1
|
Fukukura Y, Kanki A. Quantitative Magnetic Resonance Imaging for the Pancreas: Current Status. Invest Radiol 2024; 59:69-77. [PMID: 37433065 DOI: 10.1097/rli.0000000000001002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
ABSTRACT Magnetic resonance imaging (MRI) is important for evaluating pancreatic disorders, and anatomical landmarks play a major role in the interpretation of results. Quantitative MRI is an effective diagnostic modality for various pathologic conditions, as it allows the investigation of various physical parameters. Recent advancements in quantitative MRI techniques have significantly improved the accuracy of pancreatic MRI. Consequently, this method has become an essential tool for the diagnosis, treatment, and monitoring of pancreatic diseases. This comprehensive review article presents the currently available evidence on the clinical utility of quantitative MRI of the pancreas.
Collapse
Affiliation(s)
- Yoshihiko Fukukura
- From the Department of Radiology, Kawasaki Medical School, Kurashiki City, Okayama, Japan
| | | |
Collapse
|
2
|
Handra-Luca A. AKT and mTOR expression in human pancreatic ductal adenocarcinoma. Relevance for tumor biology. Pathol Res Pract 2023; 251:154878. [PMID: 37890271 DOI: 10.1016/j.prp.2023.154878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND AND STUDY AIMS Several signaling pathways interfere with pancreatic ductal adenocarcinoma (PDAC) carcinogenesis processes, among which the AKT-pathway. The relevance of proteins in this pathway for the malignant phenotype or prognosis of PDAC is incompletely understood. We aimed to study AKT-pathway proteins in PDAC. METHODS We examined immunohistochemical expression of two main AKT pathway proteins, AKT and mTOR, in 99 PDAC. Protein expression patterns were analysed with regard to tumor features, to MAPK and TGFbeta pathway protein expression and, to cell proliferation. RESULTS Tumor AKT was more frequent in PDAC with an abundant stromal inflammatory infiltrate (p = 0.03). When considering intra-pancreatic PDACs, mTOR correlated to T2 as compared to T1-TNM stage tumors. When considering the entire series, mTOR correlated to intra-pancreatic tumors (T1- and T2-TNM stage) as compared to T3-TNM PDAC (Fisher p < 0.01 for both comparisons). mTOR expression was more frequent in PDAC with an abundant intratumor stromal component and tumors with a high Ki67-positive tumor cell component (Fisher p = 0.05 and p < 0.01, respectively). mTOR, related to SMAD4 (Fisher p < 0.01) as well as to nuclear ERK (Fisher p = 0.02). CONCLUSION The results of this study indicate an intricated role, mainly for mTOR in PDAC cell proliferation and tumor components development. The relationships we have found between AKT and mTOR and, MAPK and SMAD-pathway proteins suggest interactions at several levels of the protein framework resulting in varied impact on cell proliferation and tumor behavior/development.
Collapse
Affiliation(s)
- A Handra-Luca
- UFR SMBH Bobigny, University Sorbonne Paris Nord, France; APHP HUPSSD, Bobigny, France.
| |
Collapse
|
3
|
Phan T, Zhang XH, Rosen S, Melstrom LG. P38 kinase in gastrointestinal cancers. Cancer Gene Ther 2023; 30:1181-1189. [PMID: 37248432 PMCID: PMC10501902 DOI: 10.1038/s41417-023-00622-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 04/09/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023]
Abstract
Gastrointestinal cancers are a leading cause of cancer morbidity and mortality worldwide with 4.2 million new cases and 3.2 million deaths estimated in 2020. Despite the advances in primary and adjuvant therapies, patients still develop distant metastases and require novel therapies. Mitogen‑activated protein kinase (MAPK) cascades are crucial signaling pathways that regulate many cellular processes, including proliferation, differentiation, apoptosis, stress responses and cancer development. p38 Mitogen Activated Protein Kinases (p38 MAPKs) includes four isoforms: p38α (MAPK14), p38β (MAPK11), p38γ (MAPK12), and p38δ (MAPK13). p38 MAPK was first identified as a stress response protein kinase that phosphorylates different transcriptional factors. Dysregulation of p38 pathways, in particular p38γ, are associated with cancer development, metastasis, autophagy and tumor microenvironment. In this article, we provide an overview of p38 and p38γ with respect to gastrointestinal cancers. Furthermore, targeting p38γ is also discussed as a potential therapy for gastrointestinal cancers.
Collapse
Affiliation(s)
- Thuy Phan
- Department of Surgery, City of Hope Medical Center, Duarte, CA, USA
| | - Xu Hannah Zhang
- Department of Hematology, City of Hope Medical Center, Duarte, CA, USA
| | - Steven Rosen
- Department of Hematology, City of Hope Medical Center, Duarte, CA, USA
| | - Laleh G Melstrom
- Department of Surgery, City of Hope Medical Center, Duarte, CA, USA.
| |
Collapse
|
4
|
Almatroudi A, Allemailem KS, Alwanian WM, Alharbi BF, Alrumaihi F, Khan AA, Almatroodi SA, Rahmani AH. Effects and Mechanisms of Kaempferol in the Management of Cancers through Modulation of Inflammation and Signal Transduction Pathways. Int J Mol Sci 2023; 24:8630. [PMID: 37239974 PMCID: PMC10218111 DOI: 10.3390/ijms24108630] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Cancer is the principal cause of death and its incidence is increasing continuously worldwide. Various treatment approaches are in practice to treat cancer, but these treatment strategies may be associated with severe side effects and also produce drug resistance. However, natural compounds have established their role in cancer management with minimal side effects. In this vista, kaempferol, a natural polyphenol, mainly found in vegetables and fruits, has been revealed to have many health-promoting effects. Besides its health-promoting potential, its anti-cancer potential has also been described in in vivo as well as in in vitro studies. The anti-cancer potential of kaempferol has been proven through modulation of cell signaling pathways in addition to the induction of apoptosis and cell cycle arrest in cancer cells. It leads to the activation of tumor suppressor genes, inhibition of angiogenesis, PI3K/AKT pathways, STAT3, transcription factor AP-1, Nrf2 and other cell signaling molecules. Poor bioavailability of this compound is one of the major limitations for its proper and effective disease management actions. Recently, some novel nanoparticle-based formulations have been used to overcome these limitations. The aim of this review is to provide a clear picture regarding the mechanism of action of kaempferol in different cancers through the modulation of cell signaling molecules. Besides this, strategies to improve the efficacy and synergistic effects of this compound have also been described. However, more studies are needed based on clinical trials to fully explore the therapeutic role of this compound, especially in cancer treatment.
Collapse
Affiliation(s)
- Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.)
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.)
| | - Wanian M. Alwanian
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.)
| | - Basmah F. Alharbi
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.)
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.)
