1
|
Baran B, Derua R, Janssens V, Niewiadomski P. PP2A phosphatase regulatory subunit PPP2R3C is a new positive regulator of the hedgehog signaling pathway. Cell Signal 2024; 123:111352. [PMID: 39173855 DOI: 10.1016/j.cellsig.2024.111352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
Cellular signaling pathways rely on posttranslational modifications (PTMs) to finely regulate protein functions, particularly transcription factors. The Hedgehog (Hh) signaling cascade, crucial for embryonic development and tissue homeostasis, is susceptible to aberrations that lead to developmental anomalies and various cancers. At the core of Hh signaling are Gli proteins, whose dynamic balance between activator (GliA) and repressor (GliR) states shapes cellular outcomes. Phosphorylation, orchestrated by multiple kinases, is pivotal in regulating Gli activity. While kinases in this context have been extensively studied, the role of protein phosphatases, particularly Protein Phosphatase 2A (PP2A), remains less explored. This study unveils a novel role for the B″gamma subunit of PP2A, PPP2R3C, in Hh signaling regulation. PPP2R3C interacts with Gli proteins, and its disruption reduces Hedgehog pathway activity as measured by reduced expression of Gli1/2 and Hh target genes upon Hh signaling activation, and reduced growth of a Hh signaling-dependent medulloblastoma cell line. Moreover, we establish an antagonistic connection between PPP2R3C and MEKK1 kinase in Gli protein phosphorylation, underscoring the intricate interplay between kinases and phosphatases in Hh signaling pathway. This study sheds light on the previously understudied role of protein phosphatases in Hh signaling and provides insights into their significance in cellular regulation.
Collapse
Affiliation(s)
- Brygida Baran
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland; Faculty of Biology, University of Warsaw, 02-089 Warsaw, Poland.
| | - Rita Derua
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), B-3000 Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), B-3000 Leuven, Belgium
| | - Paweł Niewiadomski
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland.
| |
Collapse
|
2
|
Niesen J, Hermans-Borgmeyer I, Krüger C, Schoof M, Modemann F, Schüller U. hGFAP-mediated GLI2 overexpression leads to early death and severe cerebellar malformations with rare tumor formation. iScience 2023; 26:107501. [PMID: 37608807 PMCID: PMC10440564 DOI: 10.1016/j.isci.2023.107501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/16/2023] [Accepted: 07/26/2023] [Indexed: 08/24/2023] Open
Abstract
The zinc-finger transcription factor GLI2 is frequently amplified in childhood medulloblastoma of the Sonic-hedgehog type (SHH-MB), with or without amplification of NMYC or deletion of TP53. Despite the aggressive tumor behavior, tumorigenesis is not well understood, and adequate mouse models are lacking. Therefore, we generated mice with a GLI2 overexpression under control of the hGFAP-promoter. These mice died within 150 days. The majority only survived until postnatal day 40. They displayed severe cerebellar hypoplasia, cortical malformations, but no brain tumors, except for one out of 23 animals with an undifferentiated hindbrain lesion. Additional loss of p53 did not result in cerebellar tumors, but partially rescued the cerebellar phenotype induced by GLI2 overexpression. Similarly, the combination of GLI2 and NMYC was neither sufficient for the development of SHH-MB. We therefore assume that the development of childhood SHH-MB in mice is either occurring in cellular origins outside the hGFAP-positive lineage or needs additional genetic drivers.
