2
|
Li F, Zhou Y, Zhang Y, Yin J, Qiu Y, Gao J, Zhu F. POSREG: proteomic signature discovered by simultaneously optimizing its reproducibility and generalizability. Brief Bioinform 2022; 23:6532538. [PMID: 35183059 DOI: 10.1093/bib/bbac040] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 12/17/2022] Open
Abstract
Mass spectrometry-based proteomic technique has become indispensable in current exploration of complex and dynamic biological processes. Instrument development has largely ensured the effective production of proteomic data, which necessitates commensurate advances in statistical framework to discover the optimal proteomic signature. Current framework mainly emphasizes the generalizability of the identified signature in predicting the independent data but neglects the reproducibility among signatures identified from independently repeated trials on different sub-dataset. These problems seriously restricted the wide application of the proteomic technique in molecular biology and other related directions. Thus, it is crucial to enable the generalizable and reproducible discovery of the proteomic signature with the subsequent indication of phenotype association. However, no such tool has been developed and available yet. Herein, an online tool, POSREG, was therefore constructed to identify the optimal signature for a set of proteomic data. It works by (i) identifying the proteomic signature of good reproducibility and aggregating them to ensemble feature ranking by ensemble learning, (ii) assessing the generalizability of ensemble feature ranking to acquire the optimal signature and (iii) indicating the phenotype association of discovered signature. POSREG is unique in its capacity of discovering the proteomic signature by simultaneously optimizing its reproducibility and generalizability. It is now accessible free of charge without any registration or login requirement at https://idrblab.org/posreg/.
Collapse
Affiliation(s)
- Fengcheng Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Ying Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiayi Yin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yunqing Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Jianqing Gao
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Singh D, Mohapatra P, Kumar S, Behera S, Dixit A, Sahoo SK. Nimbolide-encapsulated PLGA nanoparticles induces Mesenchymal-to-Epithelial Transition by dual inhibition of AKT and mTOR in pancreatic cancer stem cells. Toxicol In Vitro 2021; 79:105293. [PMID: 34883246 DOI: 10.1016/j.tiv.2021.105293] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/17/2021] [Accepted: 12/01/2021] [Indexed: 12/30/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with poor prognosis and remains highly aggressive despite current advancements in therapies. Chemoresistance and high metastatic nature of PDAC is attributed to a small subset of stem-like cells within the tumor known as Cancer Stem Cells (CSCs). Here, we developed a strategy for targeting pancreatic CSCs through forceful induction of mesenchymal-to-epithelial transition driven by encapsulating a phytochemical Nimbolide in nanoparticles. Binding of Nimbolide with the key regulator proteins of CSCs were studied through molecular docking and molecular dynamic simulation studies, which revealed that it binds to AKT and mTOR with high affinity. Further, in vitro studies revealed that Nim NPs are capable of inducing forceful mesenchymal-to-epithelial transition of pancreatospheres that leads to loss of multidrug resistance and self-renewal properties of pancreatospheres. Our study gives a proof of concept that encapsulation of Nim in PLGA nanoparticles increases its therapeutic effect on pancreatospheres. Further, binding of Nim to AKT and mTOR negatively regulates their activity that ultimately leads to mesenchymal-to-epithelial transition of pancreatic CSCs.
Collapse
Affiliation(s)
- Deepika Singh
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
| | - Priyanka Mohapatra
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India; Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Sugandh Kumar
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
| | - Somalisa Behera
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
| | - Anshuman Dixit
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
| | - Sanjeeb Kumar Sahoo
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India.