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.)
| |
Collapse
|
5
|
Yang CLH, Chik SCC, Lau ASY, Chan GCF. Coriolus versicolor and its bioactive molecule are potential immunomodulators against cancer cell metastasis via inactivation of MAPK pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115790. [PMID: 36208821 DOI: 10.1016/j.jep.2022.115790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/06/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Coriolus versicolor (CV) has been used in traditional Chinese medicine for over 2000 years as a premium medicine for enhancing good health and longevity. The immunomodulatory and anti-cancer effects of polysaccharopeptides (PSP) from cultured CV have been extensively studied; however, the effect and the mechanism of action of other small molecules from CV remain unknown. AIM OF THE STUDY we aim to examine the immunomodulatory and anti-cancer effects of the small molecules from CV (SMCV) and identify the active compounds that are responsible for the biological effects against glioblastoma multiforme cells. MATERIALS AND METHODS The effects of SMCV/active compound on cytokine and MMP mRNA expressions and productions were assessed by quantitative reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. An active compound from SMCV was identified with a bioassay-guided fractionation scheme. The potential mode of action of the active compound was further investigated by identifying the cell signaling pathway. The protein expressions of phospho-ERK, phospho-JNK and phospho-p38 MAPKs were measured by Western Blotting. The anti-invasive effect of SMCV/bioactive compound against T98G, lung carcinoma (A549), and breast adenocarcinoma (MDA-MB-231) cells were determined using invasion assay. RESULTS Our results showed that SMCV had strong immunomodulatory effect by suppressing LPS-induced TNF-α production, whereas increasing poly I:C-induced IFN-β level in PBMac. SMCV not only possessed indirect anti-cancer effect by suppressing TNF-α-induced MMP-3 production in glioblastoma T98G cells, but also directly reduced the invasion ability of malignant cells including T98G, A549 and MDA-MB-231. Using bioassay-guided fractionation scheme, we isolated 9-KODE methyl ester (compound AM) that was responsible for the bioactivity of SMCV. This compound suppressed TNF-α-induced MMP-3 production in T98G cells and the suppression may be correlated with the inactivation of p38 mitogen-activated protein kinase (MAPK) pathway. Moreover, compound AM also directly reduced T98G cell invasion. CONCLUSION Results of our present study provides scientific evidence that SMCV possesses immunomodulatory and anti-cancer effects. Its bioactive compound, compound AM, is a potential new drug candidate against the invasion and metastasis of glioblastoma cells.
Collapse
Affiliation(s)
- Cindy Lai-Hung Yang
- BAGI Biosciences, Hong Kong Science Park, Hong Kong Special Administrative Region, China; Molecular Chinese Medicine Laboratory, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Stanley Chi-Chung Chik
- BAGI Biosciences, Hong Kong Science Park, Hong Kong Special Administrative Region, China; Molecular Chinese Medicine Laboratory, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Allan Sik-Yin Lau
- Molecular Chinese Medicine Laboratory, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Godfrey Chi-Fung Chan
- Molecular Chinese Medicine Laboratory, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
6
|
Xu B, Dan W, Zhang X, Wang H, Cao L, Li S, Li J. Gene Differential Expression and Interaction Networks Illustrate the Biomarkers and Molecular Biological Mechanisms of Unsaponifiable Matter in Kanglaite Injection for Pancreatic Ductal Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6229462. [PMID: 35707377 PMCID: PMC9192213 DOI: 10.1155/2022/6229462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022]
Abstract
Background Kanglaite injection (KLTi) has shown good clinical efficacy in the treatment of pancreatic ductal adenocarcinoma (PDAC). While previous studies have demonstrated the antitumor effects of the oil compounds in KLTi, it is unclear whether the unsaponifiable matter (USM) also has antitumor effects. This study used network pharmacology, molecular docking, and database verification methods to investigate the molecular biological mechanisms of USM. Methods Compounds of USM were obtained from GC-MS, and targets from DrugBank. Next, the GEO database was searched for differentially expressed genes in cancerous tissues and healthy tissues of PDAC to identify targets. Subsequently, the protein-protein interaction of USM and PDAC targets was constructed by BisoGenet to extract candidate genes. The candidate genes were enriched using GO and KEGG by Metascape, and the gene-pathway network was constructed to screen the key genes. Molecular docking and molecular dynamic simulations of core compound targets were finally performed and to explore the diagnostic, survival, and prognosis value of targets. Results A total of 10 active compounds and 36 drug targets were screened for USM, 919 genes associated with PDAC, and 139 USM candidate genes against PDAC were excavated. The enrichment predicted USM by acting on RELA, NFKB1, IKBKG, JUN, MAPK1, TP53, and AKT1. Molecular docking and dynamic simulations confirmed the screened core targets had good affinity and stability with the corresponding compounds. In diagnostic ROC validation, the above targets have certain accuracy for diagnosing PDAC, and the combined diagnosis is more advantageous. As the most diagnostic value of RELA, it is equally significant in predicting disease-specific survival and progression-free interval. Conclusions USM in KLTi plays an anti-PDAC role by intervening in the cell cycle, inducing apoptosis, and downregulating the NF-κB, MAPK, and PI3K-Akt pathways. It might participate in the pancreatic cancer pathway, and core target groups have diagnostic, survival, and prognosis value biomarker significance.
Collapse
Affiliation(s)
- Bowen Xu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenchao Dan
- Department of Dermatological, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Xiaoxiao Zhang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Heping Wang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Luchang Cao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Shixin Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jie Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
7
|
Xia T, Chen XY, Zhang YN. MicroRNAs as biomarkers and perspectives in the therapy of pancreatic cancer. Mol Cell Biochem 2021; 476:4191-4203. [PMID: 34324119 DOI: 10.1007/s11010-021-04233-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022]
Abstract
Pancreatic cancer is considered as one of the most aggressive tumor types, representing over 45,750 mortality cases annually in the USA solely. The aggressive nature and late identification of pancreatic cancer, combined with the restrictions of existing chemotherapeutics, present the mandatory need for the advancement of novel treatment systems. Ongoing reports have shown an important role of microRNAs (miRNAs) in the initiation, migration, and metastasis of malignancies. Besides, abnormal transcriptional levels of miRNAs have regularly been related with etiopathogenesis of pancreatic malignancy, underlining the conceivable utilization of miRNAs in the management of pancreatic disease patients. In this review article, we give a concise outline of molecular pathways involved in etiopathogenesis of pancreatic cancer patients as well as miRNA implications in pancreatic cancer patients. Ensuing sections describe the involvement of miRNAs in the diagnosis, prognosis, and therapy of pancreatic cancer patients. The involvement of miRNAs in the chemoresistance of pancreatic cancers was also discussed. End area portrays the substance of survey with future headings.
