1
|
Lindsay HB, Massimino M, Avula S, Stivaros S, Grundy R, Metrock K, Bhatia A, Fernández-Teijeiro A, Chiapparini L, Bennett J, Wright K, Hoffman LM, Smith A, Pajtler KW, Poussaint TY, Warren KE, Foreman NK, Mirsky DM. Response assessment in paediatric intracranial ependymoma: recommendations from the Response Assessment in Pediatric Neuro-Oncology (RAPNO) working group. Lancet Oncol 2022; 23:e393-e401. [DOI: 10.1016/s1470-2045(22)00222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 10/16/2022]
|
2
|
Sacerdote C, Mosso ML, Alessi D, Merletti F, Tagliabue G, D'Agostino A, Fabiano S, Savoia F, Piga P, Sessa M, Vetrano F, Gatta G, Maule M. An application of the Toronto Childhood Cancer Stage Guidelines in three population-based cancer registries: The case of central nervous tumors. Pediatr Blood Cancer 2020; 67:e28303. [PMID: 32301558 DOI: 10.1002/pbc.28303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND Cancer stage is a determinant of survival of childhood central nervous system (CNS) cancers and could help the interpretation of survival variability among countries. Consensus guidelines to stage childhood malignancies in population cancer registries ("Toronto Childhood Cancer Stage Guidelines") have been recently proposed with the goal of data comparability. Indeed, stage is not systematically recorded in all registries and, when it is, different classification systems are used. We applied the Toronto Childhood Cancer Stage Guidelines to CNS cancer cases of three population-based cancer registries with the aim of evaluating the feasibility of staging this type of cancer and the critical points in the classification of CNS tumors. PROCEDURES The Toronto Childhood Cancer Stage Guidelines were applied to 175 CNS patients, diagnosed from January 1, 2002 to December 31, 2014 in three cancer registries in Italy, and the percentage of cases that could be staged was assessed. RESULTS One hundred eight of 126 (86%) medulloblastomas and other embryonal CNS cancers and 22 of 49 (45%) ependymomas were staged. Using these guidelines, survival of children with localized tumors could be discriminated from that of children with metastatic disease. CONCLUSIONS The use of the Toronto Childhood Cancer Stage Guidelines is feasible for staging medulloblastoma in Italian population-based cancer registries, whereas it is more difficult for ependymomas. In Italy, cerebrospinal fluid examination, one of the decisive tests to stage CNS tumors, is not routinely performed as a first-line diagnosis procedure in ependymoma pediatric patients. A similar exercise by a larger number of cancer registries in different countries could suggest improvements in the childhood cancer staging system.
Collapse
Affiliation(s)
- Carlotta Sacerdote
- Unit of Cancer Epidemiology, Citta' della Salute e della Scienza Hospital and Centre for Cancer Prevention, Turin, Italy.,Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Daniela Alessi
- Unit of Cancer Epidemiology, Citta' della Salute e della Scienza Hospital and Centre for Cancer Prevention, Turin, Italy
| | - Franco Merletti
- Unit of Cancer Epidemiology, Citta' della Salute e della Scienza Hospital and Centre for Cancer Prevention, Turin, Italy.,Department of Medical Sciences, University of Turin, Turin, Italy
| | - Giovanna Tagliabue
- Lombardy Cancer Registry, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Anna D'Agostino
- Lombardy Cancer Registry, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Sabrina Fabiano
- Lombardy Cancer Registry, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Fabio Savoia
- Childhood Cancer Registry of Campania, AORN Santobono-Pausilipon, Naples, Italy
| | - Patrizia Piga
- Childhood Cancer Registry of Campania, AORN Santobono-Pausilipon, Naples, Italy
| | - Marcella Sessa
- Childhood Cancer Registry of Campania, AORN Santobono-Pausilipon, Naples, Italy
| | - Francesco Vetrano
- Childhood Cancer Registry of Campania, AORN Santobono-Pausilipon, Naples, Italy
| | - Gemma Gatta
- Evaluative Epidemiology Unit, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Milena Maule
- Unit of Cancer Epidemiology, Citta' della Salute e della Scienza Hospital and Centre for Cancer Prevention, Turin, Italy.,Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
3
|
Ahmed KI, Govardhan HB, Roy M, Naveen T, Siddanna P, Sridhar P, Suma MN, Nelson N. Cell-free circulating tumor DNA in patients with high-grade glioma as diagnostic biomarker - A guide to future directive. Indian J Cancer 2019; 56:65-69. [PMID: 30950448 DOI: 10.4103/ijc.ijc_551_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Owing to the aggressive nature of high-grade gliomas (HGGs), its early diagnosis holds the key to a favorable prognosis. Currently, tissue biopsy is the gold standard to verify HGG's initial diagnosis and can be challenging due to its invasive nature. In this study, our objective was a noninvasive panel for timely detection of HGG and its progression using cell-free circulating tumor DNA (cfTDNA). MATERIALS AND METHODS Twenty-seven patients with HGG were tested with a 50-gene tumor panel. cfTDNA isolated from serum was checked for single-nucleotide variations (SNVs) or copy number alterations using targeted