the prediction of SAP from NSAP (AUC = 0.955). Six of 22 markers were found by MSI with significant alterations in pancreatic lesions, reduced ornithine-related metabolites were also identified. The abnormally expressed arginase2 and ornithine transcarboxylase were further discovered in combination with time-course metabolic profiling in the SAP animal models, the decreased ornithine catabolites were found at a late stage of inflammation, but ornithine-associated metabolic enzymes were activated during the inflammatory process. The plasma metabolome of AP patients is distinctive, which shows promise for early SAP diagnosis. AP aggravation is linked to the activated ornithine metabolic pathway and its inadequate levels of catabolites in in-situ lesion.
Collapse
Affiliation(s)
- Jinxi Yang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital/West China Medical School, Sichuan University, Chengdu, China
| | - Na Shi
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital/West China Medical School, Sichuan University, Chengdu, China
| | - Shisheng Wang
- Proteomics-Metabolomics Platform of Core Facilities, West China-Washington Mitochondria and Metabolism Centre, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| | - Manjiangcuo Wang
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Huang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital/West China Medical School, Sichuan University, Chengdu, China
| | - Yiqin Wang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital/West China Medical School, Sichuan University, Chengdu, China
| | - Ge Liang
- Proteomics-Metabolomics Platform of Core Facilities, West China-Washington Mitochondria and Metabolism Centre, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| | - Juqin Yang
- Biobank, Clinical Research Management Department, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Rong
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital/West China Medical School, Sichuan University, Chengdu, China
| | - Yun Ma
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital/West China Medical School, Sichuan University, Chengdu, China
| | - Lan Li
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital/West China Medical School, Sichuan University, Chengdu, China
| | - Ping Zhu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital/West China Medical School, Sichuan University, Chengdu, China
| | - Chenxia Han
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital/West China Medical School, Sichuan University, Chengdu, China
| | - Tao Jin
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital/West China Medical School, Sichuan University, Chengdu, China
| | - Hao Yang
- Proteomics-Metabolomics Platform of Core Facilities, West China-Washington Mitochondria and Metabolism Centre, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Huang
- Biobank, Clinical Research Management Department, West China Hospital, Sichuan University, Chengdu, China
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
| | - Qing Xia
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital/West China Medical School, Sichuan University, Chengdu, China.
| | - Dan Du
- Proteomics-Metabolomics Platform of Core Facilities, West China-Washington Mitochondria and Metabolism Centre, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China; Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Yang J, Wang M, Qiu Q, Huang Y, Wang Y, Pu Q, Jiang N, Wang R, Wen L, Zhang X, Han C, Du D. Time-Course Lipidomics of Ornithine-Induced Severe Acute Pancreatitis Model Reveals the Free Fatty Acids Centered Lipids Dysregulation Characteristics. Metabolites 2023; 13:993. [PMID: 37755273 PMCID: PMC10647642 DOI: 10.3390/metabo13090993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023] Open
Abstract
The relationship between the type and intensities of lipids of blood and pancreas and the pathological changes in the pancreas during severe acute pancreatitis (SAP) remains unclear. In our study, we employed a rat model of SAP induced through intraperitoneal ornithine injections. We collected serum and pancreas samples at various time points (0-144 h) for histopathological and biochemical assessments, followed by lipidomic analyses using LC-MS/MS or in situ mass spectrometry imaging (MSI) To discern changes over time or at specific points, we employed time-course and univariate analyses for lipid screening, respectively. Our findings indicated that the peak inflammation in the Orn-SAP model occurred within the 24-30 h timeframe, with evident necrosis emerging from 24 h onwards, followed by regeneration starting at 48 h. Time-course analysis revealed an overall decrease in glycerophospholipids (PEs, PCs, LPEs, LPCs), while CEs exhibited an increase within the pancreas. Univariate analysis unveiled a significant reduction in serum TAGs containing 46-51 carbon atoms at 24 h, and CERs in the pancreas significantly increased at 30 h, compared with 0 h. Moreover, a substantial rise in TAGs containing 56-58 carbon atoms was observed at 144 h, both in serum and pancreas. MSI demonstrated the CERs containing saturated mono-acyl chains of 16 and 18 carbon atoms influenced pancreatic regeneration. Tracing the origin of FFAs hydrolyzed from pancreatic glycerophospholipids and serum TAGs during the early stages of inflammation, as well as FFAs utilized for CEs and CERs synthesis during the repair phase, may yield valuable strategies for diagnosing and managing SAP.