Collapse
Affiliation(s)
- Judith Niesen
- Mildred Scheel Cancer Career Centre HaTriCS4, University Medical Centre Hamburg-Eppendorf, 20251 Hamburg, Germany
- Research Institute Children’s Cancer Centre, 20251 Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Irm Hermans-Borgmeyer
- Scientific Service Group for Transgenic Animals, University Medical Centre Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Christina Krüger
- Research Institute Children’s Cancer Centre, 20251 Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Melanie Schoof
- Research Institute Children’s Cancer Centre, 20251 Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Franziska Modemann
- Mildred Scheel Cancer Career Centre HaTriCS4, University Medical Centre Hamburg-Eppendorf, 20251 Hamburg, Germany
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, II. Department of Internal Medicine, University Medical Centre Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Ulrich Schüller
- Research Institute Children’s Cancer Centre, 20251 Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf, 20251 Hamburg, Germany
- Institute of Neuropathology, University Medical Centre Hamburg-Eppendorf, 20251 Hamburg, Germany
| |
Collapse
|
3
|
Baran B, Kosieradzka K, Skarzynska W, Niewiadomski P. MRCKα/β positively regulates Gli protein activity. Cell Signal 2023; 107:110666. [PMID: 37019250 DOI: 10.1016/j.cellsig.2023.110666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
Posttranslational modifications (PTMs) are key regulatory events for the majority of signaling pathways. Transcription factors are often phosphorylated on multiple residues, which regulates their trafficking, stability, or transcriptional activity. Gli proteins, transcription factors that respond to the Hedgehog pathway, are regulated by phosphorylation, but the sites and the kinases involved have been only partially described. We identified three novel kinases: MRCKα, MRCKβ, and MAP4K5 which physically interact with Gli proteins and directly phosphorylate Gli2 on multiple sites. We established that MRCKα/β kinases regulate Gli proteins, which impacts the transcriptional output of the Hedgehog pathway. We showed that double knockout of MRCKα/β affects Gli2 ciliary and nuclear localization and reduces Gli2 binding to the Gli1 promoter. Our research fills a critical gap in our understanding of the regulation of Gli proteins by describing their activation mechanisms through phosphorylation.
Collapse
|
4
|
Chai JY, Sugumar V, Alshawsh MA, Wong WF, Arya A, Chong PP, Looi CY. The Role of Smoothened-Dependent and -Independent Hedgehog Signaling Pathway in Tumorigenesis. Biomedicines 2021; 9:1188. [PMID: 34572373 PMCID: PMC8466551 DOI: 10.3390/biomedicines9091188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 12/22/2022] Open
Abstract
The Hedgehog (Hh)-glioma-associated oncogene homolog (GLI) signaling pathway is highly conserved among mammals, with crucial roles in regulating embryonic development as well as in cancer initiation and progression. The GLI transcription factors (GLI1, GLI2, and GLI3) are effectors of the Hh pathway and are regulated via Smoothened (SMO)-dependent and SMO-independent mechanisms. The SMO-dependent route involves the common Hh-PTCH-SMO axis, and mutations or transcriptional and epigenetic dysregulation at these levels lead to the constitutive activation of GLI transcription factors. Conversely, the SMO-independent route involves the SMO bypass regulation of GLI transcription factors by external signaling pathways and their interacting proteins or by epigenetic and transcriptional regulation of GLI transcription factors expression. Both routes of GLI activation, when dysregulated, have been heavily implicated in tumorigenesis of many known cancers, making them important targets for cancer treatment. Hence, this review describes the various SMO-dependent and SMO-independent routes of GLI regulation in the tumorigenesis of multiple cancers in order to provide a holistic view of the paradigms of hedgehog signaling networks involving GLI regulation. An in-depth understanding of the complex interplay between GLI and various signaling elements could help inspire new therapeutic breakthroughs for the treatment of Hh-GLI-dependent cancers in the future. Lastly, we have presented an up-to-date summary of the latest findings concerning the use of Hh inhibitors in clinical developmental studies and discussed the challenges, perspectives, and possible directions regarding the use of SMO/GLI inhibitors in clinical settings.
Collapse
Affiliation(s)
- Jian Yi Chai
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia; (J.Y.C.); (P.P.C.)
| | - Vaisnevee Sugumar
- School of Medicine, Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia;
| | | | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Aditya Arya
- School of Biosciences, Faculty of Science, Building 184, The University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Pei Pei Chong
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia; (J.Y.C.); (P.P.C.)
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia; (J.Y.C.); (P.P.C.)
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia
| |
Collapse
|
5
|
Decoding the Roles of Astrocytes and Hedgehog Signaling in Medulloblastoma. ACTA ACUST UNITED AC 2021; 28:3058-3070. [PMID: 34436033 PMCID: PMC8395412 DOI: 10.3390/curroncol28040267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 01/09/2023]
Abstract
The molecular evolution of medulloblastoma is more complex than previously imagined, as emerging evidence suggests that multiple interactions between the tumor cells and components of the tumor microenvironment (TME) are important for tumor promotion and progression. The identification of several molecular networks within the TME, which interact with tumoral cells, has provided new clues to understand the tumorigenic roles of many TME components as well as potential therapeutic targets. In this review, we discuss the most recent studies regarding the roles of astrocytes in supporting sonic hedgehog (SHH) subgroup medulloblastoma (MB) and provide an overview of MB progression through SHH expression and signal transduction mechanisms into the complex tumor microenvironment. In addition, we highlight the associations between tumor and stromal cells as possible prognostic markers that could be targeted with new therapeutic strategies.