next-generation sequencing, with further validation of results by checking respective formalin-fixed paraffin-embedded tumor tissues for the same genetic alterations. RESULTS About 88.8% of the patients were detected with HGG-associated cfTDNA. Around 25% patients were detected with one, 25% patients had three, 25% patients had four, and 12.5% patients each had five and six genetic alterations. About 12 of 50 genes were detected in the serum samples. The SNVs detected included TP53 in 87.5% of patients; PIK3CA and EGFR in 50% of patients; PTEN in 37.5%; KIT and VHL in each 25% of patients; and RB1, NF2, MET, ATRX, CDK2A, and CTNNB1 each in 8.3%-16.6%. On combining EGFR, KIT, PTEN, PIK3CA, TP53, and VHL genes (Govardhan Diagnostic Genetic Module for high-grade glioma), at least one of the genetic alterations was found in 100% of patients. Conclusion These findings illustrate that cfTDNA is easily demonstrable and can be used as a surrogate to tissue biopsy in brain tumor.
Collapse
Affiliation(s)
- Khaleel Ibrahim Ahmed
- Department of Radiation Oncology, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka, India
| | - H B Govardhan
- Department of Radiation Oncology, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka, India
| | - Manisha Roy
- Department of Radiation Oncology, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka, India
| | - T Naveen
- Department of Radiation Oncology, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka, India
| | - P Siddanna
- Department of Radiation Oncology, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka, India
| | - P Sridhar
- Department of Radiation Oncology, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka, India
| | - M N Suma
- Department of Radiation Oncology, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka, India
| | - Noopur Nelson
- Department of Radiation Oncology, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka, India
| |
Collapse
|
4
|
Benesch M, Mynarek M, Witt H, Warmuth-Metz M, Pietsch T, Bison B, Pfister SM, Pajtler KW, Kool M, Schüller U, Pietschmann K, Juhnke BO, Tippelt S, Fleischhack G, Schmid I, Kramm CM, Vorwerk P, Beilken A, Classen CF, Hernáiz Driever P, Kropshofer G, Imschweiler T, Lemmer A, Kortmann RD, Rutkowski S, von Hoff K. Newly Diagnosed Metastatic Intracranial Ependymoma in Children: Frequency, Molecular Characteristics, Treatment, and Outcome in the Prospective HIT Series. Oncologist 2019; 24:e921-e929. [PMID: 30850560 DOI: 10.1634/theoncologist.2018-0489] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/15/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Data on frequency, clinical presentation, and outcome of primary metastatic intracranial ependymoma in children are scarce. PATIENTS AND METHODS Prospective data on patients younger than 21 years with metastatic intracranial ependymoma at first diagnosis, registered from 2001 to 2014 in the HIT-2000 trial and the HIT-2000 Interim Registry, were analyzed. RESULTS Of 453 registered patients with intracranial ependymoma and central neuropathology review, initial staging included spinal magnetic resonance imaging in all patients and lumbar cerebrospinal fluid (CSF) analysis in 402 patients. Ten patients (2.2%) had metastatic disease, including three with microscopic CSF positivity only (M1 metastasis stage, 0.7% of patients with CSF staging). Location of the primary tumor was supratentorial in four patients (all supratentorial RELA-fused ependymoma [ST-EPN-RELA]) and within the posterior fossa in five patients (posterior fossa ependymoma type A [PF-EPN-A], n = 4; posterior fossa ependymoma not further classifiable, n = 1), and multifocal in one patient.All four patients with ST-EPN-RELA were alive in first or second complete remission (CR) 7.5-12.3 years after diagnosis. All four patients with macroscopic metastases of posterior fossa or multifocal ependymoma died. Three patients with initial M1 stage (ST-EPN-RELA, n = 1; PF-EPN-A, n = 2) received chemotherapy and local irradiation and were alive in second or third CR 3.0-9.7 years after diagnosis. Progression-free and overall survival of the entire cohort at 5 years was 13% (±6%), and 58% (±16%), respectively. CONCLUSION Primary metastatic disease is rare in children with intracranial ependymoma. Prognosis may depend on molecular subgroup and extent of dissemination, and relevance of CSF analysis for initial staging remains to be clarified. IMPLICATIONS FOR PRACTICE Childhood ependymoma presenting with metastasis at first diagnosis is very rare with a frequency of 2.4% in this population-based, well-characterized cohort. Detection of microscopic metastases in the cerebrospinal fluid was extremely rare, and impact on prognosis and respective treatment decision on irradiation field remains unclear. Initial metastatic presentation occurs in both supratentorial RELA-fused ependymoma and posterior fossa ependymoma. Prognosis may differ according to extent of metastasis and biological subgroup, with poor prognosis in diffusely spread metastatic posterior fossa ependymoma even after combination therapy with both intensive chemotherapy and craniospinal irradiation, which may help to guide individual therapeutic decisions for future patients.
