1
|
Panayotacopoulou MT, Papageorgiou I, Pagida M, Katsogridaki AE, Chrysanthou-Piterou M, Valous NA, Halama N, Patsouris E, Konstantinidou AE. Microglia Activation in the Midbrain of the Human Neonate: The Effect of Perinatal Hypoxic-Ischemic Injury. J Neuropathol Exp Neurol 2022; 81:208-224. [PMID: 35092294 DOI: 10.1093/jnen/nlab135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Perinatal hypoxia-ischemia (PHI) is a major risk factor for the development of neuropsychiatric deficits later in life. We previously reported that after prolonged PHI, the dopaminergic neurons of the human neonate showed a dramatic reduction of tyrosine hydroxylase (TH) in the substantia nigra, without important signs of neuronal degeneration despite the significant reduction in their cell size. Since microglia activation could precede neuronal death, we now investigated 2 microglia activation markers, ionized calcium-binding adapter molecule 1 (Iba1), and the phagocytosis marker Cd68. The highest Iba1 immunoreactivity was found in neonates with neuropathological lesions of severe/abrupt PHI, while the lowest in subjects with moderate/prolonged or older PHI. Subjects with very severe/prolonged or chronic PHI showed an increased Iba1 expression and very activated microglial morphology. Heavy attachment of microglia on TH neurons and remarkable expression of Cd68 were also observed indicating phagocytosis in this group. Females appear to express more Iba1 than males, suggesting a gender difference in microglia maturation and immune reactivity after PHI insult. PHI-induced microglial "priming" during the sensitive for brain development perinatal/neonatal period, in combination with genetic or other epigenetic factors, could predispose the survivors to neuropsychiatric disorders later in life, possibly through a sexually dimorphic way.
Collapse
Affiliation(s)
- Maria T Panayotacopoulou
- From the Department of Psychiatry, National and Kapodistrian University of Athens, Athens, Greece (MTP, MP, AEK, MC-P).,University Mental Health, Neurosciences and Precision Medicine Research Institute "Kostas Stefanis", National and Kapodistrian University of Athens, Athens, Greece (MTP, MP, AEK, MC-P, EP)
| | - Ismini Papageorgiou
- Institute for Diagnostic and Interventional Radiology, University Hospital of Jena, Jena, Germany (IP).,Institute of Radiology, Südharz Hospital Nordhausen, Nordhausen, Germany (IP)
| | - Marianna Pagida
- From the Department of Psychiatry, National and Kapodistrian University of Athens, Athens, Greece (MTP, MP, AEK, MC-P).,University Mental Health, Neurosciences and Precision Medicine Research Institute "Kostas Stefanis", National and Kapodistrian University of Athens, Athens, Greece (MTP, MP, AEK, MC-P, EP)
| | - Alexandra E Katsogridaki
- From the Department of Psychiatry, National and Kapodistrian University of Athens, Athens, Greece (MTP, MP, AEK, MC-P).,University Mental Health, Neurosciences and Precision Medicine Research Institute "Kostas Stefanis", National and Kapodistrian University of Athens, Athens, Greece (MTP, MP, AEK, MC-P, EP)
| | - Margarita Chrysanthou-Piterou
- From the Department of Psychiatry, National and Kapodistrian University of Athens, Athens, Greece (MTP, MP, AEK, MC-P).,University Mental Health, Neurosciences and Precision Medicine Research Institute "Kostas Stefanis", National and Kapodistrian University of Athens, Athens, Greece (MTP, MP, AEK, MC-P, EP)
| | - Nektarios A Valous
- Applied Tumor Immunity Clinical Cooperation Unit, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany (NAV)
| | - Niels Halama
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD), Heidelberg, Germany (NH).,Division of Translational Immunotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany (NH)
| | - Efstratios Patsouris
- University Mental Health, Neurosciences and Precision Medicine Research Institute "Kostas Stefanis", National and Kapodistrian University of Athens, Athens, Greece (MTP, MP, AEK, MC-P, EP).,1st Department of Pathology, National and Kapodistrian University of Athens, Athens, Greece (EP, AEK)
| | | |
Collapse
|
2
|