Collapse
Affiliation(s)
- Jinxi Yang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China; (J.Y.); (Q.Q.); (Y.H.); (Y.W.); (X.Z.); (C.H.)
| | - Manjiangcuo Wang
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (M.W.); (Q.P.); (N.J.); (R.W.)
| | - Qi Qiu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China; (J.Y.); (Q.Q.); (Y.H.); (Y.W.); (X.Z.); (C.H.)
| | - Yan Huang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China; (J.Y.); (Q.Q.); (Y.H.); (Y.W.); (X.Z.); (C.H.)
| | - Yiqin Wang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China; (J.Y.); (Q.Q.); (Y.H.); (Y.W.); (X.Z.); (C.H.)
| | - Qianlun Pu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (M.W.); (Q.P.); (N.J.); (R.W.)
| | - Na Jiang
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (M.W.); (Q.P.); (N.J.); (R.W.)
| | - Rui Wang
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (M.W.); (Q.P.); (N.J.); (R.W.)
| | - Li Wen
- Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China;
| | - Xiaoying Zhang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China; (J.Y.); (Q.Q.); (Y.H.); (Y.W.); (X.Z.); (C.H.)
| | - Chenxia Han
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China; (J.Y.); (Q.Q.); (Y.H.); (Y.W.); (X.Z.); (C.H.)
| | - Dan Du
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China; (J.Y.); (Q.Q.); (Y.H.); (Y.W.); (X.Z.); (C.H.)
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (M.W.); (Q.P.); (N.J.); (R.W.)
| |
Collapse
|
3
|
Walter FR, Harazin A, Tóth AE, Veszelka S, Santa-Maria AR, Barna L, Kincses A, Biczó G, Balla Z, Kui B, Maléth J, Cervenak L, Tubak V, Kittel Á, Rakonczay Z, Deli MA. Blood-brain barrier dysfunction in L-ornithine induced acute pancreatitis in rats and the direct effect of L-ornithine on cultured brain endothelial cells. Fluids Barriers CNS 2022; 19:16. [PMID: 35177109 PMCID: PMC8851707 DOI: 10.1186/s12987-022-00308-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND In severe acute pancreatitis (AP) the CNS is affected manifesting in neurological symptoms. Earlier research from our laboratory showed blood-brain barrier (BBB) permeability elevation in a taurocholate-induced AP model. Here we aimed to further explore BBB changes in AP using a different, non-invasive in vivo model induced by L-ornithine. Our goal was also to identify whether L-ornithine, a cationic amino acid, has a direct effect on brain endothelial cells in vitro contributing to the observed BBB changes. METHODS AP was induced in rats by the intraperitoneal administration of L-ornithine-HCl. Vessel permeability and the gene expression of the primary transporter of L-ornithine, cationic amino acid transporter-1 (Cat-1) in the brain cortex, pancreas, liver and lung were determined. Ultrastructural changes were followed by transmission electron microscopy. The direct effect of L-ornithine was tested on primary rat brain endothelial cells and a triple co-culture model of the BBB. Viability and barrier integrity, including permeability and TEER, nitrogen monoxide (NO) and reactive oxygen species (ROS) production and NF-κB translocation were measured. Fluorescent staining for claudin-5, occludin, ZO-1, β-catenin, cell adhesion molecules Icam-1 and Vcam-1 and mitochondria was performed. Cell surface charge was measured by laser Doppler velocimetry. RESULTS In the L-ornithine-induced AP model vessel permeability for fluorescein and Cat-1 expression levels were elevated in the brain cortex and pancreas. On the ultrastructural level surface glycocalyx and mitochondrial damage, tight junction and basal membrane alterations, and glial edema were observed. L-ornithine decreased cell impedance and elevated the BBB model permeability in vitro. Discontinuity in the surface glycocalyx labeling and immunostaining of junctional proteins, cytoplasmic redistribution of ZO-1 and β-catenin, and elevation of Vcam-1 expression were measured. ROS production was increased and mitochondrial network was damaged without NF-κB, NO production or mitochondrial membrane potential alterations. Similar ultrastructural changes were seen in L-ornithine treated brain endothelial cells as in vivo. The basal negative zeta potential of brain endothelial cells became more positive after L-ornithine treatment. CONCLUSION We demonstrated BBB damage in the L-ornithine-induced rat AP model suggesting a general, AP model independent effect. L-ornithine induced oxidative stress, decreased barrier integrity and altered BBB morphology in a culture BBB model. These data suggest a direct effect of the cationic L-ornithine on brain endothelium. Endothelial surface glycocalyx injury was revealed both in vivo and in vitro, as an additional novel component of the BBB-related pathological changes in AP.
