1
|
Girolamo F, Errede M, Bizzoca A, Virgintino D, Ribatti D. Central Nervous System Pericytes Contribute to Health and Disease. Cells 2022; 11:1707. [PMID: 35626743 PMCID: PMC9139243 DOI: 10.3390/cells11101707] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 12/11/2022] Open
Abstract
Successful neuroprotection is only possible with contemporary microvascular protection. The prevention of disease-induced vascular modifications that accelerate brain damage remains largely elusive. An improved understanding of pericyte (PC) signalling could provide important insight into the function of the neurovascular unit (NVU), and into the injury-provoked responses that modify cell-cell interactions and crosstalk. Due to sharing the same basement membrane with endothelial cells, PCs have a crucial role in the control of endothelial, astrocyte, and oligodendrocyte precursor functions and hence blood-brain barrier stability. Both cerebrovascular and neurodegenerative diseases impair oxygen delivery and functionally impair the NVU. In this review, the role of PCs in central nervous system health and disease is discussed, considering their origin, multipotency, functions and also dysfunction, focusing on new possible avenues to modulate neuroprotection. Dysfunctional PC signalling could also be considered as a potential biomarker of NVU pathology, allowing us to individualize therapeutic interventions, monitor responses, or predict outcomes.
Collapse
Affiliation(s)
- Francesco Girolamo
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (M.E.); (D.V.); (D.R.)
| | - Mariella Errede
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (M.E.); (D.V.); (D.R.)
| | - Antonella Bizzoca
- Physiology Unit, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy;
| | - Daniela Virgintino
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (M.E.); (D.V.); (D.R.)
| | - Domenico Ribatti
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (M.E.); (D.V.); (D.R.)
| |
Collapse
|
2
|
Tottenham I, Koch M, Camara-Lemarroy C. Serum HGF and APN2 are associated with disability worsening in SPMS. J Neuroimmunol 2021; 364:577803. [DOI: 10.1016/j.jneuroim.2021.577803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/09/2021] [Accepted: 12/26/2021] [Indexed: 10/19/2022]
|
3
|
Steerable3D: An ImageJ plugin for neurovascular enhancement in 3-D segmentation. Phys Med 2021; 81:197-209. [PMID: 33472154 DOI: 10.1016/j.ejmp.2020.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 11/23/2022] Open
|
4
|
Mouse models of neurodegenerative disease: preclinical imaging and neurovascular component. Brain Imaging Behav 2017; 12:1160-1196. [PMID: 29075922 DOI: 10.1007/s11682-017-9770-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases represent great challenges for basic science and clinical medicine because of their prevalence, pathologies, lack of mechanism-based treatments, and impacts on individuals. Translational research might contribute to the study of neurodegenerative diseases. The mouse has become a key model for studying disease mechanisms that might recapitulate in part some aspects of the corresponding human diseases. Neurodegenerative disorders are very complicated and multifactorial. This has to be taken in account when testing drugs. Most of the drugs screening in mice are very difficult to be interpretated and often useless. Mouse models could be condiderated a 'pathway models', rather than as models for the whole complicated construct that makes a human disease. Non-invasive in vivo imaging in mice has gained increasing interest in preclinical research in the last years thanks to the availability of high-resolution single-photon emission computed tomography (SPECT), positron emission tomography (PET), high field Magnetic resonance, Optical Imaging scanners and of highly specific contrast agents. Behavioral test are useful tool to characterize different animal models of neurodegenerative pathology. Furthermore, many authors have observed vascular pathological features associated to the different neurodegenerative disorders. Aim of this review is to focus on the different existing animal models of neurodegenerative disorders, describe behavioral tests and preclinical imaging techniques used for diagnose and describe the vascular pathological features associated to these diseases.
Collapse
|
5
|
Huang J, Han S, Sun Q, Zhao Y, Liu J, Yuan X, Mao W, Peng B, Liu W, Yin J, He X. Kv1.3 channel blocker (ImKTx88) maintains blood-brain barrier in experimental autoimmune encephalomyelitis. Cell Biosci 2017; 7:31. [PMID: 28596825 PMCID: PMC5463463 DOI: 10.1186/s13578-017-0158-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/31/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Disruption of blood-brain barrier (BBB) and subsequent infiltration of auto-reactive T lymphocytes are major characteristics of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). Kv1.3 channel blockers are demonstrated potential therapeutic effects on MS patients and EAE models, maybe via reducing activation of T cells. However, it remains to be explored whether Kv1.3 channel blockers maintain integrity of BBB in MS model. RESULTS In this study, ImKTx88, a highly selective Kv1.3 channel blocker, was used to determine the role of Kv1.3 channel in the pathogenesis of EAE, particularly in the maintenance of BBB. ImKTx88 ameliorated pathological severity in the EAE rats, and reduced extravasation into CNS. ImKTx88 also ameliorated the severity of loss or redistribution of tight junction proteins, and inhibited over-expression of ICAM-1 and VCAM-1 in the brain from EAE rats. Furthermore ImKTx88 protection was associated with activation of Ang-1/Tie-2 axis, and might be due to decreased IL-17 production. CONCLUSIONS ImKTx88 may be a novel therapeutic agent for MS treatment by stabilizing the BBB.