Collapse
|
6
|
Abele M, Müller SL, Schleicher S, Hartmann U, Döring M, Queudeville M, Lang P, Handgretinger R, Ebinger M. Arsenic trioxide in pediatric cancer - a case series and review of literature. Pediatr Hematol Oncol 2021; 38:471-485. [PMID: 33635158 DOI: 10.1080/08880018.2021.1872748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Arsenic trioxide (ATO) has become an established component of treatment protocols for acute promyelocytic leukemia (APL) with excellent efficacy and no relevant sustained toxicity. Part of its action has been attributed to the inhibition of Hedgehog signaling (Hh) which enables a possible therapeutic approach as many pediatric tumor entities have been associated with increased Hh activity. We retrospectively analyzed 31 patients with refractory and relapsed pediatric cancer who were treated with ATO at the University Children's Hospital of Tuebingen. Additionally a literature review on the clinical and preclinical use of ATO in pediatric cancer treatment was performed.ATO alone as well as combinations with other drugs have proven effective in vitro and in mouse models of various pediatric malignancies. However, only few data on the clinical use of ATO in pediatric patients besides APL exist. In our patient sample, ATO was overall well tolerated in the treatment of various pediatric cancers, even in combination with other cytostatic drugs. Due to distinct tumor entities, differently progressed disease stages and varying co-medication, no clear statement can be made regarding the efficacy of ATO treatment. However, patients with proven Hh activation in molecular tumor profiling surpassed all other patients, who received ATO in an experimental treatment setting, in terms of survival. As molecular profiling of tumors increases and enhanced Hh activity can be detected at an early stage, ATO might expand its clinical use to other pediatric malignancies beyond APL depending on further clinical studies.
Collapse
Affiliation(s)
- Michael Abele
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| | - Sara-Lena Müller
- Clinic for Anaesthesiology, Critical Care, Emergency Medicine and Pain Management, Klinikum Ludwigsburg, Germany
| | - Sabine Schleicher
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| | | | - Michaela Döring
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| | - Manon Queudeville
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| | - Peter Lang
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| | - Rupert Handgretinger
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| | - Martin Ebinger
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
7
|
Wu F, Zhang C, Zhao C, Wu H, Teng Z, Jiang T, Wang Y. Prostaglandin E1 Inhibits GLI2 Amplification-Associated Activation of the Hedgehog Pathway and Drug Refractory Tumor Growth. Cancer Res 2020; 80:2818-2832. [PMID: 32371475 DOI: 10.1158/0008-5472.can-19-2052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 03/29/2020] [Accepted: 04/30/2020] [Indexed: 11/16/2022]
Abstract
Aberrant activation of the Hedgehog (HH) signaling pathway underlines the initiation and progression of a multitude of cancers. The effectiveness of the leading drugs vismodegib (GDC-0449) and sonidegib (LDE225), both Smoothened (SMO) antagonists, is compromised by acquisition of mutations that alter pathway components, notably secondary mutations in SMO and amplification of GLI2, a transcriptional mediator at the end of the pathway. Pharmacologic blockade of GLI2 activity could ultimately overcome these diversified refractory mechanisms, which would also be effective in a broader spectrum of primary tumors than current SMO antagonists. To this end, we conducted a high-content screening directly analyzing the ciliary translocation of GLI2, a key event for GLI2 activation in HH signal transduction. Several prostaglandin compounds were shown to inhibit accumulation of GLI2 within the primary cilium (PC). In particular, prostaglandin E1 (PGE1), an FDA-approved drug, is a potent GLI2 antagonist that overcame resistance mechanisms of both SMO mutagenesis and GLI2 amplification. Consistent with a role in HH pathway regulation, EP4 receptor localized to the PC. Mechanistically, PGE1 inhibited HH signaling through the EP4 receptor, enhancing cAMP-PKA activity, which promoted phosphorylation and degradation of GLI2 via the ubiquitination pathway. PGE1 also effectively inhibited the growth of drug refractory human medulloblastoma xenografts. Together, these results identify PGE1 and other prostaglandins as potential templates for complementary therapeutic development to circumvent resistance to current generation SMO antagonists in use in the clinic. SIGNIFICANCE: These findings show that PGE1 exhibits pan-inhibition against multiple drug refractory activities for Hedgehog-targeted therapies and elicits significant antitumor effects in xenograft models of drug refractory human medulloblastoma mimicking GLI2 amplification.