Collapse
Affiliation(s)
- Fruzsina R Walter
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - András Harazin
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
- Department of Biomedicine, Faculty of Health, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
| | - Andrea E Tóth
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
- Department of Biomedicine, Faculty of Health, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
| | - Szilvia Veszelka
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Ana R Santa-Maria
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
- Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Lilla Barna
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - András Kincses
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - György Biczó
- Department of Medicine, University of Szeged, Kálvária sgt 57, Szeged, 6725, Hungary
| | - Zsolt Balla
- Department of Medicine, University of Szeged, Kálvária sgt 57, Szeged, 6725, Hungary
- Institute of Applied Sciences, Department of Environmental Biology and Education, Juhász Gyula Faculty of Education, University of Szeged, Boldogasszony sgt. 6, Szeged, 6725, Hungary
| | - Balázs Kui
- Department of Medicine, University of Szeged, Kálvária sgt 57, Szeged, 6725, Hungary
| | - József Maléth
- Department of Medicine, University of Szeged, Kálvária sgt 57, Szeged, 6725, Hungary
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Dóm sqr. 10, Szeged, 6720, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Dóm sqr. 10, Szeged, 6720, Hungary
| | - László Cervenak
- Department of Internal Medicine and Hematology, Research Laboratory, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Vilmos Tubak
- Creative Laboratory Ltd, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Ágnes Kittel
- Institute of Experimental Medicine, Eötvös Loránd Research Network, Szigony u. 43, Budapest, 1083, Hungary
| | - Zoltán Rakonczay
- Department of Medicine, University of Szeged, Kálvária sgt 57, Szeged, 6725, Hungary
- Department of Pathophysiology, University of Szeged, Semmelweis u. 1, Szeged, 6701, Hungary
| | - Mária A Deli
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary.
| |
Collapse
|
4
|
Ye S, Si C, Deng J, Chen X, Kong L, Zhou X, Wang W. Understanding the Effects of Metabolites on the Gut Microbiome and Severe Acute Pancreatitis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1516855. [PMID: 34712726 PMCID: PMC8548099 DOI: 10.1155/2021/1516855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/09/2021] [Indexed: 12/11/2022]
Abstract
Acute pancreatitis (AP) is an inflammatory disease of the pancreas. The severity is classified as mild (MAP), moderately severe (MSAP), or severe (SAP). In patients with SAP, organ dysfunction can occur in the early stage of the disease course, accompanied by secondary infection, with a mortality rate of 36%-50%. In the late stage SAP, infection-related complications caused by pancreatic necrotic tissue and peripancreatic effusion are the main causes of death in patients. Dysbacteriosis of intestinal microflora, barrier dysfunction of intestinal mucosa, and translocation of enteric bacteria are considered to be the main causes of infection of pancreatic necrotic tissue and peripancreatic effusion. During the past few years, increasing attention has been paid to the metabolic activities of intestinal microflora in SAP, which plays an important role in the metabolic activities of the human body. This review is aimed at bringing together the most recent findings and advances regarding the gut microbial community and associated gut microbial community metabolites and illustrating the role of these metabolites in disease progression in severe acute pancreatitis. We hope that this review will provide new ideas and schemes for the treatment of SAP in the clinical settings.
Collapse
Affiliation(s)
- Shijie Ye
- Wenzhou Medical University, Wenzhou, China
| | - Chenli Si
- Wenzhou Medical University, Wenzhou, China
| | - Jie Deng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaohu Chen
- Department of Pathology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | | | - Xiang Zhou
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weiming Wang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
5
|
Metabolomic-based clinical studies and murine models for acute pancreatitis disease: A review. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166123. [PMID: 33713791 DOI: 10.1016/j.bbadis.2021.166123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/21/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
Acute pancreatitis (AP) is one of the most common gastroenterological disorders requiring hospitalization and is associated with substantial morbidity and mortality. Metabolomics nowadays not only help us to understand cellular metabolism to a degree that was not previously obtainable, but also to reveal the importance of the metabolites in physiological control, disease onset and development. An in-depth understanding of metabolic phenotyping would be therefore crucial for accurate diagnosis, prognosis and precise treatment of AP. In this review, we summarized and addressed the metabolomics design and workflow in AP studies, as well as the results and analysis of the in-depth of research. Based on the metabolic profiling work in both clinical populations and experimental AP models, we described the metabolites with potential utility as biomarkers and the correlation between the altered metabolites and AP status. Moreover, the disturbed metabolic pathways correlated with biological function were discussed in the end. A practical understanding of current and emerging metabolomic approaches applicable to AP and use of the metabolite information presented will aid in designing robust metabolomics and biological experiments that result in identification of unique biomarkers and mechanisms, and ultimately enhanced clinical decision-making.