Collapse
Affiliation(s)
- Tao Xia
- Department of Gastrointestinal-Pancreatic Surgery, General Surgery, Zhejiang Provincial People's Hospital, Affiliated Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, People's Republic of China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, People's Republic of China
| | - Xiao-Yi Chen
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated Hospital of Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, 310014, Zhejiang Province, People's Republic of China.
| | - You-Ni Zhang
- Department of Laboratory Medicine, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People's Hospital), Kangning Middle Road, Shifeng Street, Tiantai County, Taizhou, 317200, Zhejiang Province, People's Republic of China.
| |
Collapse
|
8
|
Traub B, Roth A, Kornmann M, Knippschild U, Bischof J. Stress-activated kinases as therapeutic targets in pancreatic cancer. World J Gastroenterol 2021; 27:4963-4984. [PMID: 34497429 PMCID: PMC8384741 DOI: 10.3748/wjg.v27.i30.4963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/17/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a dismal disease with high incidence and poor survival rates. With the aim to improve overall survival of pancreatic cancer patients, new therapeutic approaches are urgently needed. Protein kinases are key regulatory players in basically all stages of development, maintaining physiologic functions but also being involved in pathogenic processes. c-Jun N-terminal kinases (JNK) and p38 kinases, representatives of the mitogen-activated protein kinases, as well as the casein kinase 1 (CK1) family of protein kinases are important mediators of adequate response to cellular stress following inflammatory and metabolic stressors, DNA damage, and others. In their physiologic roles, they are responsible for the regulation of cell cycle progression, cell proliferation and differentiation, and apoptosis. Dysregulation of the underlying pathways consequently has been identified in various cancer types, including pancreatic cancer. Pharmacological targeting of those pathways has been the field of interest for several years. While success in earlier studies was limited due to lacking specificity and off-target effects, more recent improvements in small molecule inhibitor design against stress-activated protein kinases and their use in combination therapies have shown promising in vitro results. Consequently, targeting of JNK, p38, and CK1 protein kinase family members may actually be of particular interest in the field of precision medicine in patients with highly deregulated kinase pathways related to these kinases. However, further studies are warranted, especially involving in vivo investigation and clinical trials, in order to advance inhibition of stress-activated kinases to the field of translational medicine.
Collapse
Affiliation(s)
- Benno Traub
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm 89081, Germany
| | - Aileen Roth
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm 89081, Germany
| | - Marko Kornmann
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm 89081, Germany
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm 89081, Germany
| | - Joachim Bischof
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm 89081, Germany
| |
Collapse
|
9
|
Demirkol Canlı S, Dedeoğlu E, Akbar MW, Küçükkaraduman B, İşbilen M, Erdoğan ÖŞ, Erciyas SK, Yazıcı H, Vural B, Güre AO. A novel 20-gene prognostic score in pancreatic adenocarcinoma. PLoS One 2020; 15:e0231835. [PMID: 32310997 PMCID: PMC7170253 DOI: 10.1371/journal.pone.0231835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the most lethal cancers. Known risk factors for this disease are currently insufficient in predicting mortality. In order to better prognosticate patients with PDAC, we identified 20 genes by utilizing publically available high-throughput transcriptomic data from GEO, TCGA and ICGC which are associated with overall survival and event-free survival. A score generated based on the expression matrix of these genes was validated in two independent cohorts. We find that this “Pancreatic cancer prognostic score 20 –PPS20” is independent of the confounding factors in multivariate analyses, is dramatically elevated in metastatic tissue compared to primary tumor, and is higher in primary tumors compared to normal pancreatic tissue. Transcriptomic analyses show that tumors with low PPS20 have overall more immune cell infiltration and a higher CD8 T cell/Treg ratio when compared to those with high PPS20. Analyses of proteomic data from TCGA PAAD indicated higher levels of Cyclin B1, RAD51, EGFR and a lower E-cadherin/Fibronectin ratio in tumors with high PPS20. The PPS20 score defines not only prognostic and biological sub-groups but can predict response to targeted therapy as well. Overall, PPS20 is a stronger and more robust transcriptomic signature when compared to similar, previously published gene lists.
Collapse
Affiliation(s)
- Seçil Demirkol Canlı
- Molecular Pathology Application and Research Center, Hacettepe University, Ankara, Turkey
- * E-mail:
| | - Ege Dedeoğlu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Muhammad Waqas Akbar
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Barış Küçükkaraduman
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Murat İşbilen
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Özge Şükrüoğlu Erdoğan
- Cancer Genetics Division, Department of Basic Oncology, Institute of Oncology, Istanbul University, Istanbul, Turkey
| | - Seda Kılıç Erciyas
- Cancer Genetics Division, Department of Basic Oncology, Institute of Oncology, Istanbul University, Istanbul, Turkey
| | - Hülya Yazıcı
- Cancer Genetics Division, Department of Basic Oncology, Institute of Oncology, Istanbul University, Istanbul, Turkey
| | - Burçak Vural
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ali Osmay Güre
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| |
Collapse
|
10
|
Liu S, Huang J, Zhang Y, Liu Y, Zuo S, Li R. MAP2K4 interacts with Vimentin to activate the PI3K/AKT pathway and promotes breast cancer pathogenesis. Aging (Albany NY) 2019; 11:10697-10710. [PMID: 31761784 PMCID: PMC6914392 DOI: 10.18632/aging.102485] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/08/2019] [Indexed: 01/22/2023]
Abstract
Mitogen-activated protein kinase kinase 4 (MAP2K4) is a member of the mitogen-activated protein kinase (MAPK) activator family. MAPK signaling plays a significant role in cell proliferation, differentiation, transcriptional regulation, and development. However, specific function and mechanism of MAP2K4 in breast cancer have not been clarified. According to our study, overexpressed MAP2K4 in breast cancer cells increased proliferation, migration, and invasion in vivo and in vitro, while MAP2K4 knockdown restored the effects. Subsequent mechanistic analyses demonstrated that MAP2K4 promoted cell proliferation, migration, and invasion by activating phosphoinositide-3-kinase (PI3K)/AKT signaling, the downstream proteins, c-JUN, the G1/S cell cycle, and the epithelial-to-mesenchymal transition (EMT). Meanwhile, MAP2K4 interacted with Vimentin and further propagated the malignant phenotype. Furthermore, patients with high MAP2K4 and Vimentin expression levels had poorer overall survival rates than those with low expression levels of both proteins. Our studies demonstrated that MAP2K4 has the potential to serve as an oncogene in breast cancer and it activates the phosphorylated PI3K/AKT signaling pathway to activate downstream cycle-associated proteins and EMT signals while interacting with Vimentin to promote breast cancer cells proliferation, migration, and invasion. In our study, MAP2K4 and Vimentin co-expression is confirmed to be an unfavorable factor in breast cancer.