Collapse
Affiliation(s)
- Fujia Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chenze Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chen Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hao Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhaoqian Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing TianTan Hospital, Capital Medical University, Beijing, China. .,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yu Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Han W, Allam SA, Elsawa SF. GLI2-Mediated Inflammation in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1263:55-65. [PMID: 32588323 DOI: 10.1007/978-3-030-44518-8_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The tumor microenvironment (TME) plays an important role in the development and progression of cancer and has been shown to contribute to resistance to therapy. Inflammation is one of the hallmarks of cancer implicated in disease phenotype. Therefore, understanding the mechanisms that regulate inflammation in cancer and consequently how inflammatory mediators promote cancer progression is important for our understanding of cancer cell biology. The transcription factor GLI2 was initially identified as a member of the Hedgehog (HH) signaling pathway. During the last decade, studies have shown a novel mechanism of GLI2 regulation independent of HH signaling, where GLI2 consequently modulated several cytokine genes in the TME. These studies highlight a novel role for GLI2 as an inflammatory mediatory independent of HH stimulation. This chapter will discuss canonical and noncanonical pathways of GLI2 regulation and some of the downstream cytokine target genes regulated by GLI2.
Collapse
Affiliation(s)
- Weiguo Han
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Shereen A Allam
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Sherine F Elsawa
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA.
| |
Collapse
|
9
|
Menyhárt O, Győrffy B. Principles of tumorigenesis and emerging molecular drivers of SHH-activated medulloblastomas. Ann Clin Transl Neurol 2019; 6:990-1005. [PMID: 31139698 PMCID: PMC6529984 DOI: 10.1002/acn3.762] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/20/2022] Open
Abstract
SHH-activated medulloblastomas (SHH-MB) account for 25-30% of all medulloblastomas (MB) and occur with a bimodal age distribution, encompassing many infant and adult, but fewer childhood cases. Different age groups are characterized by distinct survival outcomes and age-specific alterations of regulatory pathways. Here, we review SHH-specific genetic aberrations and signaling pathways. Over 95% of SHH-MBs contain at least one driver event - the activating mutations frequently affect sonic hedgehog signaling (PTCH1, SMO, SUFU), genome maintenance (TP53), and chromatin modulation (KMT2D, KMT2C, HAT complexes), while genes responsible for transcriptional regulation (MYCN) are recurrently amplified. SHH-MBs have the highest prevalence of damaging germline mutations among all MBs. TP53-mutant MBs are enriched among older children and have the worst prognosis among all SHH-MBs. Numerous genetic aberrations, including mutations of TERT, DDX3X, and the PI3K/AKT/mTOR pathway are almost exclusive to adult patients. We elaborate on the newest development within the evolution of molecular subclassification, and compare proposed risk categories across emerging classification systems. We discuss discoveries based on preclinical models and elaborate on the applicability of potential new therapies, including BET bromodomain inhibitors, statins, inhibitors of SMO, AURK, PLK, cMET, targeting stem-like cells, and emerging immunotherapeutic strategies. An enormous amount of data on the genetic background of SHH-MB have accumulated, nevertheless, subgroup affiliation does not provide reliable prediction about response to therapy. Emerging subtypes within SHH-MB offer more layered risk stratifications. Rational clinical trial designs with the incorporation of available molecular knowledge are inevitable. Improved collaboration across the scientific community will be imperative for therapeutic breakthroughs.
Collapse
Affiliation(s)
- Otília Menyhárt
- 2nd Department of Pediatrics Semmelweis University H-1094 Budapest Hungary.,MTA TTK Lendület Cancer Biomarker Research Group Institute of Enzymology Hungarian Academy of Sciences Magyar tudósok körútja 2 Budapest Hungary
| | - Balázs Győrffy
- 2nd Department of Pediatrics Semmelweis University H-1094 Budapest Hungary.,MTA TTK Lendület Cancer Biomarker Research Group Institute of Enzymology Hungarian Academy of Sciences Magyar tudósok körútja 2 Budapest Hungary
| |
Collapse
|
10
|
Gli Proteins: Regulation in Development and Cancer. Cells 2019; 8:cells8020147. [PMID: 30754706 PMCID: PMC6406693 DOI: 10.3390/cells8020147] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/29/2019] [Accepted: 02/02/2019] [Indexed: 12/18/2022] Open
Abstract
Gli proteins are transcriptional effectors of the Hedgehog signaling pathway. They play key roles in the development of many organs and tissues, and are deregulated in birth defects and cancer. We review the molecular mechanisms of Gli protein regulation in mammals, with special emphasis on posttranslational modifications and intracellular transport. We also discuss how Gli proteins interact with co-activators and co-repressors to fine-tune the expression of Hedgehog target genes. Finally, we provide an overview of the regulation of developmental processes and tissue regeneration by Gli proteins and discuss how these proteins are involved in cancer progression, both through canonical regulation via the Hedgehog pathway and through cross-talk with other signaling pathways.
