1
|
Salimi M, Eskandari F, Khodagholi F, Abdollahifar MA, Hedayati M, Zardooz H, Keyhanmanesh R. Perinatal stress exposure induced oxidative stress, metabolism disorder, and reduced GLUT-2 in adult offspring of rats. Hormones (Athens) 2022; 21:625-640. [PMID: 35843978 DOI: 10.1007/s42000-022-00383-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/16/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Growing evidence has demonstrated that adversity in early life, especially in the prenatal and postnatal period, may change the programming of numerous body systems and cause the incidence of various disorders in later life. Accordingly, this experimental animal study aimed to investigate the effect of stress exposure during perinatal (prenatal and/or postnatal) on the induction of oxidative stress in the pancreas and its effect on glucose metabolism in adult rat offspring. METHODS In this experimental study based on maternal exposure to variable stress throughout the perinatal period, the pups were divided into eight groups, as follows: control group (C); prepregnancy, pregnancy, lactation stress group (PPPLS); prepregnancy stress group (PPS); pregnancy stress group (PS); lactation stress group (LS); prepregnancy, pregnancy stress group (PPPS); pregnancy, lactation stress group (PLS); and prepregnancy, lactation stress group (PPLS). Following an overnight fast on postnatal day (PND) 64, plasma glucose, insulin, leptin levels, and lipid profiles were evaluated in the offspring groups. GLUT-2 protein levels, lipid peroxidation, antioxidant status, and number of beta-cells in the pancreatic islets of Langerhans as well as the weights of intra-abdominal fat and adrenal glands were assessed. Levels of plasma corticosterone were determined in the different groups of mothers and offspring. RESULTS The levels of plasma corticosterone, insulin, and HOMA-B index increased, whereas glucose level and QUICKI index were reduced in the perinatal stress groups compared to C group (p < 0.001 to p < 0.05). Plasma triglyceride, LDL, and cholesterol level rose significantly, but HDL level decreased in the perinatal stress groups compared to C group (p < 0.001 to p < 0.05). Perinatal stress raised MDA concentrations and reduced the activities of antioxidant enzymes in plasma and pancreas compared to C group (p < 0.001 to p < 0.05). GLUT-2 protein levels and number of beta-cells in the stress groups declined compared to C group (p < 0.001 to p < 0.05). Intra-abdominal fat weight decreased in the PPS, PS, and LS groups compared to C group (p < 0.001 to p < 0.01), but adrenal gland weight remained unchanged. CONCLUSION Our results showed that long-term exposure to elevated levels of corticosterone during critical development induces metabolic syndrome in adult male rats.
Collapse
Affiliation(s)
- Mina Salimi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, PO Box: 5166614756, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Eskandari
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box: 19615-1178, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homeira Zardooz
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box: 19615-1178, Tehran, Iran.
| | - Rana Keyhanmanesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Jackson TW, Henriquez AR, Snow SJ, Schladweiler MC, Fisher AA, Alewel DI, House JS, Kodavanti UP. Adrenal Stress Hormone Regulation of Hepatic Homeostatic Function After an Acute Ozone Exposure in Wistar-Kyoto Male Rats. Toxicol Sci 2022; 189:73-90. [PMID: 35737395 PMCID: PMC9609881 DOI: 10.1093/toxsci/kfac065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ozone-induced lung injury, inflammation, and pulmonary/hypothalamus gene expression changes are diminished in adrenalectomized (AD) rats. Acute ozone exposure induces metabolic alterations concomitant with increases in epinephrine and corticosterone. We hypothesized that adrenal hormones are responsible for observed hepatic ozone effects, and in AD rats, these changes would be diminished. In total, 5-7 days after sham (SH) or AD surgeries, male Wistar-Kyoto rats were exposed to air or 0.8-ppm ozone for 4 h. Serum samples were analyzed for metabolites and liver for transcriptional changes immediately post-exposure. Ozone increased circulating triglycerides, cholesterol, free fatty-acids, and leptin in SH but not AD rats. Ozone-induced inhibition of glucose-mediated insulin release was absent in AD rats. Unlike diminution of ozone-induced hypothalamus and lung mRNA expression changes, AD in air-exposed rats (AD-air/SH-air) caused differential hepatic expression of ∼1000 genes. Likewise, ozone in AD rats caused differential expression of ∼1000 genes (AD-ozone/AD-air). Ozone-induced hepatic changes in SH rats reflected enrichment for pathways involving metabolic processes, including acetyl-CoA biosynthesis, TCA cycle, and sirtuins. Upstream predictor analysis identified similarity to responses produced by glucocorticoids and pathways involving forskolin. These changes were absent in AD rats exposed to ozone. However, ozone caused unique changes in AD liver mRNA reflecting activation of synaptogenesis, neurovascular coupling, neuroinflammation, and insulin signaling with inhibition of senescence pathways. In these rats, upstream predictor analysis identified numerous microRNAs likely involved in glucocorticoid insufficiency. These data demonstrate the critical role of adrenal stress hormones in ozone-induced hepatic homeostasis and necessitate further research elucidating their role in propagating environmentally driven diseases.