Collapse
Affiliation(s)
- Shu Liu
- Southern Medical University, Nanfang Hospital, Department of Oncology, Guangzhou 510515, Guangdong, P. R. China.,Guizhou Maternity and Child Health Hospital, Guiyang 550003, Guizhou, P. R. China
| | - Juan Huang
- Southern Medical University, Nanfang Hospital, Department of Oncology, Guangzhou 510515, Guangdong, P. R. China
| | - Yewei Zhang
- Department of General Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550001, Guizhou, P. R. China
| | - Yiyi Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, Guangdong, P. R. China
| | - Shi Zuo
- Department of General Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550001, Guizhou, P. R. China
| | - Rong Li
- Southern Medical University, Nanfang Hospital, Department of Oncology, Guangzhou 510515, Guangdong, P. R. China
| |
Collapse
|
11
|
Daoud AZ, Mulholland EJ, Cole G, McCarthy HO. MicroRNAs in Pancreatic Cancer: biomarkers, prognostic, and therapeutic modulators. BMC Cancer 2019; 19:1130. [PMID: 31752758 PMCID: PMC6868851 DOI: 10.1186/s12885-019-6284-y] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/24/2019] [Indexed: 02/06/2023] Open
Abstract
A severe lack of early diagnosis coupled with resistance to most available therapeutic options renders pancreatic cancer as a major clinical concern. The limited efficacy of current treatments necessitates the development of novel therapeutic strategies that are based on an understanding of the molecular mechanisms involved in pancreatic cancer progression. MicroRNAs (miRNAs) are non-coding small RNAs that regulate the expression of multiple proteins in the post-translation process and thus have promise as biomarkers, prognostic agents, and as advanced pancreatic therapies. Profiling of deregulated miRNAs in pancreatic cancer can correlate to diagnosis, indicate optimal treatment and predict response to therapy. Furthermore, understanding the main effector genes in pancreatic cancer along with downstream pathways can identify possible miRNAs as therapeutic candidates. Additionally, obstacles to the translation of miRNAs into the clinic are also considered. Distinct miRNA expression profiles can correlate to stages of malignant pancreatic disease, and hold potential as biomarkers, prognostic markers and clinical targets. However, a limited understanding and validation of the specific role of such miRNAs stunts clinical application. Target prediction using algorithms provides a wide range of possible targets, but these miRNAs still require validation through pre-clinical studies to determine the knock-on genetic effects.
Collapse
Affiliation(s)
- Afra Z Daoud
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Northern Ireland, BT9 7BL, UK
| | - Eoghan J Mulholland
- Gastrointestinal Stem Cell Biology Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Grace Cole
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, V6T 2B5, Canada
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Northern Ireland, BT9 7BL, UK.
| |
Collapse
|
12
|
Tang W, Liu W, Li HM, Wang QF, Fu CX, Wang XH, Zhou LP, Peng WJ. Quantitative dynamic contrast-enhanced MR imaging for the preliminary prediction of the response to gemcitabine-based chemotherapy in advanced pancreatic ductal carcinoma. Eur J Radiol 2019; 121:108734. [PMID: 31743881 DOI: 10.1016/j.ejrad.2019.108734] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/15/2019] [Accepted: 10/27/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE To investigate the role of the quantitative parameters of dynamic contrast-enhanced MR imaging (DCE-MRI) in the prediction of the response to chemotherapy in pancreatic ductal carcinoma (PDC). METHOD Forty patients with histologically confirmed PDC who underwent quantitative DCE-MRI were retrospectively analyzed. All patients were divided into groups of responders and nonresponders. DCE-MRI parameters, including the volume transfer constant (Ktrans), the extracellular extravascular volume fraction (ve), the rate constant (kep) and the initial area under the concentration curve in 60 s (iAUC60), were measured and compared. DCE-MRI parameters were obtained from different ROIs. RESULTS The values of Ktrans in responders with peripheral, whole tumor slice, and adjacent non-tumorous region ROIs were significantly higher than those in nonresponders (P = 0.015, 0.043, and 0.025, respectively). Responders showed a significantly higher kep with peripheral area ROI compared with nonresponders (P = 0.013). Ve and iAUC60 with all ROIs were not significantly different between responders and nonresponders (P = 0.140-0.968). Kep with periphery ROI showed the highest area under the ROC curve (AUC) of 0.806, but there were no statistical differences when compared with values of Ktrans.There were statistically significant differences for DCE-MRI parameters among four ROIs (all P < 0.05). All parameters showed good to excellent intra and interobserver agreement. CONCLUSIONS Quantitative parameters derived from DCE-MRI might be a potential predictor of response to gemcitabine in patients with PDC. Perfusion parameters were diverse depending on the location of the ROI on different tumoral and peritumoral areas.
Collapse
Affiliation(s)
- Wei Tang
- Department of Radiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 270 Dongan Road, Xuhui District, Shanghai, 200032, China
| | - Wei Liu
- Department of Radiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 270 Dongan Road, Xuhui District, Shanghai, 200032, China
| | - Hai-Ming Li
- Department of Radiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 270 Dongan Road, Xuhui District, Shanghai, 200032, China
| | - Qi-Feng Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 270 Dongan Road, Xuhui District, Shanghai, 200032, China
| | - Cai-Xia Fu
- MR Applications Development, Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, China
| | - Xiao-Hong Wang
- Department of Radiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 270 Dongan Road, Xuhui District, Shanghai, 200032, China
| | - Liang-Ping Zhou
- Department of Radiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 270 Dongan Road, Xuhui District, Shanghai, 200032, China.
| | - Wei-Jun Peng
- Department of Radiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 270 Dongan Road, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
13
|
Lu J, Zhou L, Yang G, Liang ZY, Zhou WX, You L, Yuan D, Li BQ, Guo JC, Zhao YP. Clinicopathological and prognostic significance of MKK4 and MKK7 in resectable pancreatic ductal adenocarcinoma. Hum Pathol 2019; 86:143-154. [DOI: 10.1016/j.humpath.2018.11.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/19/2018] [Accepted: 11/30/2018] [Indexed: 01/14/2023]
|
14
|
α-cyano-4-hydroxycinnamate impairs pancreatic cancer cells by stimulating the p38 signaling pathway. Cell Signal 2018; 47:101-108. [PMID: 29609037 DOI: 10.1016/j.cellsig.2018.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/23/2018] [Accepted: 03/25/2018] [Indexed: 12/13/2022]
Abstract
Multiple studies are currently targeting dysregulated cancer cell metabolism with distinct combinations of inhibitors. In this study, we evaluated in pancreatic cancer cells metformin, which blocks oxidative phosphorylation, in combination with α-cyano-4-hydroxycinnamate, which has been reported to inhibit the export of lactate from the cytosol. The combination of metformin with α-cyano-4-hydroxycinnamate had a major inhibitory effect on the migration of 6606PDA cells. Monotherapy with α-cyano-4-hydroxycinnamate and especially the combination with metformin also caused significant inhibition of cell proliferation and induced cell death. α-cyano-4-hydroxycinnamate in combination with metformin reduced the export of lactate significantly, whereas α-cyano-4-hydroxycinnamate monotherapy only modestly influenced lactate export. None of these two drugs inhibited the expression of distinct glycolytic enzymes. Interestingly, α-cyano-4-hydroxycinnamate rather inhibited the ERK and very strongly stimulated the p38 signaling pathway in 6606PDA as well as in 7265PDA cells. In addition, the inhibition of the p38 signaling pathway by PH-797804 partially reversed the effect of α-cyano-4-hydroxycinnamate on cell apoptosis in both cell lines. We conclude that α-cyano-4-hydroxycinnamate monotherapy and especially the combinatorial therapy with metformin has strong anti-cancerous effects. α-cyano-4-hydroxycinnamate causes cancer cell apoptosis by a novel mechanism for this drug, namely the stimulation of the p38 signaling pathway.