Collapse
|
6
|
Yang X, Yao L, Fu X, Mukherjee R, Xia Q, Jakubowska MA, Ferdek PE, Huang W. Experimental Acute Pancreatitis Models: History, Current Status, and Role in Translational Research. Front Physiol 2020; 11:614591. [PMID: 33424638 PMCID: PMC7786374 DOI: 10.3389/fphys.2020.614591] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/30/2020] [Indexed: 02/05/2023] Open
Abstract
Acute pancreatitis is a potentially severe inflammatory disease that may be associated with a substantial morbidity and mortality. Currently there is no specific treatment for the disease, which indicates an ongoing demand for research into its pathogenesis and development of new therapeutic strategies. Due to the unpredictable course of acute pancreatitis and relatively concealed anatomical site in the retro-peritoneum, research on the human pancreas remains challenging. As a result, for over the last 100 years studies on the pathogenesis of this disease have heavily relied on animal models. This review aims to summarize different animal models of acute pancreatitis from the past to present and discuss their main characteristics and applications. It identifies key studies that have enhanced our current understanding of the pathogenesis of acute pancreatitis and highlights the instrumental role of animal models in translational research for developing novel therapies.
Collapse
Affiliation(s)
- Xinmin Yang
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Linbo Yao
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Rajarshi Mukherjee
- Liverpool Pancreatitis Research Group, Liverpool University Hospitals National Health Service Foundation Trust and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Qing Xia
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Center, West China Hospital, Sichuan University, Chengdu, China
| | | | - Pawel E. Ferdek
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Wei Huang
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Saloman JL, Albers KM, Cruz-Monserrate Z, Davis BM, Edderkaoui M, Eibl G, Epouhe AY, Gedeon JY, Gorelick FS, Grippo PJ, Groblewski GE, Husain SZ, Lai KK, Pandol SJ, Uc A, Wen L, Whitcomb DC. Animal Models: Challenges and Opportunities to Determine Optimal Experimental Models of Pancreatitis and Pancreatic Cancer. Pancreas 2019; 48:759-779. [PMID: 31206467 PMCID: PMC6581211 DOI: 10.1097/mpa.0000000000001335] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
At the 2018 PancreasFest meeting, experts participating in basic research met to discuss the plethora of available animal models for studying exocrine pancreatic disease. In particular, the discussion focused on the challenges currently facing the field and potential solutions. That meeting culminated in this review, which describes the advantages and limitations of both common and infrequently used models of exocrine pancreatic disease, namely, pancreatitis and exocrine pancreatic cancer. The objective is to provide a comprehensive description of the available models but also to provide investigators with guidance in the application of these models to investigate both environmental and genetic contributions to exocrine pancreatic disease. The content covers both nongenic and genetically engineered models across multiple species (large and small). Recommendations for choosing the appropriate model as well as how to conduct and present results are provided.