Collapse
Affiliation(s)
- Martin Benesch
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Martin Mynarek
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hendrik Witt
- Hopp Children's Cancer Center (KiTZ), Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Monika Warmuth-Metz
- Institute of Diagnostic and Interventional Neuroradiology, University Hospital Würzburg, Würzburg, Germany
| | - Torsten Pietsch
- Institute of Neuropathology, Brain Tumor Reference Center of the German Society for Neuropathology and Neuroanatomy (DGNN), University of Bonn, Bonn, Germany
| | - Brigitte Bison
- Institute of Diagnostic and Interventional Neuroradiology, University Hospital Würzburg, Würzburg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center (KiTZ), Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Kristian W Pajtler
- Hopp Children's Cancer Center (KiTZ), Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center (KiTZ), Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center, Hamburg, Germany
| | - Klaus Pietschmann
- Department of Radiation Oncology, University of Leipzig, Leipzig, Germany
| | - Björn-Ole Juhnke
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Tippelt
- Pediatric Hematology and Oncology, Pediatrics III, University Children's Hospital of Essen, Essen, Germany
| | - Gudrun Fleischhack
- Pediatric Hematology and Oncology, Pediatrics III, University Children's Hospital of Essen, Essen, Germany
| | - Irene Schmid
- Dr. von Hauner Children's Hospital, Ludwig Maximilians University, Munich, Germany
| | - Christof M Kramm
- Division of Pediatric Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Peter Vorwerk
- Department of Pediatric Hematology/Oncology, University Otto von Guericke Magdeburg, Magdeburg, Germany
| | - Andreas Beilken
- Department of Pediatric Hematology/Oncology, Medical School Hannover, Hanover, Germany
| | | | - Pablo Hernáiz Driever
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, (corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Berlin, Germany
| | - Gabriele Kropshofer
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Imschweiler
- Zentrum für Kinder- und Jugendmedizin, Helios Klinikum Krefeld, Krefeld, Germany
| | - Andreas Lemmer
- Pediatric Hematology and Oncology Unit, Department of Pediatrics, Helios Klinikum Erfurt, Erfurt, Germany
| | | | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katja von Hoff
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, (corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Berlin, Germany
| |
Collapse
|
5
|
Verheul C, Kleijn A, Lamfers MLM. Cerebrospinal fluid biomarkers of malignancies located in the central nervous system. HANDBOOK OF CLINICAL NEUROLOGY 2018; 146:139-169. [PMID: 29110768 DOI: 10.1016/b978-0-12-804279-3.00010-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CNS malignancies include primary tumors that originate within the CNS as well as secondary tumors that develop as a result of metastatic cancer. The delicate nature of the nervous systems makes tumors located in the CNS notoriously difficult to reach, which poses several problems during diagnosis and treatment. CSF can be acquired relatively easy through lumbar puncture and offers an important compartment for analysis of cells and molecules that carry information about the malignant process. Such techniques have opened up a new field of research focused on the identification of specific biomarkers for several types of CNS malignancies, which may help in diagnosis and monitoring of tumor progression or treatment response. Biomarkers are sought in DNA, (micro)RNA, proteins, exosomes and circulating tumor cells in the CSF. Techniques are rapidly progressing to assess these markers with increasing sensitivity and specificity, and correlations with clinical parameters are being investigated. It is expected that these efforts will, in the near future, yield clinically relevant markers that aid in diagnosis, monitoring and (tailored) treatment of patients bearing CNS tumors. This chapter provides a summary of the current state of affairs of the field of biomarkers of different types of CNS tumors.