Collapse
|
15
|
Goldsmith CS, Kim SM, Karunarathna N, Neuendorff N, Toussaint LG, Earnest DJ, Bell-Pedersen D. Inhibition of p38 MAPK activity leads to cell type-specific effects on the molecular circadian clock and time-dependent reduction of glioma cell invasiveness. BMC Cancer 2018; 18:43. [PMID: 29316898 PMCID: PMC5761097 DOI: 10.1186/s12885-017-3896-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 12/08/2017] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The circadian clock is the basis for biological time keeping in eukaryotic organisms. The clock mechanism relies on biochemical signaling pathways to detect environmental stimuli and to regulate the expression of clock-controlled genes throughout the body. MAPK signaling pathways function in both circadian input and output pathways in mammals depending on the tissue; however, little is known about the role of p38 MAPK, an established tumor suppressor, in the mammalian circadian system. Increased expression and activity of p38 MAPK is correlated with poor prognosis in cancer, including glioblastoma multiforme; however, the toxicity of p38 MAPK inhibitors limits their clinical use. Here, we test if timed application of the specific p38 MAPK inhibitor VX-745 reduces glioma cell invasive properties in vitro. METHODS The levels and rhythmic accumulation of active phosphorylated p38 MAPK in different cell lines were determined by western blots. Rhythmic luciferase activity from clock gene luciferase reporter cells lines was used to test the effect of p38 MAPK inhibition on clock properties as determined using the damped sine fit and Levenberg-Marquardt algorithm. Nonlinear regression and Akaike's information criteria were used to establish rhythmicity. Boyden chamber assays were used to measure glioma cell invasiveness following time-of-day-specific treatment with VX-745. Significant differences were established using t-tests. RESULTS We demonstrate the activity of p38 MAPK cycles under control of the clock in mouse fibroblast and SCN cell lines. The levels of phosphorylated p38 MAPK were significantly reduced in clock-deficient cells, indicating that the circadian clock plays an important role in activation of this pathway. Inhibition of p38 MAPK activity with VX-745 led to cell-type-specific period changes in the molecular clock. In addition, phosphorylated p38 MAPK levels were rhythmic in HA glial cells, and high and arrhythmic in invasive IM3 glioma cells. We show that inhibition of p38 MAPK activity in IM3 cells at the time of day when the levels are normally low in HA cells under control of the circadian clock, significantly reduced IM3 invasiveness. CONCLUSIONS Glioma treatment with p38 MAPK inhibitors may be more effective and less toxic if administered at the appropriate time of the day.
Collapse
Affiliation(s)
- Charles S Goldsmith
- Interdisciplinary Program in Genetics, Texas A&M University, College Station TX, Texas, 77843, USA
| | - Sam Moon Kim
- Department of Biology, Texas A&M University, College Station, Texas, TX, 77843, USA
| | - Nirmala Karunarathna
- Department of Biology, Texas A&M University, College Station, Texas, TX, 77843, USA
| | - Nichole Neuendorff
- Department of Neuroscience and Experimental Therapeutics, Texas A&M, Health Science Center, College of Medicine Bryan, Texas, TX, 77807-3260, USA
| | - L Gerard Toussaint
- Department of Neuroscience and Experimental Therapeutics, Texas A&M, Health Science Center, College of Medicine Bryan, Texas, TX, 77807-3260, USA
| | - David J Earnest
- Department of Biology, Texas A&M University, College Station, Texas, TX, 77843, USA. .,Department of Neuroscience and Experimental Therapeutics, Texas A&M, Health Science Center, College of Medicine Bryan, Texas, TX, 77807-3260, USA. .,Center for Biological Clocks Research, Texas A&M University, College Station, Texas, TX, 77843, USA. .,Interdisciplinary Program in Neuroscience, Texas A&M University, College Station, Texas, TX, 77843, USA.
| | - Deborah Bell-Pedersen
- Interdisciplinary Program in Genetics, Texas A&M University, College Station TX, Texas, 77843, USA. .,Department of Biology, Texas A&M University, College Station, Texas, TX, 77843, USA. .,Center for Biological Clocks Research, Texas A&M University, College Station, Texas, TX, 77843, USA.
| |
Collapse
|
16
|
The cornerstone K-RAS mutation in pancreatic adenocarcinoma: From cell signaling network, target genes, biological processes to therapeutic targeting. Crit Rev Oncol Hematol 2017; 111:7-19. [PMID: 28259298 DOI: 10.1016/j.critrevonc.2017.01.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/15/2016] [Accepted: 01/05/2017] [Indexed: 01/17/2023] Open
Abstract
RAS belongs to the super family of small G proteins and plays crucial roles in signal transduction from membrane receptors in the cell. Mutations of K-RAS oncogene lead to an accumulation of GTP-bound proteins that maintains an active conformation. In the pancreatic ductal adenocarcinoma (PDAC), one of the most deadly cancers in occidental countries, mutations of the K-RAS oncogene are nearly systematic (>90%). Moreover, K-RAS mutation is the earliest genetic alteration occurring during pancreatic carcinogenetic sequence. In this review, we discuss the central role of K-RAS mutations and their tremendous diversity of biological properties by the interconnected regulation of signaling pathways (MAPKs, NF-κB, PI3K, Ral…). In pancreatic ductal adenocarcinoma, transcriptome analysis and preclinical animal models showed that K-RAS mutation alters biological behavior of PDAC cells (promoting proliferation, migration and invasion, evading growth suppressors, regulating mucin pattern, and miRNA expression). K-RAS also impacts tumor microenvironment and PDAC metabolism reprogramming. Finally we discuss therapeutic targeting strategies of K-RAS that have been developed without significant clinical success so far. As K-RAS is considered as the undruggable target, targeting its multiple effectors and target genes should be considered as potential alternatives.
Collapse
|
17
|
Systematic review of peri-operative prognostic biomarkers in pancreatic ductal adenocarcinoma. HPB (Oxford) 2016; 18:652-63. [PMID: 27485059 PMCID: PMC4972371 DOI: 10.1016/j.hpb.2016.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/09/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) continues to be associated with a poor prognosis. This systematic review aimed to summarize the literature regarding potential prognostic biomarkers to facilitate validation studies and clinical application. METHODS A systematic review was performed (2004-2014) according to PRISMA guidelines. Studies were ranked using REMARK criteria and the following outcomes were examined: overall/disease free survival, nodal involvement, tumour characteristics, metastasis, recurrence and resectability. RESULTS 256 biomarkers were identified in 158 studies. 171 biomarkers were assessed with respect to overall survival: urokinase-type plasminogen activator receptor, atypical protein kinase C and HSP27 ranked the highest. 33 biomarkers were assessed for disease free survival: CD24 and S100A4 were the highest ranking. 17 biomarkers were identified for lymph node involvement: Smad4/Dpc4 and FOXC1 ranked highest. 13 biomarkers were examined for tumour grade: mesothelin and EGFR were the highest ranking biomarkers. 10 biomarkers were identified for metastasis: p16 and sCD40L were the highest ranking. 4 biomarkers were assessed resectability: sCD40L, s100a2, Ca 19-9, CEA. CONCLUSION This review has identified and ranked specific biomarkers that should be a primary focus of ongoing validation and clinical translational work in PDAC.
