1
|
Beffinger M, Schellhammer L, Taskoparan B, Deplazes S, Salazar U, Tatari N, Seehusen F, von Balthazar L, Zinner CP, Spath S, Shekarian T, Ritz MF, McDaid M, Egloff P, Zimmermann I, Okada H, Ward ES, Rohrer J, Seeger MA, Buch T, Hutter G, Vom Berg J. FcRn-silencing of IL-12Fc prevents toxicity of local IL-12 therapy and prolongs survival in experimental glioblastoma. Nat Commun 2025; 16:4751. [PMID: 40404625 PMCID: PMC12098678 DOI: 10.1038/s41467-025-59971-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 05/09/2025] [Indexed: 05/24/2025] Open
Abstract
Glioblastoma remains a challenging indication for immunotherapy: the blood-brain barrier hampers accessibility for systemic treatments and the immunosuppressive microenvironment impedes immune attack. Intratumoral therapy with the proinflammatory cytokine interleukin-12 (IL-12) can revert immunosuppression but leakage into the circulation causes treatment-limiting toxicity. Here we engineer an IL-12Fc fusion cytokine with reduced binding to the neonatal Fc receptor FcRn. FcRn-silenced IL-12Fc avoids FcRn-mediated brain export, thus exhibits prolonged brain retention and reduced blood levels, which prevents toxicity. In murine glioblastoma, FcRn-silenced IL-12Fc induces more durable responses with negligible systemic cytokine exposure and boosts the efficacy of radio- and chemotherapy. It triggers anti-tumor responses independently of peripheral T cell influx or lymphopenia and leads to inflammatory polarization of the tumor microenvironment in patient-derived glioblastoma explants. FcRn-silencing of IL-12Fc may unlock the full potential of IL-12 for brain cancer therapy and could be further applied to containing the activity of other therapeutics targeting neurological diseases.
Collapse
Affiliation(s)
- Michal Beffinger
- Institute of Laboratory Animal Science, University of Zurich, Schlieren, Switzerland
- InCephalo AG, Allschwil, Switzerland
| | - Linda Schellhammer
- Institute of Laboratory Animal Science, University of Zurich, Schlieren, Switzerland
| | - Betül Taskoparan
- Institute of Laboratory Animal Science, University of Zurich, Schlieren, Switzerland
| | - Sereina Deplazes
- Institute of Laboratory Animal Science, University of Zurich, Schlieren, Switzerland
- InCephalo AG, Allschwil, Switzerland
| | - Ulisse Salazar
- Institute of Laboratory Animal Science, University of Zurich, Schlieren, Switzerland
| | - Nazanin Tatari
- Brain Tumor Immunotherapy and Biology Lab, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Frauke Seehusen
- Laboratory for Animal Model Pathology (LAMP), Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Leopold von Balthazar
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Waedenswil, Switzerland
| | - Carl Philipp Zinner
- Institute of Laboratory Animal Science, University of Zurich, Schlieren, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | | | - Tala Shekarian
- Brain Tumor Immunotherapy and Biology Lab, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Marie-Françoise Ritz
- Brain Tumor Immunotherapy and Biology Lab, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Marta McDaid
- Brain Tumor Immunotherapy and Biology Lab, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Pascal Egloff
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Iwan Zimmermann
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
- Linkster Therapeutics AG, Zurich, Switzerland
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - E Sally Ward
- Cancer Sciences Unit, Centre for Cancer Immunology, University of Southampton, Southampton, UK
| | - Jack Rohrer
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Waedenswil, Switzerland
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Thorsten Buch
- Institute of Laboratory Animal Science, University of Zurich, Schlieren, Switzerland
| | - Gregor Hutter
- Brain Tumor Immunotherapy and Biology Lab, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurosurgery, University Hospital of Basel, Basel, Switzerland
| | - Johannes Vom Berg
- Institute of Laboratory Animal Science, University of Zurich, Schlieren, Switzerland.