Collapse
Affiliation(s)
- Jie Huang
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, No. 185, Donghu Road, Wuchang District, Wuhan, 430071 China
| | - Song Han
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, No. 185, Donghu Road, Wuchang District, Wuhan, 430071 China
| | - Qi Sun
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, No. 185, Donghu Road, Wuchang District, Wuhan, 430071 China
| | - Yipeng Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, No. 185, Donghu Road, Wuchang District, Wuhan, 430071 China
| | - Junchen Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, No. 185, Donghu Road, Wuchang District, Wuhan, 430071 China
| | - Xiaolu Yuan
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, No. 185, Donghu Road, Wuchang District, Wuhan, 430071 China
| | - Wenqian Mao
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, No. 185, Donghu Road, Wuchang District, Wuhan, 430071 China
| | - Biwen Peng
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071 China
| | - Wanhong Liu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071 China
| | - Jun Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, No. 185, Donghu Road, Wuchang District, Wuhan, 430071 China
| | - Xiaohua He
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, No. 185, Donghu Road, Wuchang District, Wuhan, 430071 China
| |
Collapse
|
6
|
Angiogenic factors are associated with multiple sclerosis. J Neuroimmunol 2016; 301:88-93. [DOI: 10.1016/j.jneuroim.2016.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 12/20/2022]
|
7
|
Glial-endothelial crosstalk regulates blood–brain barrier function. Curr Opin Pharmacol 2016; 26:39-46. [DOI: 10.1016/j.coph.2015.09.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/23/2015] [Accepted: 09/27/2015] [Indexed: 12/21/2022]
|
8
|
Angiopoietin-1 ameliorates inflammation-induced vascular leakage and improves functional impairment in a rat model of acute experimental autoimmune encephalomyelitis. Exp Neurol 2014; 261:245-57. [DOI: 10.1016/j.expneurol.2014.05.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/23/2014] [Accepted: 05/14/2014] [Indexed: 01/08/2023]
|
9
|
Angiogenesis in multiple sclerosis and experimental autoimmune encephalomyelitis. Acta Neuropathol Commun 2014; 2:84. [PMID: 25047180 PMCID: PMC4149233 DOI: 10.1186/s40478-014-0084-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/09/2014] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis, the formation of new vessels, is found in Multiple Sclerosis (MS) demyelinating lesions following Vascular Endothelial Growth Factor (VEGF) release and the production of several other angiogenic molecules. The increased energy demand of inflammatory cuffs and damaged neural cells explains the strong angiogenic response in plaques and surrounding white matter. An angiogenic response has also been documented in an experimental model of MS, experimental allergic encephalomyelitis (EAE), where blood–brain barrier disruption and vascular remodelling appeared in a pre-symptomatic disease phase. In both MS and EAE, VEGF acts as a pro-inflammatory factor in the early phase but its reduced responsivity in the late phase can disrupt neuroregenerative attempts, since VEGF naturally enhances neuron resistance to injury and regulates neural progenitor proliferation, migration, differentiation and oligodendrocyte precursor cell (OPC) survival and migration to demyelinated lesions. Angiogenesis, neurogenesis and oligodendroglia maturation are closely intertwined in the neurovascular niches of the subventricular zone, one of the preferential locations of inflammatory lesions in MS, and in all the other temporary vascular niches where the mutual fostering of angiogenesis and OPC maturation occurs. Angiogenesis, induced either by CNS inflammation or by hypoxic stimuli related to neurovascular uncoupling, appears to be ineffective in chronic MS due to a counterbalancing effect of vasoconstrictive mechanisms determined by the reduced axonal activity, astrocyte dysfunction, microglia secretion of free radical species and mitochondrial abnormalities. Thus, angiogenesis, that supplies several trophic factors, should be promoted in therapeutic neuroregeneration efforts to combat the progressive, degenerative phase of MS.