Collapse
|
18
|
Vega GG, Avilés-Salas A, Chalapud JR, Martinez-Paniagua M, Pelayo R, Mayani H, Hernandez-Pando R, Martinez-Maza O, Huerta-Yepez S, Bonavida B, Vega MI. P38 MAPK expression and activation predicts failure of response to CHOP in patients with Diffuse Large B-Cell Lymphoma. BMC Cancer 2015; 15:722. [PMID: 26475474 PMCID: PMC4609122 DOI: 10.1186/s12885-015-1778-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 10/12/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The p38 MAPK is constitutively activated in B-NHL cell lines and regulates chemoresistance. Accordingly, we hypothesized that activated p38 MAPK may be associated with the in vivo unresponsiveness to chemotherapy in B-NHL patients. METHODS Tissue microarrays generated from eighty untreated patients with Diffused Large B Cell Lymphoma (DLBCL) were examined by immunohistochemistry for the expression of p38 and phospho p38 (p-p38) MAPK. In addition, both Bcl-2 and NF-κB expressions were determined. Kaplan Meier analysis was assessed. RESULTS Tumor tissues expressed p38 MAPK (82 %) and p-p38 MAPK (30 %). Both p38 and p-p38 MAPK expressions correlated with the high score performance status. A significant correlation was found between the expression p-p38 and poor response to CHOP. The five year median follow-up FFS was 81 % for p38(-) and 34 % for p38(+) and for OS was 83 % for p38(-) and 47 % for p38(+). The p-p38(+) tissues expressed Bcl-2 and 90 % of p-p38(-) where Bcl-2(-). The coexpression of p-p38 and Bcl-2 correlated with pool EFS and OS. There was no correlation between the expression of p-p38 and the expression of NF-κB. CONCLUSION The findings revealed, for the first time, that a subset of patients with DLBCL and whose tumors expressed high p-p38 MAPK responded poorly to CHOP therapy and had poor EFS and OS. The expression of p38, p-p38, Bcl2 and the ABC subtype are significant risk factors both p38 and p-p38 expressions remain independent prognostic factors.
Collapse
Affiliation(s)
- Gabriel G Vega
- Oncology Research Unit, Oncology Hospital, Siglo XXI National Medical Center, IMSS, Mexico City, Mexico.
- Facultad de Medicina Programa de Posgrado, Doctorado en Ciencias Biomédicas UNAM, México City, DF, Mexico.
| | - Alejandro Avilés-Salas
- Departamento de Patología, Instituto Nacional de Cancerología, SSA, México City, México.
| | - J Ramón Chalapud
- Servicio de Hematología, Instituto Nacional de Cancerología, SSA, México City, México.
| | - Melisa Martinez-Paniagua
- Unidad de Investigación Médica en Inmunología e Infectología, CMN La Raza, IMSS, México City, México.
| | - Rosana Pelayo
- Oncology Research Unit, Oncology Hospital, Siglo XXI National Medical Center, IMSS, Mexico City, Mexico.
| | - Héctor Mayani
- Oncology Research Unit, Oncology Hospital, Siglo XXI National Medical Center, IMSS, Mexico City, Mexico.
| | - Rogelio Hernandez-Pando
- Departamento de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubiran, SSA, México City, México.
| | - Otoniel Martinez-Maza
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine UCLA, Los Angeles, CA, USA.
| | - Sara Huerta-Yepez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, SSA, México City, México.
| | - Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine UCLA, Los Angeles, CA, USA.
| | - Mario I Vega
- Oncology Research Unit, Oncology Hospital, Siglo XXI National Medical Center, IMSS, Mexico City, Mexico.
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine UCLA, Los Angeles, CA, USA.
| |
Collapse
|
19
|
Malm SW, Hanke NT, Gill A, Carbajal L, Baker AF. The anti-tumor efficacy of 2-deoxyglucose and D-allose are enhanced with p38 inhibition in pancreatic and ovarian cell lines. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:31. [PMID: 25888489 PMCID: PMC4391305 DOI: 10.1186/s13046-015-0147-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/16/2015] [Indexed: 12/20/2022]
Abstract
PURPOSE The anti-tumor activity of glucose analogs 2-deoxy-glucose (2-DG) and D-allose was investigated alone or in combination with p38 mitogen-activated protein kinase (MAPK) inhibitor SB202190 or platinum analogs as a strategy to pharmacologically target glycolytic tumor phenotypes. METHODS Hypoxia inducible factor-1 alpha (HIF-1α) protein accumulation in pancreatic cell lines treated with SB202190 alone and in combination with glucose analogs was analyzed by Western blot. HIF-1α transcriptional activity was measured in MIA PaCa-2 cells stably transfected with a hypoxia response element luciferase reporter following treatment with glucose analogs alone, and in combination with SB202190. Induction of cleaved poly(ADP-ribose) polymerase (PARP) was measured by Western blot in the MIA PaCa-2 cells. In vitro anti-proliferative activity of 2-DG and D-allose alone, or in combination with oxaliplatin (pancreatic cell lines), cisplatin (ovarian cell lines), or with SB202190 were investigated using the MTT assay. RESULTS SB202190 decreased HIF-1α protein accumulation and transcriptional activity. 2-DG demonstrated greater anti-proliferative activity than D-allose. Pre-treatment with SB202190 enhanced activity of both 2-DG and D-allose in MIA PaCa-2, BxPC-3, ASPC-1, and SK-OV-3 cells. The combination of D-allose and platinum agents was additive to moderately synergistic in all but the OVCAR-3 and HEY cells. SB202190 pre-treatment further enhanced activity of D-allose and 2-DG with platinum agents in most cell lines investigated. CONCLUSIONS SB202190 induced sensitization of tumor cells to 2-DG and D-allose may be partially mediated by inhibition of HIF-1α activity. Combining glucose analogs and p38 MAPK inhibitors with chemotherapy may be an effective approach to target glycolytic tumor phenotypes.
Collapse
Affiliation(s)
- Scott W Malm
- College of Pharmacy, University of Arizona, Tucson, Arizona, USA.
| | - Neale T Hanke
- College of Medicine, University of Arizona Cancer Center, Tucson, Arizona, USA.
| | - Alexander Gill
- College of Medicine, University of Arizona Cancer Center, Tucson, Arizona, USA.
| | - Liliana Carbajal
- College of Medicine, University of Arizona Cancer Center, Tucson, Arizona, USA.
| | - Amanda F Baker
- College of Medicine, University of Arizona Cancer Center, Tucson, Arizona, USA.