| |
Collapse
|
4
|
Lai X, Guo Y, Chen M, Wei Y, Yi W, Shi Y, Xiong L. Caveolin1: its roles in normal and cancer stem cells. J Cancer Res Clin Oncol 2021; 147:3459-3475. [PMID: 34498146 DOI: 10.1007/s00432-021-03793-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/03/2021] [Indexed: 12/09/2022]
Abstract
PURPOSE Stem cells are characterized by the capability of self-renewal and multi-differentiation. Normal stem cells, which are important for tissue repair and tissue regeneration, can be divided into embryonic stem cells (ESCs) and somatic stem cells (SSCs) depending on their origin. As a subpopulation of cells within cancer, cancer stem cells (CSCs) are at the root of therapeutic resistance. Tumor-initiating cells (TICs) are necessary for tumor initiation. Caveolin1 (Cav1), a membrane protein located at the caveolae, participates in cell lipid transport, cell migration, cell proliferation, and cell signal transduction. The purpose of this review was to explore the relationship between Cav1 and stem cells. RESULTS In ESCs, Cav1 is beneficial for self-renewal, proliferation, and migration. In SSCs, Cav1 exhibits positive or/and negative effects on stem cell self-renewal, differentiation, proliferation, migration, and angiogenic capacity. Cav1 deficiency impairs normal stem cell-based tissue repair. In CSCs, Cav1 inhibits or/and promotes CSC self-renewal, differentiation, invasion, migration, tumorigenicity ability, and CSC formation. And suppressing Cav1 promotes chemo-sensitivity in CSCs and TICs. CONCLUSION Cav1 shows dual roles in stem cell biology. Targeting the Cav1-stem cell axis would be a new way for tissue repair and cancer drug resistance.
Collapse
Affiliation(s)
- Xingning Lai
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Yiling Guo
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Miaomiao Chen
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,First Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Yuxuan Wei
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,Queen Mary School, Jiangxi Medical College of Nanchang University, Nanchang, 330006, China
| | - Wanting Yi
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,First Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Yubo Shi
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,Queen Mary School, Jiangxi Medical College of Nanchang University, Nanchang, 330006, China
| | - Lixia Xiong
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China. .,Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang, 330006, China.
| |
Collapse
|
5
|
D'Onofrio N, Caraglia M, Grimaldi A, Marfella R, Servillo L, Paolisso G, Balestrieri ML. Vascular-homing peptides for targeted drug delivery and molecular imaging: meeting the clinical challenges. Biochim Biophys Acta Rev Cancer 2014; 1846:1-12. [PMID: 24704283 DOI: 10.1016/j.bbcan.2014.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/20/2014] [Accepted: 03/22/2014] [Indexed: 12/12/2022]
Abstract
The vasculature of each organ expresses distinct molecular signatures critically influenced by the pathological status. The heterogeneous profile of the vascular beds has been successfully unveiled by the in vivo phage display, a high-throughput tool for mapping normal, diseased, and tumor vasculature. Specific challenges of this growing field are targeted therapies against cancer and cardiovascular diseases, as well as novel bioimaging diagnostic tools. Tumor vasculature-homing peptides have been extensively evaluated in several preclinical and clinical studies both as targeted-therapy and diagnosis. To date, results from several Phase I and II trials have been reported and many other trials are currently ongoing or recruiting patients. In this review, advances in the identification of novel peptide ligands and their corresponding receptors on tumor endothelium through the in vivo phage display technology are discussed. Emphasis is given to recent findings in the clinical setting of vascular-homing peptides selected by in vivo phage display for the treatment of advanced malignancies and their altered vascular beds.
Collapse
Affiliation(s)
- Nunzia D'Onofrio
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, via L. de Crecchio 7, 80138 Naples, Italy
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, via L. de Crecchio 7, 80138 Naples, Italy
| | - Anna Grimaldi
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, via L. de Crecchio 7, 80138 Naples, Italy
| | - Raffaele Marfella
- Department of Geriatrics and Metabolic Diseases, Second University of Naples, Piazza Miraglia 2, 80138 Naples, Italy
| | - Luigi Servillo
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, via L. de Crecchio 7, 80138 Naples, Italy
| | - Giuseppe Paolisso
- Department of Geriatrics and Metabolic Diseases, Second University of Naples, Piazza Miraglia 2, 80138 Naples, Italy
| | - Maria Luisa Balestrieri
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, via L. de Crecchio 7, 80138 Naples, Italy.
| |
Collapse
|