Collapse
|
10
|
Nathoo N, Yong VW, Dunn JF. Understanding disease processes in multiple sclerosis through magnetic resonance imaging studies in animal models. NEUROIMAGE-CLINICAL 2014; 4:743-56. [PMID: 24936425 PMCID: PMC4053634 DOI: 10.1016/j.nicl.2014.04.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 01/11/2023]
Abstract
There are exciting new advances in multiple sclerosis (MS) resulting in a growing understanding of both the complexity of the disorder and the relative involvement of grey matter, white matter and inflammation. Increasing need for preclinical imaging is anticipated, as animal models provide insights into the pathophysiology of the disease. Magnetic resonance (MR) is the key imaging tool used to diagnose and to monitor disease progression in MS, and thus will be a cornerstone for future research. Although gadolinium-enhancing and T2 lesions on MRI have been useful for detecting MS pathology, they are not correlative of disability. Therefore, new MRI methods are needed. Such methods require validation in animal models. The increasing necessity for MRI of animal models makes it critical and timely to understand what research has been conducted in this area and what potential there is for use of MRI in preclinical models of MS. Here, we provide a review of MRI and magnetic resonance spectroscopy (MRS) studies that have been carried out in animal models of MS that focus on pathology. We compare the MRI phenotypes of animals and patients and provide advice on how best to use animal MR studies to increase our understanding of the linkages between MR and pathology in patients. This review describes how MRI studies of animal models have been, and will continue to be, used in the ongoing effort to understand MS. MRI studies of pathology in various animal models of MS are reviewed. MRI phenotypes in animal models of MS and MS patients are compared. Animal MRI can increase understanding of links between MR and pathology in patients.
Collapse
Affiliation(s)
- Nabeela Nathoo
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | - V. Wee Yong
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Jeff F. Dunn
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Experimental Imaging Centre, University of Calgary, Calgary, Alberta, Canada
- Corresponding author at: Department of Radiology, University of Calgary, 3330 Hospital Drive, N.W., Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
11
|
MacMillan CJ, Doucette CD, Warford J, Furlong SJ, Hoskin DW, Easton AS. Murine experimental autoimmune encephalomyelitis is diminished by treatment with the angiogenesis inhibitors B20-4.1.1 and angiostatin (K1-3). PLoS One 2014; 9:e89770. [PMID: 24587024 PMCID: PMC3935931 DOI: 10.1371/journal.pone.0089770] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 01/26/2014] [Indexed: 11/18/2022] Open
Abstract
Angiogenesis is the formation of new blood vessels form pre-existing vasculature whose contribution to inflammatory conditions of the Central Nervous System is being studied in order to generate novel therapeutic targets. This study is the first to investigate the impact of two particular angiogenesis inhibitors on murine Experimental Autoimmune Encephalomyelitis (EAE), an inflammatory disease that mimics aspects of the human disease Multiple Sclerosis. The inhibitors were chosen to reduce angiogenesis by complimentary means. Extrinsic factors were targeted with B20-4.1.1 through its ability to bind to murine Vascular Endothelial Growth Factor (VEGF). Vascular processes connected to angiogenesis were targeted directly with K(1-3), the first three kringle domains of angiostatin. Mice treated with B20-4.1.1 and K(1-3) from onset of signs had reduced clinical scores 18–21 days after EAE induction. Both agents suppressed spinal cord angiogenesis without effect on local VEGF expression. B20-4.1.1 reduced spinal cord vascular permeability while K(1-3) had no effect. T cell infiltration into the spinal cord at day 21 was unaffected by either treatment. B20-4.1.1 reduced peripheral T cell proliferation while K(1-3) had no effect. Lymphoid cells from treated mice produced reduced levels of the T helper-17 (Th-17) cell cytokine interleukin (IL)-17 with no effect on the Th-1 cytokine interferon (IFN)-γ or Th-2 cytokine IL-4. However, when both drugs were added in vitro to naive T cells or to antigen stimulated T cells from mice with untreated EAE they had no effect on proliferation or levels of IL-17 or IFN-γ. We conclude that these angiogenesis inhibitors mitigate EAE by both suppressing spinal cord angiogenesis and reducing peripheral T cell activation.