Collapse
|
11
|
Yin WC, Satkunendran T, Mo R, Morrissy S, Zhang X, Huang ES, Uusküla-Reimand L, Hou H, Son JE, Liu W, Liu YC, Zhang J, Parker J, Wang X, Farooq H, Selvadurai H, Chen X, Ngan ESW, Cheng SY, Dirks PB, Angers S, Wilson MD, Taylor MD, Hui CC. Dual Regulatory Functions of SUFU and Targetome of GLI2 in SHH Subgroup Medulloblastoma. Dev Cell 2018; 48:167-183.e5. [PMID: 30554998 DOI: 10.1016/j.devcel.2018.11.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/07/2018] [Accepted: 11/09/2018] [Indexed: 01/09/2023]
Abstract
SUFU alterations are common in human Sonic Hedgehog (SHH) subgroup medulloblastoma (MB). However, its tumorigenic mechanisms have remained elusive. Here, we report that loss of Sufu alone is unable to induce MB formation in mice, due to insufficient Gli2 activation. Simultaneous loss of Spop, an E3 ubiquitin ligase targeting Gli2, restores robust Gli2 activation and induces rapid MB formation in Sufu knockout background. We also demonstrated a tumor-promoting role of Sufu in Smo-activated MB (∼60% of human SHH MB) by maintaining robust Gli activity. Having established Gli2 activation as a key driver of SHH MB, we report a comprehensive analysis of its targetome. Furthermore, we identified Atoh1 as a target and molecular accomplice of Gli2 that activates core SHH MB signature genes in a synergistic manner. Overall, our work establishes the dual role of SUFU in SHH MB and provides mechanistic insights into transcriptional regulation underlying Gli2-mediated SHH MB tumorigenesis.
Collapse
Affiliation(s)
- Wen-Chi Yin
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Thevagi Satkunendran
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Rong Mo
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sorana Morrissy
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Arthur and Sonic Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada; Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, AB, Canada; Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Xiaoyun Zhang
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Eunice Shiao Huang
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Liis Uusküla-Reimand
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Huayun Hou
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Joe Eun Son
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Weifan Liu
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Yulu C Liu
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Jianing Zhang
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Joint Institute of Genetics and Genomic Medicine, Zhejiang University and University of Toronto, Toronto, ON, Canada
| | - Jessica Parker
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Xin Wang
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Arthur and Sonic Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Hamza Farooq
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Arthur and Sonic Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Hayden Selvadurai
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Arthur and Sonic Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Xin Chen
- Joint Institute of Genetics and Genomic Medicine, Zhejiang University and University of Toronto, Toronto, ON, Canada
| | - Elly Sau-Wai Ngan
- Department of Surgery, University of Hong Kong, Hong Kong SAR, China
| | - Steven Y Cheng
- Department of developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Peter B Dirks
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Arthur and Sonic Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stephane Angers
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Michael D Wilson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michael D Taylor
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Arthur and Sonic Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Chi-Chung Hui
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Joint Institute of Genetics and Genomic Medicine, Zhejiang University and University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
12
|
Zinc and zinc-containing biomolecules in childhood brain tumors. J Mol Med (Berl) 2016; 94:1199-1215. [PMID: 27638340 DOI: 10.1007/s00109-016-1454-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/13/2016] [Accepted: 07/27/2016] [Indexed: 12/21/2022]
Abstract
Zinc ions are essential cofactors of a wide range of enzymes, transcription factors, and other regulatory proteins. Moreover, zinc is also involved in cellular signaling and enzymes inhibition. Zinc dysregulation, deficiency, over-supply, and imbalance in zinc ion transporters regulation are connected with various diseases including cancer. A zinc ion pool is maintained by two types of proteins: (i) zinc-binding proteins, which act as a buffer and intracellular donors of zinc and (ii) zinc transporters responsible for zinc fluxes into/from cells and organelles. The decreased serum zinc ion levels have been identified in patients suffering from various cancer diseases, including head and neck tumors and breast, prostate, liver, and lung cancer. On the contrary, increased zinc ion levels have been found in breast cancer and other malignant tissues. Zinc metalloproteomes of a majority of tumors including brain ones are still not yet fully understood. Current knowledge show that zinc ion levels and detection of certain zinc-containing proteins may be utilized for diagnostic and prognostic purposes. In addition, these proteins can also be promising therapeutic targets. The aim of the present work is an overview of the importance of zinc ions, zinc transporters, and zinc-containing proteins in brain tumors, which are, after leukemia, the second most common type of childhood cancer and the second leading cause of death in children after accidents.