| |
Collapse
|
20
|
Dynamic contrast-enhanced magnetic resonance imaging for pancreatic ductal adenocarcinoma at 3.0-T magnetic resonance: correlation with histopathology. J Comput Assist Tomogr 2015; 39:13-8. [PMID: 25340589 DOI: 10.1097/rct.0000000000000171] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE The aim of this study was to discuss the correlation of quantitative dynamic contrast-enhanced magnetic resonance imaging (QDCE-MRI) at 3.0-T magnetic resonance and histopathology for pancreatic ductal adenocarcinoma (PDA). METHODS Twenty-three patients with histopathologically proven PDA were included in this study after 75 cases of suspected pancreatic tumors had been performed by QDCE-MRI. The quantitative kinetic parameters analyzed by 2-compartment and 3-compartment models were calculated automatically, which included the volume transfer constant of the contrast agent, the rate constant (Kep), the volume as a percentage of the extravascular extracellular leakage space, the time of arrival of contrast agent, the time of peaking of contrast agent, the maximum slope of signal intensity ascent, and the contrast enhancement ratio. According to magnetic resonance images, tissue section were selected and stained for evaluating tumor differentiation, tumor fibrosis, tumor microvessel density, the expression of tumor vascular endothelial growth factor (VEGF) and Ki67. Subsequently, the relationship between the parameters of QDCE-MRI and histopathology of PDA was analyzed. RESULTS The tumor Kep and extravascular extracellular leakage space showed a statistically significant correlation with tumor fibrosis; the tumor volume transfer constant of the contrast agent 2-compartment showed a statistically significant correlation with the expressions of tumor VEGF; and the tumor Kep, maximum slope of signal intensity ascent, and contrast enhancement ratio showed a statistically significant correlation with the expression of tumor Ki67. CONCLUSIONS The parameters of QDCE-MRI of PDA can be used to evaluate the degrees of tumor fibrosis and the expressions of VEGF and Ki67.
Collapse
|
21
|
Zhong Y, Naito Y, Cope L, Naranjo-Suarez S, Saunders T, Hong SM, Goggins MG, Herman JM, Wolfgang CL, Iacobuzio-Donahue CA. Functional p38 MAPK identified by biomarker profiling of pancreatic cancer restrains growth through JNK inhibition and correlates with improved survival. Clin Cancer Res 2014; 20:6200-11. [PMID: 24963048 DOI: 10.1158/1078-0432.ccr-13-2823] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Numerous biomarkers for pancreatic cancer have been reported. We determined the extent to which such biomarkers are expressed throughout metastatic progression, including those that effectively predict biologic behavior. EXPERIMENTAL DESIGN Biomarker profiling was performed for 35 oncoproteins in matched primary and metastatic pancreatic cancer tissues from 36 rapid autopsy patients. Proteins of significance were validated by immunolabeling in an independent sample set, and functional studies were performed in vitro and in vivo. RESULTS Most biomarkers were similarly expressed or lost in expression in most samples analyzed, and the matched primary and metastases from a specific patient were most similar to each other than to other patients. However, a subset of proteins showed extensive interpatient heterogeneity, one of which was p38 MAPK. Strong positive pp38 MAPK immunolabeling was significantly correlated with improved postresection survival by multivariate analysis (median overall survival 27.9 months, P = 0.041). In pancreatic cancer cells, inhibition of functional p38 by SB202190 increased cell proliferation in vitro in both low-serum and low-oxygen conditions. High functional p38 activity in vitro corresponded to lower levels of pJNK protein expression, and p38 inhibition resulted in increased pJNK and pMKK7 by Western blot analysis. Moreover, JNK inhibition by SP600125 or MKK7 siRNA knockdown antagonized the effects of p38 inhibition by SB202190. In vivo, SP600125 significantly decreased growth rates of xenografts with high p38 activity compared with those without p38 expression. CONCLUSIONS Functional p38 MAPK activity contributes to overall survival through JNK signaling, thus providing a rationale for JNK inhibition in pancreatic cancer management.
Collapse
Affiliation(s)
- Yi Zhong
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Yoshiki Naito
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. Department of Pathology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Leslie Cope
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Salvador Naranjo-Suarez
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Tyler Saunders
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Seung-Mo Hong
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Michael G Goggins
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. Department of Medicine, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Joseph M Herman
- Department of Radiation Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Christopher L Wolfgang
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Christine A Iacobuzio-Donahue
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland.
| |
Collapse
|
22
|
Extracellular signal-regulated kinase (ERK) expression and activation in mobile tongue squamous cell carcinoma: associations with clinicopathological parameters and patients survival. Tumour Biol 2014; 35:6455-65. [PMID: 24682903 DOI: 10.1007/s13277-014-1853-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/14/2014] [Indexed: 02/06/2023] Open
Abstract
Extracellular signal-regulated kinase (ERK) has been considered as a critical regulator of diverse cellular processes such as proliferation, survival and motility, being implicated in the malignant transformation in several tissue types. The present study aimed to evaluate the clinical significance of total ERK1 (t-ERK1) and phosphorylated ERK1/2 (p-ERK1/2) protein expression in mobile tongue squamous cell carcinoma (SCC). t-ERK1 and p-ERK1/2 protein expression in tumour cells and infiltrating the tumour microenvironment lymphoid cells was assessed immunohistochemically on 47 mobile tongue SCC tissue samples and was analyzed in relation with clinicopathological characteristics, overall and disease-free patients' survival. Enhanced nuclear t-ERK1 and p-ERK1/2 expression in tumour cells was associated with the absence of perineural invasion (p = 0.043) and shorter overall patients' survival (log-rank test, p = 0.028), respectively. Enhanced t-ERK1 expression in infiltrating lymphoid cells was significantly associated with female gender, absence of vascular and perineural invasion, lymph node metastases and early depth of invasion (p = 0.008, p = 0.019, p = 0.011, p = 0.036 and p = 0.001, respectively), as well as with longer disease-free survival times (log-rank test, p = 0.038). Enhanced p-ERK1/2 expression in infiltrating lymphoid cells was significantly associated with the presence of vascular invasion and lymph node metastases (p = 0.019 and p = 0.004, respectively) and shorter overall patients' survival (log-rank test, p = 0.013). In multivariate analysis, p-ERK1/2 expression in tumour cells and infiltrating lymphoid cells was identified as independent prognostic factors of overall survival (Cox regression analysis, p = 0.045 and p = 0.032, respectively). The present study supported evidence that ERK signalling pathway may exert a potential role in the pathophysiological aspects of the mobile tongue SCC, presenting also potential utility as a biomarker for patients' survival and reinforcing the development of novel anti-cancer therapies targeting ERK signalling cascade in this type of human malignancy.
Collapse
|
23
|
Neuzillet C, Hammel P, Tijeras-Raballand A, Couvelard A, Raymond E. Targeting the Ras-ERK pathway in pancreatic adenocarcinoma. Cancer Metastasis Rev 2013; 32:147-62. [PMID: 23085856 DOI: 10.1007/s10555-012-9396-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PAC) stands as the poorest prognostic tumor of the digestive tract with limited therapeutic options. PAC carcinogenesis is associated with the loss of function of tumor suppressor genes such as INK4A, TP53, BRCA2, and DPC4, and only a few activated oncogenes among which K-RAS mutations are the most prevalent. The K-RAS mutation occurs early in PAC carcinogenesis, driving downstream activation of MEK and ERK1/2 which promote survival, invasion, and migration of cancer cells. In PAC models, inhibition of members of the Ras-ERK pathway blocks cellular proliferation and metastasis development. As oncogenic Ras does not appear to be a suitable drug target, inhibitors targeting downstream kinases including Raf and MEK have been developed and are currently under evaluation in clinical trials. In this review, we describe the role of the Ras-ERK pathway in pancreatic carcinogenesis and as a new therapeutic target for the treatment of PAC.