- InCephalo AG, Allschwil, Switzerland.
| |
Collapse
|
2
|
Mathios D, Park CK, Marcus WD, Alter S, Rhode PR, Jeng EK, Wong HC, Pardoll DM, Lim M. Therapeutic administration of IL-15 superagonist complex ALT-803 leads to long-term survival and durable antitumor immune response in a murine glioblastoma model. Int J Cancer 2015; 138:187-94. [PMID: 26174883 DOI: 10.1002/ijc.29686] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/28/2015] [Accepted: 07/06/2015] [Indexed: 01/24/2023]
Abstract
Glioblastoma is the most aggressive primary central nervous system malignancy with a poor prognosis in patients. Despite the need for better treatments against glioblastoma, very little progress has been made in discovering new therapies that exhibit superior survival benefit than the standard of care. Immunotherapy has been shown to be a promising treatment modality that could help improve clinical outcomes of glioblastoma patients by assisting the immune system to overcome the immunosuppressive tumor environment. Interleukin-15 (IL-15), a cytokine shown to activate several effector components of the immune system, may serve as an excellent immunotherapeutic candidate for the treatment of glioblastoma. Thus, we evaluated the efficacy of an IL-15 superagonist complex (IL-15N72D:IL-15RαSu-Fc; also known as ALT-803) in a murine GL261-luc glioblastoma model. We show that ALT-803, as a single treatment as well as in combination with anti-PD-1 antibody or stereotactic radiosurgery, exhibits a robust antitumor immune response resulting in a prolonged survival including complete remission in tumor bearing mice. In addition, ALT-803 treatment results in long-term immune memory against glioblastoma tumor rechallenge. Flow cytometric analysis of tumor infiltrating immune cells shows that ALT-803 leads to increased percentage of CD8+-cell infiltration, but not the NK cells, and IFN-γ production into the tumor microenvironment. Cell depletion studies, in accordance with the flow cytometric results, show that the ALT-803 therapeutic effect is dependent on CD4+ and CD8+ cells. These results provide a rationale for evaluating the therapeutic activity of ALT-803 against glioblastoma in the clinical setting.
Collapse
Affiliation(s)
- Dimitrios Mathios
- Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD
| | - Chul-Kee Park
- Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD.,Seoul National University College of Medicine, Department of Neurosurgery, Seoul, Republic of Korea
| | | | | | | | | | | | - Drew M Pardoll
- Johns Hopkins University School of Medicine, Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Michael Lim
- Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD
| |
Collapse
|
3
|
New insights into IL-12-mediated tumor suppression. Cell Death Differ 2014; 22:237-46. [PMID: 25190142 DOI: 10.1038/cdd.2014.134] [Citation(s) in RCA: 398] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 07/17/2014] [Accepted: 07/21/2014] [Indexed: 12/14/2022] Open
Abstract
During the past two decades, interleukin-12 (IL-12) has emerged as one of the most potent cytokines in mediating antitumor activity in a variety of preclinical models. Through pleiotropic effects on different immune cells that form the tumor microenvironment, IL-12 establishes a link between innate and adaptive immunity that involves different immune effector cells and cytokines depending on the type of tumor or the affected tissue. The robust antitumor response exerted by IL-12, however, has not yet been successfully translated into the clinics. The majority of clinical trials involving treatment with IL-12 failed to show sustained antitumor responses and were associated to toxic side effects. Here we discuss the therapeutic effects of IL-12 from preclinical to clinical studies, and will highlight promising strategies to take advantage of the antitumor activity of IL-12 while limiting adverse effects.
Collapse
|
4
|
Vom Berg J, Vrohlings M, Haller S, Haimovici A, Kulig P, Sledzinska A, Weller M, Becher B. Intratumoral IL-12 combined with CTLA-4 blockade elicits T cell-mediated glioma rejection. ACTA ACUST UNITED AC 2013; 210:2803-11. [PMID: 24277150 PMCID: PMC3865478 DOI: 10.1084/jem.20130678] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
T cells are crucial effectors of glioma rejection induced by local IL-12 application and CTLA-4 blockade. Glioblastomas (GBs) are the most aggressive form of primary brain cancer and virtually incurable. Accumulation of regulatory T (T reg) cells in GBs is thought to contribute to the dampening of antitumor immunity. Using a syngeneic mouse model for GB, we tested whether local delivery of cytokines could render the immunosuppressive GB microenvironment conducive to an antitumor immune response. IL-12 but not IL-23 reversed GB-induced immunosuppression and led to tumor clearance. In contrast to models of skin or lung cancer, IL-12–mediated glioma rejection was T cell dependent and elicited potent immunological memory. To translate these findings into a clinically relevant setting, we allowed for GB progression before initiating therapy. Combined intratumoral IL-12 application with systemic blockade of the co-inhibitory receptor CTLA-4 on T cells led to tumor eradication even at advanced disease stages where monotherapy with either IL-12 or CTLA-4 blockade failed. The combination of IL-12 and CTLA-4 blockade acts predominantly on CD4+ cells, causing a drastic decrease in FoxP3+ T reg cells and an increase in effector T (T eff) cells. Our data provide compelling preclinical findings warranting swift translation into clinical trials in GB and represent a promising approach to increase response rates of CTLA-4 blockade in solid tumors.