Collapse
Affiliation(s)
| | - Carolyn D. Doucette
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jordan Warford
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Suzanne J. Furlong
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - David W. Hoskin
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Alexander S. Easton
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Surgery (Neurosurgery), Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail:
| |
Collapse
|
12
|
Easton AS. Neutrophils and stroke – Can neutrophils mitigate disease in the central nervous system? Int Immunopharmacol 2013; 17:1218-25. [DOI: 10.1016/j.intimp.2013.06.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 02/15/2013] [Accepted: 06/09/2013] [Indexed: 12/19/2022]
|
13
|
Prapansilp P, Medana I, Mai NTH, Day NPJ, Phu NH, Yeo TW, Hien TT, White NJ, Anstey NM, Turner GDH. A clinicopathological correlation of the expression of the angiopoietin-Tie-2 receptor pathway in the brain of adults with Plasmodium falciparum malaria. Malar J 2013; 12:50. [PMID: 23383853 PMCID: PMC3570345 DOI: 10.1186/1475-2875-12-50] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/14/2013] [Indexed: 02/08/2023] Open
Abstract
Background Plasma angiopoietin (Ang)-2 is associated with disease severity and mortality in adults and children with falciparum malaria. However the mechanism of action of the angiopoietins in fatal malaria is unclear. This study aimed to determine whether the expression of Ang-1 and Ang-2 and their receptor Tie-2 in cerebral endothelial or parenchymal cells was specific to cerebral malaria (CM), correlated with coma or other severe clinical features, and whether plasma and CSF levels of these markers correlated with the clinical and neuropathological features of severe and fatal malaria in Vietnamese adults. Methods Immunohistochemistry was performed for Ang-1, Ang-2 and Tie-2 on post-mortem brain tissue from fatal malaria cases and controls. Quantitative ELISA for plasma and cerebrospinal fluid levels of Ang-1, Ang-2 and Tie-2 was done to compare fatal cases with surviving patients from the same study. Results Immunohistochemistry revealed significant differences in expression in endothelial and parenchymal cells compared to controls. However there was no significant difference in expression of these markers on endothelial cells, astroglial cells or neurons between CM and non-cerebral malaria cases. Immunostaining of Ang-1, Ang-2 and Tie-2 was also not associated with Plasmodium falciparum-infected erythrocyte sequestration in the brain. However Ang-1 and Ang-2 expression in neurons was significantly correlated with the incidence of microscopic haemorrhages. Plasma levels of Ang-2 and Ang-2/Ang-1 ratio were associated with the number of severe malaria complications and were significant and independent predictors of metabolic acidosis and fatal outcome. Conclusions The independent prognostic significance of Ang-2 and the Ang-2/Ang-1 ratio in severe malaria was confirmed, although immunohistochemistry in fatal cases did not reveal increased expression on brain endothelium in cerebral versus non-cerebral cases. Activation of the Ang-Tie-2 pathway in severe malaria is therefore related to acidosis, number of severity criteria and outcome, but is not a specific event in the brain during cerebral malaria.
Collapse
|
14
|
Bevacizumab diminishes experimental autoimmune encephalomyelitis by inhibiting spinal cord angiogenesis and reducing peripheral T-cell responses. J Neuropathol Exp Neurol 2013; 71:983-99. [PMID: 23037326 DOI: 10.1097/nen.0b013e3182724831] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Angiogenesis in the animal model of multiple sclerosis experimental autoimmune encephalomyelitis (EAE) is regulated by vascular endothelial growth factor (VEGF) and angiopoietin-2. We determined whether VEGF blockade with the anti-VEGF monoclonal antibody bevacizumab could inhibit angiogenesis and affect peripheral pathogenic immune responses in EAE. Mice treated with bevacizumab from the time of onset of clinical signs showed reduced clinical and pathologic scores. Bevacizumab suppressed angiogenesis and reduced angiopoietin-2 expression at Day 21 but had no effect on VEGF upregulation at Day 14. Messenger RNA levels for the angiogenesis-related protein CD105 were increased at Day 14. Bevacizumab reduced vascular permeability in the spinal cord at Day 14 and Day 21. In peripheral lymph nodes, it induced retention of CD4-positive T cells and inhibited T-cell proliferation. It also reduced mononuclear cell infiltration into spinal cord and the relative proportion of T cells. Isolated lymphoid cells showed reduced secretion of the T-helper 17 (Th-17) cell cytokine interleukin 17 and the Th-1 cytokine interferon-γ. When bevacizumab was added to naive T cells or to antigen-stimulated T cells from mice with untreated EAE in vitro, it had no effect on proliferation or the secretion of interleukin 17 or interferon-γ. These data indicate that bevacizumab ameliorates vascular and T-cell responses during EAE, but its effects on T cells may be indirect, possibly by suppressing angiogenesis.
Collapse
|