Collapse
Affiliation(s)
- Jami L. Saloman
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Kathryn M. Albers
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology, and Nutrition; Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Brian M. Davis
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Mouad Edderkaoui
- Basic and Translational Pancreas Research, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Guido Eibl
- Department of Surgery, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA
| | - Ariel Y. Epouhe
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Jeremy Y. Gedeon
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Fred S. Gorelick
- Department of Internal Medicine, Section of Digestive Diseases & Department of Cell Biology Yale University School of Medicine; Veterans Affairs Connecticut Healthcare, West Haven, CT
| | - Paul J. Grippo
- Department of Medicine, Division of Gastroenterology and Hepatology, UI Cancer Center, University of Illinois at Chicago, Chicago, IL
| | - Guy E. Groblewski
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI
| | | | - Keane K.Y. Lai
- Department of Pathology (National Medical Center), Department of Molecular Medicine (Beckman Research Institute), and Comprehensive Cancer Center, City of Hope, Duarte, CA
| | - Stephen J. Pandol
- Department of Surgery, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA
| | - Aliye Uc
- Stead Family Department of Pediatrics, University of Iowa, Stead Family Children’s Hospital, Iowa City, IA
| | - Li Wen
- Department of Pediatrics, Stanford University, Palo Alto, CA
| | | |
Collapse
|
8
|
Kui B, Balla Z, Végh ET, Pallagi P, Venglovecz V, Iványi B, Takács T, Hegyi P, Rakonczay Z. Recent advances in the investigation of pancreatic inflammation induced by large doses of basic amino acids in rodents. J Transl Med 2014; 94:138-149. [PMID: 24365745 DOI: 10.1038/labinvest.2013.143] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 11/13/2013] [Accepted: 11/19/2013] [Indexed: 12/16/2022] Open
Abstract
It has been known for approximately 30 years that large doses of the semi-essential basic amino acid L-arginine induce severe pancreatic inflammation in rats. Recently, it has been demonstrated that L-arginine can also induce pancreatitis in mice. Moreover, other basic amino acids like L-ornithine and L-lysine can cause exocrine pancreatic damage without affecting the endocrine parenchyma and the ducts in rats. The utilization of these noninvasive severe basic amino acid-induced pancreatitis models is becoming increasingly popular and appreciated as these models nicely reproduce most laboratory and morphological features of human pancreatitis. Consequently, the investigation of basic amino acid-induced pancreatitis may offer us a better understanding of the pathogenesis and possible treatment options of the human disease.
Collapse
Affiliation(s)
- Balázs Kui
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Zsolt Balla
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Eszter T Végh
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Petra Pallagi
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Béla Iványi
- Department of Pathology, University of Szeged, Szeged, Hungary
| | - Tamás Takács
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Péter Hegyi
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Zoltán Rakonczay
- First Department of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
9
|
Keinänen TA, Hyvönen MT, Alhonen L, Vepsäläinen J, Khomutov AR. Selective regulation of polyamine metabolism with methylated polyamine analogues. Amino Acids 2013; 46:605-20. [PMID: 24022706 DOI: 10.1007/s00726-013-1587-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 08/27/2013] [Indexed: 12/18/2022]
Abstract
Polyamine metabolism is intimately linked to the physiological state of the cell. Low polyamines levels promote growth cessation, while increased concentrations are often associated with rapid proliferation or cancer. Delicately balanced biosynthesis, catabolism, uptake and excretion are very important for maintaining the intracellular polyamine homeostasis, and deregulated polyamine metabolism is associated with imbalanced metabolic red/ox state. Although many cellular targets of polyamines have been described, the precise molecular mechanisms in these interactions are largely unknown. Polyamines are readily interconvertible which complicate studies on the functions of the individual polyamines. Thus, non-metabolizable polyamine analogues, like carbon-methylated analogues, are needed to circumvent that problem. This review focuses on methylated putrescine, spermidine and spermine analogues in which at least one hydrogen atom attached to polyamine carbon backbone has been replaced by a methyl group. These analogues allow the regulation of both metabolic and catabolic fates of the parent molecule. Substituting the natural polyamines with methylated analogue(s) offers means to study either the functions of an individual polyamine or the effects of altered polyamine metabolism on cell physiology. In general, gem-dimethylated analogues are considered to be non-metabolizable by polyamine catabolizing enzymes spermidine/spermine-N¹-acetyltransferase and acetylpolyamine oxidase and they support short-term cellular proliferation in many experimental models. Monomethylation renders the analogues chiral, offering some advantage over gem-dimethylated analogues in the specific regulation of polyamine metabolism. Thus, methylated polyamine analogues are practical tools to meet existing biological challenges in solving the physiological functions of polyamines.