Collapse
Affiliation(s)
- Johannes Vom Berg
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Akt and c-Myc induce stem-cell markers in mature primary p53⁻/⁻ astrocytes and render these cells gliomagenic in the brain of immunocompetent mice. PLoS One 2013; 8:e56691. [PMID: 23424671 PMCID: PMC3570527 DOI: 10.1371/journal.pone.0056691] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 01/14/2013] [Indexed: 11/25/2022] Open
Abstract
Astrocytomas and their most malignant variant glioblastoma multiforme (GBM) represent the vast majority of primary brain tumors. Despite the current progress in neurosurgery, radiation therapy and chemotherapy, most astrocytomas remain fatal disorders. Although brain tumor biology is a matter of intense research, the cell-of-origin and the complete astrocytoma-inducing signaling pathway remain unknown. To further identify the mechanisms leading to gliomagenesis, we transduced primary astrocytes on a p53−/− background with c-Myc, constitutively active myr-Akt or both, myr-Akt and c-Myc. Transduced astrocytes showed oncogene-specific alterations of morphology, proliferation and differentiation. Following prolonged periods of cultivation, oncogene-transduced astrocytes expressed several stem-cell markers. Furthermore, astrocytes coexpressing c-Myc and Akt were tumorigenic when implanted into the brain of immunocompetent C57BL/6 mice. Our results reveal that the loss of p53 combined with oncogene overexpression in mature astrocytes simulates pivotal features of glioma pathogenesis, providing a good model for assessing the development of secondary glioblastomas.
Collapse
|
6
|
Huber M, Heink S, Pagenstecher A, Reinhard K, Ritter J, Visekruna A, Guralnik A, Bollig N, Jeltsch K, Heinemann C, Wittmann E, Buch T, Prazeres da Costa O, Brüstle A, Brenner D, Mak TW, Mittrücker HW, Tackenberg B, Kamradt T, Lohoff M. IL-17A secretion by CD8+ T cells supports Th17-mediated autoimmune encephalomyelitis. J Clin Invest 2012; 123:247-60. [PMID: 23221338 DOI: 10.1172/jci63681] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 10/04/2012] [Indexed: 12/14/2022] Open
Abstract
IL-17-producing CD8+ T (Tc17) cells are detectible in multiple sclerosis (MS) lesions; however, their contribution to the disease is unknown. To identify functions of Tc17 cells, we induced EAE, a murine model of MS, in mice lacking IFN regulatory factor 4 (IRF4). IRF4-deficient mice failed to generate Tc17 and Th17 cells and were resistant to EAE. After adoptive transfer of WT CD8+ T cells and subsequent immunization for EAE induction in these mice, the CD8+ T cells developed a Tc17 phenotype in the periphery but could not infiltrate the CNS. Similarly, transfer of small numbers of WT CD4+ T cells alone did not evoke EAE, but when transferred together with CD8+ T cells, IL-17-producing CD4+ (Th17) T cells accumulated in the CNS and mice developed severe disease. Th17 accumulation and development of EAE required IL-17A production by CD8+ T cells, suggesting that Tc17 cells are required to promote CD4+ T cell-mediated induction of EAE. Accordingly, patients with early-stage MS harbored a greater number of Tc17 cells in the cerebrospinal fluid than in peripheral blood. Our results reveal that Tc17 cells contribute to the initiation of CNS autoimmunity in mice and humans by supporting Th17 cell pathogenicity.