Collapse
|
13
|
Abstract
MicroRNAs (miRNAs) are important regulators of cerebellar function and homeostasis. Their deregulation results in cerebellar neuronal degeneration and spinocerebellar ataxia type 1 and contributes to medulloblastoma. Canonical miRNA processing involves Dicer, which cleaves precursor miRNAs into mature double-stranded RNA duplexes. In order to address the role of miRNAs in cerebellar granule cell precursor development, loxP-flanked exons of Dicer1 were conditionally inactivated using the granule cell precursor-specific Atoh1-Cre recombinase. A reduction of 87% in Dicer1 transcript was achieved in this conditional Dicer knockdown model. Although knockdown resulted in normal survival, mice had disruptions to the cortical layering of the anterior cerebellum, which resulted from the premature differentiation of granule cell precursors in this region during neonatal development. This defect manifested as a thinner external granular layer with ectopic mature granule cells, and a depleted internal granular layer. We found that expression of the activator components of the Hedgehog-Patched pathway, the Gli family of transcription factors, was perturbed in conditional Dicer knockdown mice. We propose that loss of Gli2 mRNA mediated the anterior-restricted defect in conditional Dicer knockdown mice and, as proof of principle, were able to show that miR-106b positively regulated Gli2 mRNA expression. These findings confirm the importance of miRNAs as positive mediators of Hedgehog-Patched signalling during granule cell precursor development.
Collapse
|
14
|
Cheng J, Gao J, Tao K. Prognostic role of Gli1 expression in solid malignancies: a meta-analysis. Sci Rep 2016; 6:22184. [PMID: 26899488 PMCID: PMC4762019 DOI: 10.1038/srep22184] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/02/2016] [Indexed: 02/07/2023] Open
Abstract
Gli1 is a downstream transcriptional factor of Sonic hedgehog pathway in mammalians, and has been recognized as a proliferative indicator of carcinogenesis. However, its actual role in prognosis among solid malignancies remains unclear. Therefore we performed this meta-analysis aiming to discover the correlation between Gli1 positivity and clinical prognosis in patients suffering from diverse carcinomas. A total of 39 studies containing 4496 cases were selected into our quantitative analysis via electronic database search. Original data of 3-year, 5-year, 10-year overall survival and disease-free survival were extracted and calculated using odds ratio and Mantel-Haenszel model. Subgroup analysis was also conducted to clarify the possible confounding factors. P < 0.05 was considered significant in statistics. Gli1 redundancy was associated with worse 3-year, 5-year, 10-year overall survival and disease-free survival in solid malignancies. Different source regions, sample-size, mean-age and detection approaches had no impact on the negative prognostic effect of Gli1 over-expression. Nevertheless, stratified by cancer type and subcellular localization, cytoplasmic Gli1 expression and Gli1 positivity in intracranial tumors was not correlated to poorer 3-year and 5-year prognosis. The over-expression of Gli1 is a credible indicator of poorer prognosis in most of solid malignancies, irrespective of intracranial tumors.
Collapse
Affiliation(s)
- Ji Cheng
- Department of General Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038 China
| | - Jinbo Gao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| |
Collapse
|
15
|
De Luca A, Cerrato V, Fucà E, Parmigiani E, Buffo A, Leto K. Sonic hedgehog patterning during cerebellar development. Cell Mol Life Sci 2016; 73:291-303. [PMID: 26499980 PMCID: PMC11108499 DOI: 10.1007/s00018-015-2065-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 10/06/2015] [Accepted: 10/08/2015] [Indexed: 01/30/2023]
Abstract
The morphogenic factor sonic hedgehog (Shh) actively orchestrates many aspects of cerebellar development and maturation. During embryogenesis, Shh signaling is active in the ventricular germinal zone (VZ) and represents an essential signal for proliferation of VZ-derived progenitors. Later, Shh secreted by Purkinje cells sustains the amplification of postnatal neurogenic niches: the external granular layer and the prospective white matter, where excitatory granule cells and inhibitory interneurons are produced, respectively. Moreover, Shh signaling affects Bergmann glial differentiation and promotes cerebellar foliation during development. Here we review the most relevant functions of Shh during cerebellar ontogenesis, underlying its role in physiological and pathological conditions.