Collapse
Affiliation(s)
- Thomas W Jackson
- Oak Ridge Institute for Science and Education Research Participation Program
| | - Andres R Henriquez
- Oak Ridge Institute for Science and Education Research Participation Program
| | - Samantha J Snow
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Mette C Schladweiler
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Anna A Fisher
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Devin I Alewel
- Oak Ridge Institute for Science and Education Research Participation Program
| | - John S House
- Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | - Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| |
Collapse
|
3
|
Goldstein JM, Hale T, Foster SL, Tobet SA, Handa RJ. Sex differences in major depression and comorbidity of cardiometabolic disorders: impact of prenatal stress and immune exposures. Neuropsychopharmacology 2019; 44:59-70. [PMID: 30030541 PMCID: PMC6235859 DOI: 10.1038/s41386-018-0146-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/15/2018] [Accepted: 06/21/2018] [Indexed: 12/11/2022]
Abstract
Major depressive disorder topped ischemic heart disease as the number one cause of disability worldwide in 2012, and women have twice the risk of men. Further, the comorbidity of depression and cardiometabolic disorders will be one of the primary causes of disability worldwide by 2020, with women at twice the risk. Thus, understanding the sex-dependent comorbidities has public health consequences worldwide. We propose here that sex differences in MDD-cardiometabolic comorbidity originate, in part, from pathogenic processes initiated in fetal development that involve sex differences in shared pathophysiology between the brain, the vascular system, the CNS control of the heart and associated hormonal, immune, and metabolic physiology. Pathways implicate neurotrophic and angiogenic growth factors, gonadal hormone receptors, and neurotransmitters such as gamma amino butyric acid (GABA) on neuronal and vascular development of HPA axis regions, such as the paraventricular nucleus (PVN), in addition to blood pressure, in part through the renin-angiotensin system, and insulin and glucose metabolism. We show that the same prenatal exposures have consequences for sex differences across multiple organ systems that, in part, share common pathophysiology. Thus, we believe that applying a sex differences lens to understanding shared biologic substrates underlying these comorbidities will provide novel insights into the development of sex-dependent therapeutics. Further, taking a lifespan perspective beginning in fetal development provides the opportunity to target abnormalities early in the natural history of these disorders in a sex-dependent way.
Collapse
Affiliation(s)
- Jill M Goldstein
- Departments of Psychiatry and Obstetrics and Gynecology, Massachusetts General Hospital (MGH), Boston, MA, 02120, USA.
- Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA, USA.
| | - Taben Hale
- Department of Basic Medical Science, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85004, USA
| | - Simmie L Foster
- Department of Psychiatry, Harvard Medical School, at Massachusetts General Hospital, Boston, MA, USA
| | - Stuart A Tobet
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, 80523, USA
| | - Robert J Handa
- Department of Basic Medical Science, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85004, USA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
4
|
Iwen KA, Oelkrug R, Brabant G. Effects of thyroid hormones on thermogenesis and energy partitioning. J Mol Endocrinol 2018; 60:R157-R170. [PMID: 29434028 DOI: 10.1530/jme-17-0319] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 02/06/2018] [Indexed: 01/08/2023]
Abstract
Thyroid hormones (TH) are of central importance for thermogenesis, energy homeostasis and metabolism. Here, we will discuss these aspects by focussing on the physiological aspects of TH-dependent regulation in response to cold exposure and fasting, which will be compared to alterations in primary hyperthyroidism and hypothyroidism. In particular, we will summarise current knowledge on regional thyroid hormone status in the central nervous system (CNS) and in peripheral cells. In contrast to hyperthyroidism and hypothyroidism, where parallel changes are observed, local alterations in the CNS differ to peripheral compartments when induced by cold exposure or fasting. Cold exposure is associated with low hypothalamic TH concentrations but increased TH levels in the periphery. Fasting results in a reversed TH pattern. Primary hypothyroidism and hyperthyroidism disrupt these fine-tuned adaptive mechanisms and both, the hypothalamus and the periphery, will have the same TH status. These important mechanisms need to be considered when discussing thyroid hormone replacement and other therapeutical interventions to modulate TH status.