Collapse
Affiliation(s)
- Magdalena Huber
- Institute for Medical Microbiology and Hygiene, University of Marburg, Marburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Rodent Glioma Models: Intracranial Stereotactic Allografts and Xenografts. NEUROMETHODS 2012; 77:229-243. [PMID: 31462854 PMCID: PMC6713221 DOI: 10.1007/7657_2011_33] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Modeling human disease in small animals has been fundamental in advancing our scientific knowledge and for the development of novel therapeutic strategies. In the case of brain cancer, implantable tumor models, both intracranial and also in the periphery, have been widely used and extensively characterized. These models can be used to better understand certain aspects of tumor biology such as growth, neovascularization, response to potential therapies, and interaction with the immune system. Brain tumors from patients as well as rodents have been cultured in vitro, in an attempt to establish permanent cell lines. Human glioma tumors have also been maintained by serial passage in the flanks of immune-deficient animals, as it has been shown that it is not feasible to continuously passage them in culture. In this chapter, we describe various gliomas that have been isolated from mice, rats, and humans and subsequently used as syngeneic or xenograft tumor models in vivo. The majority of the models that we present in this chapter arose either spontaneously or by administration of chemical carcinogens. We compare and contrast the histopathological, genetic, and invasive features of the tumor lines as well as identify novel treatment modalities that have been developed. Finally, we present the procedures for intracranial implantation of tumor cells in rodents using stereotactic surgical techniques. The use of this technique enables the generation of large numbers of animals harboring intracranial tumors with relative ease and the survival of tumor-bearing animals is highly reproducible. These characteristics make the use of these in vivo models very attractive when aiming to develop and test the effectiveness of novel anticancer therapies.
Collapse
|
8
|
Maes W, Van Gool SW. Experimental immunotherapy for malignant glioma: lessons from two decades of research in the GL261 model. Cancer Immunol Immunother 2011; 60:153-60. [PMID: 21120655 PMCID: PMC11028904 DOI: 10.1007/s00262-010-0946-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 11/05/2010] [Indexed: 02/04/2023]
Abstract
Nearly twenty years of experimental immunotherapy for malignant glioma yielded important insights in the mechanisms governing glioma immunology. Still considered promising, it is clear that immunotherapy does not on its own represent the magic bullet in glioma therapy. In this review, we summarize the major immunotherapeutic achievements in the mouse GL261 glioma model, which has emerged as the gold standard syngeneic model for experimental glioma therapy. Gene therapy, monoclonal antibody treatment, cytokine therapy, cell transfer strategies and dendritic cell therapy were hereby considered. Apart from the considerable progress made in understanding glioma immunology in this model, we also addressed its most pertinent issues and shortcomings. Despite these, the GL261 model will remain indispensable in glioma research since it is a fast, highly reproducible and easy-to-establish model system.
Collapse
Affiliation(s)
- Wim Maes
- Laboratory of Experimental Immunology (WM and SWVG), Pediatric Hemato-oncology (SWVG), University Hospital Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Stefaan W. Van Gool
- Laboratory of Experimental Immunology (WM and SWVG), Pediatric Hemato-oncology (SWVG), University Hospital Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
9
|
Campbell IL, Hofer MJ, Pagenstecher A. Transgenic models for cytokine-induced neurological disease. Biochim Biophys Acta Mol Basis Dis 2009; 1802:903-17. [PMID: 19835956 DOI: 10.1016/j.bbadis.2009.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 10/01/2009] [Accepted: 10/02/2009] [Indexed: 12/22/2022]
Abstract
Considerable evidence supports the idea that cytokines are important mediators of pathophysiologic processes within the central nervous system (CNS). Numerous studies have documented the increased production of various cytokines in the human CNS in a variety of neurological and neuropsychiatric disorders. Deciphering cytokine actions in the intact CNS has important implications for our understanding of the pathogenesis and treatment of these disorders. One approach to address this problem that has been used widely employs transgenic mice with CNS-targeted production of different cytokines. Transgenic production of cytokines in the CNS of mice allows not only for the investigation of complex cellular responses at a localized level in the intact brain but also more closely recapitulates the expression of these mediators as found in disease states. As discussed in this review, the findings show that these transgenic animals exhibit wide-ranging structural and functional deficits that are linked to the development of distinct neuroinflammatory responses which are relatively specific for each cytokine. These cytokine-induced alterations often recapitulate those found in various human neurological disorders not only underscoring the relevance of these models but also reinforcing the clinicopathogenetic significance of cytokines in diseases of the CNS.
Collapse
Affiliation(s)
- Iain L Campbell
- School of Molecular and Microbial Biosciences and Bosch Institute, The University of Sydney, NSW 2006, Australia.
| | | | | |
Collapse
|