Collapse
Affiliation(s)
- Annarita De Luca
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Valentina Cerrato
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Elisa Fucà
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Elena Parmigiani
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Ketty Leto
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy.
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy.
| |
Collapse
|
16
|
Li N, Chen M, Truong S, Yan C, Buttyan R. Determinants of Gli2 co-activation of wildtype and naturally truncated androgen receptors. Prostate 2014; 74:1400-10. [PMID: 25132524 DOI: 10.1002/pros.22855] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/17/2014] [Indexed: 11/08/2022]
Abstract
BACKGROUND Gli2, a transcription factor in the Hedgehog pathway, is overexpressed in castrate-resistant prostate cancer (PCa). Previously we showed that Gli2 overexpression increased transcriptional activity of androgen receptor (AR) and conferred androgen growth-independence to normally growth-dependent PCa cells. Here we localized the regions of AR-Gli2 protein interaction and determined the domains within Gli2 needed for AR co-activation. METHODS Co-immunoprecipitation and GST-pulldown assays were used to define AR-Gli binding domains. Co-activation assays using androgen-responsive promoter reporters were used to define Gli2 regions needed for AR co-activation. Chromatin immunoprecipitation (ChIP) assays were used to confirm nuclear interactions of Gli2 with AR in PCa cells. RESULTS The Gli2 C-terminal domain (CTD) is sufficient for AR co-activation. Two elements within the CTD were required: (1) an AR binding domain within aa628-897; and (2) at least part of the Gli2 transactivation domain within aa1252-1586. In turn, Gli2 binds the tau5/AF5 ligand-independent activation domain in the AR N-terminus. Mutations in the WxxLF motif in tau5/AF5 greatly diminished binding to Gli2-CTD. Gli2 interaction with AR tau5/AF5 was further substantiated by the ability of Gli2/Gli2-CTD to co-activate truncated AR splice variants (AR-V7/ARV567es). ChIP assays confirmed that Gli2 associates with chromatin at androgen response elements found near androgen-responsive genes in LNCaP cells. These assays also showed that AR associates with chromatin containing a Gli-response element near a Gli-responsive gene. CONCLUSION Our findings indicate that Gli2 overexpression in PCa cells might support development of castration resistant PCa through AR co-activation and suggests that AR might modulate transcription from Gli2.
Collapse
Affiliation(s)
- Na Li
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
17
|
Hede SM, Savov V, Weishaupt H, Sangfelt O, Swartling FJ. Oncoprotein stabilization in brain tumors. Oncogene 2014; 33:4709-21. [PMID: 24166497 DOI: 10.1038/onc.2013.445] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 12/12/2022]
Abstract
Proteins involved in promoting cell proliferation and viability need to be timely expressed and carefully controlled for the proper development of the brain but also efficiently degraded in order to prevent cells from becoming brain cancer cells. A major pathway for targeted protein degradation in cells is the ubiquitin-proteasome system (UPS). Oncoproteins that drive tumor development and tumor maintenance are often deregulated and stabilized in malignant cells. This can occur when oncoproteins escape degradation by the UPS because of mutations in either the oncoprotein itself or in the UPS components responsible for recognition and ubiquitylation of the oncoprotein. As the pathogenic accumulation of an oncoprotein can lead to effectively sustained cell growth, viability and tumor progression, it is an indisputable target for cancer treatment. The most common types of malignant brain tumors in children and adults are medulloblastoma and glioma, respectively. Here, we review different ways of how deregulated proteolysis of oncoproteins involved in major signaling cancer pathways contributes to medulloblastoma and glioma development. We also describe means of targeting relevant oncoproteins in brain tumors with treatments affecting their stability or therapeutic strategies directed against the UPS itself.