Collapse
Affiliation(s)
- Cassandra Verheul
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Anne Kleijn
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Martine L M Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
6
|
Frappaz D, Vasiljevic A, Beuriat PA, Alapetite C, Grill J, Szathmari A, Faure-Conter C. [Pediatric ependymomas: Current diagnosis and therapy]. Bull Cancer 2016; 103:869-879. [PMID: 27717499 DOI: 10.1016/j.bulcan.2016.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/10/2016] [Accepted: 08/30/2016] [Indexed: 11/15/2022]
Abstract
Ependymomas represent 10% of pediatric brain tumors. In the recent WHO 2016 classification, pathology is enriched by localization and molecular biology. Whatever the age, total removal by one or several looks when required remains a major prognostic factor. In children, focal radiation remains a standard, while the role of chemotherapy is matter of randomized studies. In infants, front line chemotherapy is the standard. Inclusion in the SIOP ependymoma II protocol is encouraged. In case of relapse, further surgery and radiation are advised, while inclusion in innovative trials including re-irradiation, and phase I-II should be encouraged. A better understanding of underlying mechanisms of ependymoma cell will provide in the close future, the key to use targeted therapies at time of relapse, and very soon as first line therapy for some subgroups of patients.
Collapse
Affiliation(s)
- Didier Frappaz
- Centre Léon-Bérard, institut d'hématologie et oncologie pédiatrique, département de neuro-oncologie, place Professeur-Joseph-Renaut, 69008 Lyon, France.
| | - Alexandre Vasiljevic
- Hospices civils de Lyon, département d'anatomopathologie, 59, boulevard Pinel, 69677 Bron cedex, France
| | - Pierre-Aurelien Beuriat
- Hospices civils de Lyon, département de neurochirurgie pédiatrique, 59, boulevard Pinel, 69677 Bron cedex, France
| | - Claire Alapetite
- Institut Curie, département de radiothérapie, 26, rue d'Ulm, 75005 Paris, France
| | - Jacques Grill
- Département de pédiatrie, Gustave Roussy, 114, rue Édouard-Vaillant, 94800 Villejuif, France
| | - Alexandru Szathmari
- Hospices civils de Lyon, département de neurochirurgie pédiatrique, 59, boulevard Pinel, 69677 Bron cedex, France
| | - Cécile Faure-Conter
- Centre Léon-Bérard, institut d'hématologie et oncologie pédiatrique, département de neuro-oncologie, place Professeur-Joseph-Renaut, 69008 Lyon, France
| |
Collapse
|
7
|
Detection of tumor-derived DNA in cerebrospinal fluid of patients with primary tumors of the brain and spinal cord. Proc Natl Acad Sci U S A 2015. [PMID: 26195750 DOI: 10.1073/pnas.1511694112] [Citation(s) in RCA: 323] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Cell-free DNA shed by cancer cells has been shown to be a rich source of putative tumor-specific biomarkers. Because cell-free DNA from brain and spinal cord tumors cannot usually be detected in the blood, we studied whether the cerebrospinal fluid (CSF) that bathes the CNS is enriched for tumor DNA, here termed CSF-tDNA. We analyzed 35 primary CNS malignancies and found at least one mutation in each tumor using targeted or genome-wide sequencing. Using these patient-specific mutations as biomarkers, we identified detectable levels of CSF-tDNA in 74% [95% confidence interval (95% CI) = 57-88%] of cases. All medulloblastomas, ependymomas, and high-grade gliomas that abutted a CSF space were detectable (100% of 21 cases; 95% CI = 88-100%), whereas no CSF-tDNA was detected in patients whose tumors were not directly adjacent to a CSF reservoir (P < 0.0001, Fisher's exact test). These results suggest that CSF-tDNA could be useful for the management of patients with primary tumors of the brain or spinal cord.
Collapse
|
8
|
Fangusaro J, Van Den Berghe C, Tomita T, Rajaram V, Aguilera D, Wang D, Goldman S. Evaluating the incidence and utility of microscopic metastatic dissemination as diagnosed by lumbar cerebro-spinal fluid (CSF) samples in children with newly diagnosed intracranial ependymoma. J Neurooncol 2010; 103:693-8. [DOI: 10.1007/s11060-010-0448-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 10/21/2010] [Indexed: 10/18/2022]
|