Wong FY, Gogos A, Hale N, Ingelse SA, Brew N, Shepherd KL, van den Buuse M, Walker DW. Impact of hypoxia-ischemia and dopamine treatment on dopamine receptor binding density in the preterm fetal sheep brain. J Appl Physiol (1985) 2020; 129:1431-1438. [PMID: 33054660 DOI: 10.1152/japplphysiol.00677.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Dopamine is often used to treat hypotension in preterm infants who are at risk of hypoxic-ischemic (HI) brain injury due to cerebral hypoperfusion and impaired autoregulation. There is evidence that systemically administered dopamine crosses the preterm blood-brain barrier. However, the effects of exogenous dopamine and cerebral HI on dopaminergic signaling in the immature brain are unknown. We determined the effect of HI and dopamine on D1 and D2 receptor binding and expressions of dopamine transporter (DAT) and tyrosine hydroxylase (TH) in the striatum of the preterm fetal sheep. Fetal sheep (99 days of gestation, term = 147days) were unoperated controls (n = 6) or exposed to severe HI using umbilical cord occlusion and saline infusion (UCO + saline, n = 8) or to HI with dopamine infusion (UCO + dopamine, 10 µg/kg/min, n = 7) for 74 h. D1 and D2 receptor densities were measured by autoradiography in vitro. DAT, TH, and cell death were measured using immunohistochemistry. HI resulted in cell death in the caudate nucleus and putamen, and dopamine infusion started before HI did not exacerbate or ameliorate these effects. HI led to reduced D1 and D2 receptor densities in the caudate nucleus and reduction in DAT protein expression in the caudate and putamen. Fetal brains exposed to dopamine in addition to HI were not different from those exposed to HI alone in these changes in dopaminergic parameters. We conclude that dopamine infusion does not alter the striatal cell death or the reductions in D1 and D2 receptor densities and DAT protein expression induced by HI in the preterm brain.NEW & NOTEWORTHY This is the first study on the effects of hypoxia-ischemia and dopamine treatment on the dopaminergic pathway in the preterm brain. In the striatum of fetal sheep (equivalent to ∼26-28 wk of human gestation), we demonstrate that hypoxia-ischemia leads to cell death, reduces D1 and D2 receptors, and reduces dopamine transporter. Intravenous dopamine infusion at clinical dosage used in preterm human infants does not alter the striatal cell death, D1 and D2 receptor density levels, and DAT protein expressions after hypoxia-ischemia in the preterm brain.
Collapse
Affiliation(s)
- F Y Wong
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia.,Department of Paediatrics, Monash University, Melbourne, Australia.,Monash Newborn, Monash Medical Centre, Melbourne, Australia
| | - A Gogos
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Australia
| | - N Hale
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia
| | - S A Ingelse
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia
| | - N Brew
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia
| | - K L Shepherd
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia.,Department of Paediatrics, Monash University, Melbourne, Australia
| | - M van den Buuse
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Australia.,School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - D W Walker
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia.,School of Health & Biomedical Sciences, RMIT University, Melbourne, Australia
| |
Collapse
|
3
|
Huang ZH, Ni RJ, Luo PH, Zhou JN. Distribution of tyrosine-hydroxylase-immunoreactive neurons in the hypothalamus of tree shrews. J Comp Neurol 2019; 528:935-952. [PMID: 31674014 DOI: 10.1002/cne.24803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 02/05/2023]
Abstract
The tree shrew (Tupaia belangeri chinensis) is the closest living relative of primates. Yet, little is known about the anatomical distribution of tyrosine hydroxylase (TH)-immunoreactive (ir) structures in the hypothalamus of the tree shrew. Here, we provide the first detailed description of the distribution of TH-ir neurons in the hypothalamus of tree shrews via immunohistochemical techniques. TH-ir neurons were widely distributed throughout the hypothalamus of tree shrew. The majority of hypothalamic TH-ir neurons were found in the paraventricular hypothalamic nucleus (PVN) and supraoptic nucleus (SON), as was also observed in the human hypothalamus. In contrast, rare TH-ir neurons were localized in the PVN and SON of rats. Vasopressin (AVP) colocalized with TH-ir neurons in the PVN and SON in a large number of neurons, but oxytocin and corticotropin-releasing hormone did not colocalize with TH. In addition, colocalization of TH with AVP was also observed in the other hypothalamic regions. Moreover, TH-ir neurons in the PVN and SON of tree shrews expressed other dopaminergic markers (aromatic l-amino acid decarboxylase and vesicular monoamine transporter, Type 2), further supporting that TH-ir neurons in the PVN and SON were catecholaminergic. These findings provide a detailed description of TH-ir neurons in the hypothalamus of tree shrews and demonstrate species differences in the distribution of this enzyme, providing a neurobiological basis for the participation of TH-ir neurons in the regulation of various hypothalamic functions.