Collapse
Affiliation(s)
- S-M Hede
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - V Savov
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - H Weishaupt
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - O Sangfelt
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - F J Swartling
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
18
|
Kieran MW. Targeted treatment for sonic hedgehog-dependent medulloblastoma. Neuro Oncol 2014; 16:1037-47. [PMID: 24951114 PMCID: PMC4096181 DOI: 10.1093/neuonc/nou109] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 05/15/2014] [Indexed: 12/28/2022] Open
Abstract
Novel treatment options, including targeted therapies, are needed for patients with medulloblastoma (MB), especially for those with high-risk or recurrent/relapsed disease. Four major molecular subgroups of MB have been identified, one of which is characterized by activation of the sonic hedgehog (SHH) pathway. Preclinical data suggest that inhibitors of the hedgehog (Hh) pathway could become valuable treatment options for patients with this subgroup of MB. Indeed, agents targeting the positive regulator of the pathway, smoothened (SMO), have demonstrated efficacy in a subset of patients with SHH MB. However, because of resistance and the presence of mutations downstream of SMO, not all patients with SHH MB respond to SMO inhibitors. The development of agents that target these resistance mechanisms and the potential for their combination with traditional chemotherapy and SHH inhibitors will be discussed. Due to its extensive molecular heterogeneity, the future of MB treatment is in personalized therapy, which may lead to improved efficacy and reduced toxicity. This will include the development of clinically available tests that can efficiently discern the SHH subgroup. The preliminary use of these tests in clinical trials is also discussed herein.
Collapse
Affiliation(s)
- Mark W Kieran
- Pediatric Medical Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
19
|
Tang Y, Gholamin S, Schubert S, Willardson MI, Lee A, Bandopadhayay P, Bergthold G, Masoud S, Nguyen B, Vue N, Balansay B, Yu F, Oh S, Woo P, Chen S, Ponnuswami A, Monje M, Atwood SX, Whitson RJ, Mitra S, Cheshier SH, Qi J, Beroukhim R, Tang JY, Wechsler-Reya R, Oro AE, Link BA, Bradner JE, Cho YJ. Epigenetic targeting of Hedgehog pathway transcriptional output through BET bromodomain inhibition. Nat Med 2014; 20:732-40. [PMID: 24973920 PMCID: PMC4108909 DOI: 10.1038/nm.3613] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/29/2014] [Indexed: 01/10/2023]
Abstract
Hedgehog signaling drives oncogenesis in several cancers and strategies targeting this pathway have been developed, most notably through inhibition of Smoothened. However, resistance to Smoothened inhibitors occurs via genetic changes of Smoothened or other downstream Hedgehog components. Here, we overcome these resistance mechanisms by modulating GLI transcription via inhibition of BET bromodomain proteins. We show the BET bromodomain protein, BRD4, regulates GLI transcription downstream of SMO and SUFU and chromatin immunoprecipitation studies reveal BRD4 directly occupies GLI1 and GLI2 promoters, with a substantial decrease in engagement of these sites upon treatment with JQ1, a small molecule inhibitor targeting BRD4. Globally, genes associated with medulloblastoma-specific GLI1 binding sites are downregulated in response to JQ1 treatment, supporting direct regulation of GLI activity by BRD4. Notably, patient- and GEMM-derived Hedgehog-driven tumors (basal cell carcinoma, medulloblastoma and atypical teratoid/rhabdoid tumor) respond to JQ1 even when harboring genetic lesions rendering them resistant to Smoothened antagonists.
Collapse
Affiliation(s)
- Yujie Tang
- 1] Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA. [2] Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Sharareh Gholamin
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Simone Schubert
- 1] Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA. [2] Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Minde I Willardson
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Alex Lee
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Pratiti Bandopadhayay
- 1] Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [2] Pediatric Neuro-oncology, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [3] Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA. [4] Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Guillame Bergthold
- 1] Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [2] Pediatric Neuro-oncology, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [3] Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Sabran Masoud
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Brian Nguyen
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Nujsaubnusi Vue
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Brianna Balansay
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Furong Yu
- 1] Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA. [2] Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Sekyung Oh
- 1] Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA. [2] Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Pamelyn Woo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Spenser Chen
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Anitha Ponnuswami
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Scott X Atwood
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Ramon J Whitson
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Siddhartha Mitra
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Samuel H Cheshier
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Jun Qi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Rameen Beroukhim
- 1] Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [2] Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA. [3] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jean Y Tang
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA
| | | | - Anthony E Oro
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Brian A Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - James E Bradner
- 1] Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [2] Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA. [3] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Yoon-Jae Cho
- 1] Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA. [2] Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA. [3] Stanford Cancer Institute, Stanford University Medical Center, Stanford, California, USA
| |
Collapse
|
20
|
Current world literature. Curr Opin Pediatr 2012; 24:134-44. [PMID: 22245849 DOI: 10.1097/mop.0b013e328350498a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|