Collapse
Affiliation(s)
- K Alexander Iwen
- Medizinische Klinik IExperimentelle und Klinische Endokrinologie, Universität zu Lübeck, Lübeck, Germany
- Department of Molecular EndocrinologyCenter of Brain, Behavior and Metabolism, Universität zu Lübeck, Lübeck, Germany
| | - Rebecca Oelkrug
- Department of Molecular EndocrinologyCenter of Brain, Behavior and Metabolism, Universität zu Lübeck, Lübeck, Germany
| | - Georg Brabant
- Medizinische Klinik IExperimentelle und Klinische Endokrinologie, Universität zu Lübeck, Lübeck, Germany
- Department of EndocrinologyThe Christie Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
5
|
Kamel M, Ninov N. Catching new targets in metabolic disease with a zebrafish. Curr Opin Pharmacol 2017; 37:41-50. [DOI: 10.1016/j.coph.2017.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/04/2017] [Accepted: 08/11/2017] [Indexed: 12/12/2022]
|
6
|
Sato S, Saisho Y, Inaishi J, Kou K, Murakami R, Yamada T, Itoh H. Effects of Glucocorticoid Treatment on β- and α-Cell Mass in Japanese Adults With and Without Diabetes. Diabetes 2015; 64:2915-27. [PMID: 25883114 DOI: 10.2337/db15-0151] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/11/2015] [Indexed: 11/13/2022]
Abstract
The aim of this study was 1) to clarify β-cell regenerative capacity in the face of glucocorticoid (GC)-induced insulin resistance and 2) to clarify the change in β- and α-cell mass in GC-induced diabetes in humans. We obtained the pancreases from 100 Japanese autopsy case subjects. The case subjects were classified according to whether or not they had received GC therapy before death and the presence or absence of diabetes. Fractional β-cell area (%BCA) and α-cell area (%ACA) were quantified, and the relationship with GC therapy was evaluated. As a result, in case subjects without diabetes, there was no significant difference in %BCA between case subjects with and without GC therapy (1.66 ± 1.05% vs. 1.21 ± 0.59%, P = 0.13). %ACA was also not significantly different between the two groups. In case subjects with type 2 diabetes, %BCA and %ACA were both significantly reduced compared with control subjects without diabetes; however, neither %BCA nor %ACA was significantly decreased in case subjects with GC-induced diabetes. There was a significant negative correlation between %BCA and HbA1c measured before death; however, this relationship was attenuated in case subjects with GC therapy. In conclusion, the current study suggests that β- and α-cell mass remain largely unchanged in the face of GC-induced insulin resistance in Japanese individuals, implying limited capacity of β-cell regeneration in adult humans. The absence of apparent β-cell deficit in case subjects with GC-induced diabetes suggests that GC-induced diabetes is mainly caused by insulin resistance and/or β-cell dysfunction, but not necessarily a deficit of β-cell mass.