Collapse
Affiliation(s)
- Zhao-Huan Huang
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, People's Republic of China
| | - Rong-Jun Ni
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, People's Republic of China.,Psychiatric Laboratory and Mental Health Center, Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Peng-Hao Luo
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, People's Republic of China
| | - Jiang-Ning Zhou
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, People's Republic of China
| |
Collapse
|
4
|
Giannopoulou I, Pagida MA, Briana DD, Panayotacopoulou MT. Perinatal hypoxia as a risk factor for psychopathology later in life: the role of dopamine and neurotrophins. Hormones (Athens) 2018; 17:25-32. [PMID: 29858855 DOI: 10.1007/s42000-018-0007-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/16/2017] [Indexed: 12/26/2022]
Abstract
Brain development is influenced by various prenatal, intrapartum, and postnatal events which may interact with genotype to affect the neural and psychophysiological systems related to emotions, specific cognitive functions (e.g., attention, memory), and language abilities and thereby heighten the risk for psychopathology later in life. Fetal hypoxia (intrapartum oxygen deprivation), hypoxia-related obstetric complications, and hypoxia during the early neonatal period are major environmental risk factors shown to be associated with an increased risk for later psychopathology. Experimental models of perinatal hypoxia/ischemia (PHI) showed that fetal hypoxia-a consequence common to many birth complications in humans-results in selective long-term disturbances of the dopaminergic systems that persist in adulthood. On the other hand, neurotrophic signaling is critical for pre- and postnatal brain development due to its impact on the process of neuronal development and its reaction to perinatal stress. The aim of this review is (a) to summarize epidemiological data confirming an association of PHI with an increased risk of a range of psychiatric disorders from childhood through adolescence to adulthood, (b) to present immunohistochemical findings on human autopsy material indicating vulnerability of the dopaminergic neurons of the human neonate to PHI that could predispose infant survivors of PHI to dopamine-related neurological and/or cognitive deficits in adulthood, and
Collapse
Affiliation(s)
- Ioanna Giannopoulou
- 2nd Department of Psychiatry, National and Kapodistrian University of Athens, Athens, Greece
| | - Marianna A Pagida
- 1st Department of Psychiatry, National and Kapodistrian University of Athens, Athens, Greece
- Laboratory of Neurobiology and Histochemistry, University Mental Health Research Institute, PO Box 66517, GR-15601, Papagou, Athens, Greece
| | - Despina D Briana
- Neonatal Unit, 1st Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria T Panayotacopoulou
- 1st Department of Psychiatry, National and Kapodistrian University of Athens, Athens, Greece.