Collapse
|
10
|
Okamura D, Starr ME, Lee EY, Stromberg AJ, Evers BM, Saito H. Age-dependent vulnerability to experimental acute pancreatitis is associated with increased systemic inflammation and thrombosis. Aging Cell 2012; 11:760-9. [PMID: 22672542 DOI: 10.1111/j.1474-9726.2012.00841.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The severity and mortality rates of acute pancreatitis (AP) are significantly elevated in the elderly population. However, due to a lack of appropriate animal models, the underlying mechanisms for this age-dependent vulnerability remain largely unknown. The purpose of this study was to characterize a murine model of AP, which displays age-associated severity, and to use this model to identify pathophysiologies that are distinctive of the aged with AP. AP was induced in young (4-5 months), middle-aged (12-13 months), and aged (23-25 months) C57BL/6 mice by repeated injection of caerulein, a homologue of the gastrointestinal hormone cholecystokinin. Approximately 10% of aged mice died during AP, while young and middle-aged mice showed no mortality. Although both young and aged mice exhibited early signs of edema and inflammation in the pancreas, kidney, and lung, young mice showed signs of recovery within 24 h, while aged mice exhibited increasingly severe tissue damage and cell death. There was a significant age-dependent increase in pancreatic neutrophil activation and systemic inflammation as assessed by pancreatic myeloperoxidase and plasma interleukin-6 (IL-6) concentration, respectively. Importantly, aged but not young mice with AP showed significantly elevated thrombosis in the lung and kidney as well as a marked increase in plasma concentration of plasminogen activator inhibitor-1 (PAI-1), a primary inhibitor of the fibrinolytic system. These results demonstrate that aging is associated with increased severity of AP characterized by augmented and prolonged pancreatic inflammation and the presence of multiple extra-pancreatic sequelae including thrombosis.
Collapse
Affiliation(s)
- Daiki Okamura
- Department of Surgery, Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0298, USA
| | | | | | | | | | | |
Collapse
|
11
|
Uimari A, Merentie M, Sironen R, Pirnes-Karhu S, Peräniemi S, Alhonen L. Overexpression of spermidine/spermine N1-acetyltransferase or treatment with N1-N11-diethylnorspermine attenuates the severity of zinc-induced pancreatitis in mouse. Amino Acids 2011; 42:461-71. [PMID: 21814793 DOI: 10.1007/s00726-011-1025-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 04/22/2011] [Indexed: 12/15/2022]
Abstract
Depletion of pancreatic intracellular polyamine pools has been observed in acute pancreatitis both in the animal models and in humans. In this study, the wild-type mice, polyamine catabolic enzyme spermidine/spermine N(1)-acetyltransferase overexpressing (SSAT mice) and SSAT-deficient mice were used to characterize the new zinc-induced acute pancreatitis mouse model and study the role of polyamines and polyamine catabolism in this model. Intraperitoneal zinc injection induced acute necrotizing pancreatitis in wild-type mice as well as in SSAT-overexpressing and SSAT-deficient mice. Serum α-amylase activity was significantly increased in all zinc-treated mice compared with the untreated controls. However, the α-amylase activities in SSAT mice were constantly lower than those in the other groups. Histopathological examination of pancreatic tissue revealed edema, acinar cell necrosis and necrotizing inflammation, typical for acute pancreatitis. Compared with the other zinc-treated mice less damage according to the histopathological analysis was observed in the pancreatic tissue of SSAT mice. Levels of intracellular spermidine, and occasionally spermine, were significantly decreased in pancreases of all zinc-treated animals and SSAT enzyme activity was enhanced both in wild-type and SSAT mice. Interestingly, a spermine analog, N(1), N(11)-diethylnorspermine (DENSpm), enhanced the proliferation of pancreatic cells and reduced the severity of zinc-induced pancreatitis in wild-type mice. The results show that in mice a single intraperitoneal zinc injection causes acute necrotizing pancreatitis accompanied by decrease of intracellular polyamine pools. The study supports the important role of polyamines for the integrity and function of the pancreas. In addition, the study suggests that whole body overexpression of SSAT obtained in SSAT mice reduces inflammatory pancreatic cell injury.
Collapse
Affiliation(s)
- Anne Uimari
- Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | | | | | | | | | | |
Collapse
|
12
|
Jin HT, Lämsä T, Nordback PH, Hyvönen MT, Grigorenko N, Khomutov AR, Nordback I, Räty S, Pörsti I, Alhonen L, Sand J. Association between remote organ injury and tissue polyamine homeostasis in acute experimental pancreatitis – treatment with a polyamine analogue bismethylspermine. Pharmacol Rep 2011; 63:999-1008. [DOI: 10.1016/s1734-1140(11)70616-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 03/28/2011] [Indexed: 10/25/2022]
|
13
|
Biczó G, Hegyi P, Dósa S, Balla Z, Venglovecz V, Iványi B, Wittmann T, Takács T, Rakonczay Z. Aliphatic, but not imidazole, basic amino acids cause severe acute necrotizing pancreatitis in rats. Pancreas 2011; 40:486-487. [PMID: 21412124 DOI: 10.1097/mpa.0b013e31820a598a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|