Collapse
Affiliation(s)
- Seiji Sato
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yoshifumi Saisho
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Jun Inaishi
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kinsei Kou
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Rie Murakami
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Taketo Yamada
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Itoh
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
El Ouaamari A, Kawamori D, Dirice E, Liew CW, Shadrach JL, Hu J, Katsuta H, Hollister-Lock J, Qian WJ, Wagers AJ, Kulkarni RN. Liver-derived systemic factors drive β cell hyperplasia in insulin-resistant states. Cell Rep 2013; 3:401-10. [PMID: 23375376 PMCID: PMC3655439 DOI: 10.1016/j.celrep.2013.01.007] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 11/22/2012] [Accepted: 01/07/2013] [Indexed: 01/04/2023] Open
Abstract
Integrative organ crosstalk regulates key aspects of energy homeostasis, and its dysregulation may underlie metabolic disorders such as obesity and diabetes. To test the hypothesis that crosstalk between the liver and pancreatic islets modulates β cell growth in response to insulin resistance, we used the liver-specific insulin receptor knockout (LIRKO) mouse, a unique model that exhibits dramatic islet hyperplasia. Using complementary in vivo parabiosis and transplantation assays, as well as in vitro islet culture approaches, we demonstrate that humoral, nonneural, non-cell-autonomous factor(s) induces β cell proliferation in LIRKO mice. Furthermore, we report that a hepatocyte-derived factor(s) stimulates mouse and human β cell proliferation in ex vivo assays, independent of ambient glucose and insulin levels. These data implicate the liver as a critical source of β cell growth factor(s) in insulin-resistant states.
Collapse
Affiliation(s)
- Abdelfattah El Ouaamari
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02115, USA
| | - Dan Kawamori
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02115, USA
| | - Ercument Dirice
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02115, USA
| | - Chong Wee Liew
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02115, USA
| | - Jennifer L. Shadrach
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02115, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA
| | - Jiang Hu
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02115, USA
| | - Hitoshi Katsuta
- Section of Islet Transplantation and Cell Biology, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02115, USA
| | - Jennifer Hollister-Lock
- Section of Islet Transplantation and Cell Biology, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02115, USA
| | - Wei-Jun Qian
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Amy J. Wagers
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02115, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA
| | - Rohit N. Kulkarni
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Sionov RV. MicroRNAs and Glucocorticoid-Induced Apoptosis in Lymphoid Malignancies. ISRN HEMATOLOGY 2013; 2013:348212. [PMID: 23431463 PMCID: PMC3569899 DOI: 10.1155/2013/348212] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 11/14/2012] [Indexed: 12/20/2022]
Abstract
The initial response of lymphoid malignancies to glucocorticoids (GCs) is a critical parameter predicting successful treatment. Although being known as a strong inducer of apoptosis in lymphoid cells for almost a century, the signaling pathways regulating the susceptibility of the cells to GCs are only partly revealed. There is still a need to develop clinical tests that can predict the outcome of GC therapy. In this paper, I discuss important parameters modulating the pro-apoptotic effects of GCs, with a specific emphasis on the microRNA world comprised of small players with big impacts. The journey through the multifaceted complexity of GC-induced apoptosis brings forth explanations for the differential treatment response and raises potential strategies for overcoming drug resistance.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Department of Biochemistry and Molecular Biology, The Institute for Medical Research-Israel-Canada, Hadassah Medical School, The Hebrew University of Jerusalem, Ein-Kerem, 91120 Jerusalem, Israel
| |
Collapse
|
9
|
Glišić R, Koko V, Cvijić G, Milošević MČ, Obradović J. Cholecystokinin-producing (I) cells of intestinal mucosa in dexamethasone-treated rats. ACTA ACUST UNITED AC 2011; 171:6-10. [PMID: 21693136 DOI: 10.1016/j.regpep.2011.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 05/12/2011] [Accepted: 05/30/2011] [Indexed: 10/18/2022]
Abstract
The aim of this study was to investigate the morphological, immunohistochemical and ultrastructural changes of cholecystokinin-producing (I) cells of gastrointestinal mucosa in dexamethasone-treated rats (D). After 12-daily intraperitoneal administration of 2mg/kg dexamethasone, rats developed diabetes similar to human diabetes mellitus type 2. The mean diameter of the duodenum was significantly decreased due to significant reduction of volume fraction and profile area of lamina propria. There was a decrease in volume fraction and number of cholecystokinin (CCK)-producing cells per mm(2) of mucosa, as well as their numerical density, but without statistical significance. Also, dexamethasone induced appearance of hyperactive duodenal I-cells with small number of granules and dilated endoplasmic reticulum. In conclusion, the present study showed that morphological changes in duodenum cholecystokinin-producing (I) cells occurred in diabetic rats, in a manner which, suggests compensatory effort of CCK cells in diabetic condition.
Collapse
Affiliation(s)
- Radmila Glišić
- Institute of Biology and Ecology Faculty of Science, University of Kragujevac, 34000 Kragujevac, Republic of Serbia
| | | | | | | | | |
Collapse
|