Collapse
Affiliation(s)
- Cindy Neuzillet
- INSERM U728 and Department of Medical Oncology, Beaujon University Hospital (AP-HP Paris 7 Diderot), Clichy, France
| | | | | | | | | |
Collapse
|
24
|
Handra-Luca A, Hammel P, Sauvanet A, Lesty C, Ruszniewski P, Couvelard A. EGFR expression in pancreatic adenocarcinoma. Relationship to tumour morphology and cell adhesion proteins. J Clin Pathol 2013; 67:295-300. [DOI: 10.1136/jclinpath-2013-201662] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
25
|
Handra-Luca A, Hammel P, Sauvanet A, Ruszniewski P, Couvelard A. Tumoral epithelial and stromal expression of SMAD proteins in pancreatic ductal adenocarcinomas. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2013; 20:294-302. [PMID: 22581056 DOI: 10.1007/s00534-012-0518-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND SMAD proteins, intracellular mediators of the transforming growth factor (TGF)-beta pathway, function within two axes, the SMAD1/5/8 and SMAD2/3, connected to TGF-beta and bone morphogenetic protein (BMP) ligands. The SMAD proteins of these two axes dimerize with SMAD4 and translocate to the nucleus. SMAD signaling is characterized by a dichotomic functioning, with tumor-suppressive functions and with loss of normal growth inhibitory responses, depending on the carcinogenesis stage. SMAD proteins also have pro-tumor effects including abnormal extracellular matrix production. Among tumors, pancreatic cancers harbor SMAD4 inactivation the most frequently and the SMAD proteins are considered to be key factors in pancreatic carcinogenesis. METHODS Our aims were to study the expression patterns of the different types of SMAD proteins in pancreatic ductal adenocarcinomas treated by surgical resection (without neoadjuvant treatment) and their correlations with morphological and clinical characteristics. We examined the immunohistochemical expression of SMAD4, SMAD1/5/8, and SMAD2/3 in 99 pancreatic ductal adenocarcinomas. Antibodies directed against the activated, phosphorylated forms of proteins were used when appropriate (SMAD1/5/8, SMAD2/3). Protein expression in the epithelial tumor cells and in stromal fibroblasts was analyzed with regard to morphological and clinical data. RESULTS Epithelial tumor cells showed SMAD1/5/8, SMAD2/3, and, SMAD4 expression in 13, 93, and 45 tumors, respectively, and stromal fibroblast expression in 5, 11, and 22 tumors, respectively. Epithelial SMAD4 was associated with a low, T1 or T2, TNM stage, and with the presence of an abundant stroma (p = 0.05 and <0.01, respectively). Activated stromal fibroblast SMAD2/3 expression was correlated with the presence of a fibrotic focus (p = 0.01), whereas fibroblast SMAD4 was related to a tendency for shorter postsurgical overall survival (p = 0.07). The relationship of stromal, fibroblast SMAD4 to a worse outcome attained statistical significance in the group of patients with T1 and with N1 stage tumors (p < 0.01 and p = 0.04, respectively). CONCLUSION In pancreatic ductal adenocarcinomas, SMAD protein expression in epithelial tumor cells or in stromal fibroblasts was related to stromal features and to a shorter postsurgical overall survival. Our results point out that the SMAD proteins play a role in the microenvironment of this highly fibrotic tumor type.
Collapse
|
26
|
Sooman L, Lennartsson J, Gullbo J, Bergqvist M, Tsakonas G, Johansson F, Edqvist PH, Pontén F, Jaiswal A, Navani S, Alafuzoff I, Popova S, Blomquist E, Ekman S. Vandetanib combined with a p38 MAPK inhibitor synergistically reduces glioblastoma cell survival. Med Oncol 2013; 30:638. [PMID: 23783486 DOI: 10.1007/s12032-013-0638-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 06/10/2013] [Indexed: 12/19/2022]
Abstract
The survival for patients with high-grade glioma is poor, and only a limited number of patients respond to the therapy. The aim of this study was to analyze the significance of using p38 MAPK phosphorylation as a prognostic marker in high-grade glioma patients and as a therapeutic target in combination chemotherapy with vandetanib. p38 MAPK phosphorylation was analyzed with immunohistochemistry in 90 high-grade glioma patients. Correlation between p38 MAPK phosphorylation and overall survival was analyzed with Mann-Whitney U test analysis. The effects on survival of glioblastoma cells of combining vandetanib with the p38 MAPK inhibitor SB 203580 were analyzed in vitro with the median-effect method with the fluorometric microculture cytotoxicity assay. Two patients had phosphorylated p38 MAPK in both the cytoplasm and nucleus, and these two presented with worse survival than patients with no detectable p38 MAPK phosphorylation or phosphorylated p38 MAPK only in the nucleus. This was true for both high-grade glioma patients (WHO grade III and IV, n = 90, difference in median survival: 6.1 months, 95 % CI [0.20, 23], p = 0.039) and for the subgroup with glioblastoma patients (WHO grade IV, n = 70, difference in median survival: 6.1 months, 95 % CI [0.066, 23], p = 0.043). The combination of vandetanib and the p38 MAPK inhibitor SB 203580 had synergistic effects on cell survival for glioblastoma-derived cells in vitro. In conclusion, p38 MAPK phosphorylation may be a prognostic marker for high-grade glioma patients, and vandetanib combined with a p38 MAPK inhibitor may be useful combination chemotherapy for glioma patients.
Collapse
Affiliation(s)
- Linda Sooman
- Section of Oncology, Department of Radiology, Oncology and Radiation Sciences, Rudbeck Laboratory, 751 85 Uppsala, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abbas S. Molecular biology of adenocarcinoma of the pancreatic duct, current state and future therapeutic avenues. Surg Oncol 2013; 22:69-76. [PMID: 23415924 DOI: 10.1016/j.suronc.2012.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 12/10/2012] [Accepted: 12/12/2012] [Indexed: 12/14/2022]
Abstract
Pancreatic adenocarcinoma is a lethal disease; currently surgery offers five years survival of less than 5%. Any improvement in the outcome is likely to be through novel therapeutic agents that will target the genetic machinery of the cell. Knowledge of genetic alterations in the process of carcinogenesis is expanding rapidly, the targeted therapy, however, is progressing slowly. Pancreatic adenocarcinoma displays a variety of molecular changes that evolve exponentially with time and lend the cancer cells their ability not only to survive, but also to invade the surrounding tissues and metastasise to distant sites. These changes involve genetic alteration in oncogenes, cancer suppressor genes, changes in cell cycle, pathways of apoptosis and also changes in epithelial to mesenchymal transition. Monotherapeutic targeted agents seem(s) to have limited effect on cancer cells. The near future is likely to show an improvement in the treatment outcome, which is likely to be a result of the combination of targeted agents with surgery and chemotherapy.
Collapse
Affiliation(s)
- Saleh Abbas
- Deakin University, Barwon Health, Bellerine St, Geelong 3200, Vic, Australia.
| |
Collapse
|