- Laboratory of Neurobiology and Histochemistry, University Mental Health Research Institute, PO Box 66517, GR-15601, Papagou, Athens, Greece.
| |
Collapse
|
5
|
Pagida MA, Konstantinidou AE, Korelidou A, Katsika D, Tsekoura E, Patsouris E, Panayotacopoulou MT. The Effect of Perinatal Hypoxic/Ischemic Injury on Tyrosine Hydroxylase Expression in the Locus Coeruleus of the Human Neonate. Dev Neurosci 2015; 38:41-53. [DOI: 10.1159/000439270] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 08/08/2015] [Indexed: 11/19/2022] Open
Abstract
We have previously shown that perinatal hypoxic/ischemic injury (HII) may cause selective vulnerability of the mesencephalic dopaminergic neurons of human neonate. In the present study, we investigated the effect of perinatal HII on the noradrenergic neurons of the locus coeruleus (LC) of the same sample. We studied immunohistochemically the expression of tyrosine hydroxylase (TH, first limiting enzyme for catecholamine synthesis) in LC neurons of 15 autopsied infants (brains collected from the Greek Brain Bank) in relation to the neuropathological changes of acute or chronic HII of the neonatal brain. Our results showed that perinatal HII appears to affect the expression of TH and the size of LC neurons of the human neonate. In subjects with neuropathological lesions consistent with abrupt/severe HII, intense TH immunoreactivity was found in almost all neurons of the LC. In most of the neonates with neuropathological changes of prolonged or older injury, however, reduction in cell size and a decrease or absence of TH staining were observed in the LC. Intense TH immunoreactivity was found in the LC of 3 infants of the latter group, who interestingly had a longer survival time and had been treated with anticonvulsant drugs. Based on our observations and in view of experimental evidence indicating that the reduction of TH-immunoreactive neurons occurring in the LC after perinatal hypoxic insults persists into adulthood, we suggest that a dysregulation of monoaminergic neurotransmission in critical periods of brain development in humans is likely to predispose the survivors of perinatal HII, in combination with genetic susceptibility, to psychiatric and/or neurological disorders later in life.
Collapse
|
6
|
Pagida MA, Konstantinidou AE, Malidelis YI, Ganou V, Tsekoura E, Patsouris E, Panayotacopoulou MT. The human neurosecretory neurones under perinatal hypoxia: a quantitative immunohistochemical study of the supraoptic nucleus in autopsy material. J Neuroendocrinol 2013; 25:1255-1263. [PMID: 24118231 DOI: 10.1111/jne.12111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/17/2013] [Accepted: 09/29/2013] [Indexed: 12/01/2022]
Abstract
In the rat, experimental manipulations that cause activation of the magnocellular neurosecretory neurones result in the synthesis, in addition to vasopressin (AVP) and oxytocin (OXY), of other neurotransmitters or peptides, including tyrosine hydroxylase (TH), the first and rate limiting enzyme for catecholamine biosynthesis. In the human neonate, our previous study showed that TH was selectively increased in AVP neurones of subjects that died from prolonged perinatal hypoxia. The purpose of the present study was to quantitatively investigate the expression of TH, AVP, OXY and neurophysin in magnocellular neurones of the human neonate in relation to the severity/duration of perinatal hypoxia, as estimated by neuropathological criteria. Autopsy was performed after obtaining parental written consent for diagnostic and research purposes. The intensity of the immunohistochemical reactions and the cellular/nuclear size were measured in the dorsolateral supraoptic nucleus using a computerised image analysis system. We showed that prolonged perinatal hypoxia resulted in the activation of the magnocellular neuroendocrine neurones of the human neonate, as indicated by their increased neuronal and nuclear size. OXY neurones appeared larger than the AVP ones at birth, possibly indicating an active role of foetal OXY during labour or even earlier. The gradual increase in the duration of the insult resulted in the reduction of intracellular AVP content, in parallel with a dramatic increase in the expression of TH, indicating a functional interaction of these peptides under neuronal activation. Ιsolated evidence in our series, obtained from an infant of a diabetic mother, raises the probability that in the case of hyperglycaemia the above pathogenetic mechanisms are diversified.
Collapse
Affiliation(s)
- M A Pagida
- First Department of Psychiatry, National Kapodistrian University of Athens, Athens, Greece
- University Mental Health Research Institute, National Kapodistrian University of Athens, Athens, Greece
| | - A E Konstantinidou
- First Department of Pathology, National Kapodistrian University of Athens, Athens, Greece
| | - Y I Malidelis
- First Department of Psychiatry, National Kapodistrian University of Athens, Athens, Greece
- University Mental Health Research Institute, National Kapodistrian University of Athens, Athens, Greece
| | - V Ganou
- First Department of Psychiatry, National Kapodistrian University of Athens, Athens, Greece
- University Mental Health Research Institute, National Kapodistrian University of Athens, Athens, Greece
| | - E Tsekoura
- Third Department of Pediatrics, National Kapodistrian University of Athens, Athens, Greece
| | - E Patsouris
- First Department of Pathology, National Kapodistrian University of Athens, Athens, Greece
| | - M T Panayotacopoulou
- First Department of Psychiatry, National Kapodistrian University of Athens, Athens, Greece
- University Mental Health Research Institute, National Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
7
|
Immunohistochemical demonstration of urocortin 1 in Edinger–Westphal nucleus of the human neonate: Colocalization with tyrosine hydroxylase under acute perinatal hypoxia. Neurosci Lett 2013; 554:47-52. [DOI: 10.1016/j.neulet.2013.08.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/12/2013] [Accepted: 08/25/2013] [Indexed: 11/23/2022]
|
8
|
Vulnerability of the mesencephalic dopaminergic neurons of the human neonate to prolonged perinatal hypoxia: an immunohistochemical study of tyrosine hydroxylase expression in autopsy material. J Neuropathol Exp Neurol 2013; 72:337-50. [PMID: 23481708 DOI: 10.1097/nen.0b013e31828b48b3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Experimental studies indicate that hypoxia to the fetus, a common occurrence in many birth complications in humans, results in long-term disturbances of the central dopaminergic (DA) systems that persist in adulthood. Because dysregulation of DA systems is involved in the pathophysiology of many neurological and psychiatric disorders, we investigated the effects of perinatal hypoxia on the mesencephalic DA neurons of the human neonate using immunohistochemistry. We studied the expression of tyrosine hydroxylase (TH), the first and rate-limiting enzyme in catecholamine synthesis, in substantia nigra, and ventral tegmental area of 18 neonates in relation to the age and severity/duration of hypoxic injury estimated by neuropathological criteria. In severe/abrupt perinatal hypoxia, intense TH staining was observed in substantia nigra, ventral tegmental area, and, surprisingly, in the nonpreganglionic Edinger-Westphal nucleus. In severe/prolonged hypoxia, there was a striking reduction or even absence of TH immunoreactivity in all the mesencephalic nuclei. These observations suggest that at early states of perinatal hypoxia, there is a massive increase in dopamine synthesis and release that is followed by feedback blockage of dopamine synthesis through inhibition of TH by the end product dopamine. Early dysregulation of DA neurotransmission could predispose infant survivors of severe perinatal hypoxia to dopamine-related neurological and/or cognitive deficits later in life.
Collapse
|
9
|
The dorsal motor nucleus of the vagus (DMNV) in sudden infant death syndrome (SIDS): pathways leading to apoptosis. Respir Physiol Neurobiol 2012; 185:203-10. [PMID: 22975482 DOI: 10.1016/j.resp.2012.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/08/2012] [Accepted: 09/04/2012] [Indexed: 12/20/2022]
Abstract
Sudden infant death syndrome (SIDS) remains the commonest cause of death in the post-neonatal period in the developed world. A leading hypothesis is that an abnormality in the brainstem of infants who succumb to SIDS, either causes or predisposes to failure to respond appropriately to an exogenous stressor. Neuronal apoptosis can lead to loss of cardiorespiratory reflexes, compromise of the infant's ability to respond to stressors such as hypoxia, and ultimately a sleep-related death. The dorsal motor nucleus of the vagus (DMNV) is a medullary autonomic nucleus where abnormalities have regularly been identified in SIDS research. This review collates neurochemical findings documented over the last 30 years, including data from our laboratory focusing on neuronal apoptosis and the DMNV, and provides potential therapeutic interventions targeting neurotransmitters, growth factors and/or genes.
Collapse
|