1
|
Roditscheff A, Egli K, Vianin A, Lörtscher F, Reidla J, Wehrli F, Risch M, Risch L, Hobbie SN, Wohlwend N, Bodmer T. Evaluation of the Allplex NG & DR assay for molecular prediction of ciprofloxacin and azithromycin resistance in Neisseria gonorrhoeae. Eur J Clin Microbiol Infect Dis 2025; 44:923-932. [PMID: 39930296 PMCID: PMC11946940 DOI: 10.1007/s10096-025-05053-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 01/24/2025] [Indexed: 03/27/2025]
Abstract
PURPOSE Molecular methods to detect antimicrobial resistance in Neisseria gonorrhoeae (Ng) are increasingly needed worldwide to improve diagnostic tests and enable individualized patient treatments. The Allplex™ NG & DR Assay (NG & DR assay) was assessed for its ability to detect Ng and its antimicrobial resistance. The assay predicts ciprofloxacin resistance and susceptibility by targeting the molecular antimicrobial resistance (AMR) determinant gyrA S91F. The AMR determinants 23 S rRNA A2059G and C2611T were investigated to predict azithromycin wild-type and nonwild-type genotypes. METHODS After antimicrobial susceptibility testing, 153 Ng isolates were evaluated with the NG & DR assay. Furthermore, 394 clinal specimens, including 76 with corresponding antimicrobial susceptibility results, were analyzed simultaneously by the NG & DR assay and the in-house SYBR-Green assay. RESULTS The NG & DR assay predicted ciprofloxacin resistance and susceptibility with a sensitivity and specificity of 98.2% and 100.0%, respectively, and the results were consistent with those of the SYBR-Green assay for the detection of S91F. For the prediction of azithromycin nonwild-type and wild-type genotypes, the NG & DR assay demonstrated a sensitivity and specificity of 50.0% and 100.0%, respectively. CONCLUSION The NG & DR assay demonstrated promising results for the molecular prediction of ciprofloxacin resistance and susceptibility, expanding the potential diagnostic tool kit for individualized patient treatment. Furthermore, it might serve as a surveillance tool for azithromycin nonwild-type strains.
Collapse
Affiliation(s)
- Anna Roditscheff
- Laboratory Dr. Risch, Liebefeld, Bern, Switzerland.
- Faculty of Medical Science, Private University in the Principality of Liechtenstein (UFL), Triesen, Liechtenstein.
| | - Konrad Egli
- Laboratory Dr. Risch, Liebefeld, Bern, Switzerland
| | | | | | - Jürgen Reidla
- Laboratory Dr. Risch, Buchs, St. Gallen, Switzerland
| | - Faina Wehrli
- Laboratory Dr. Risch, Buchs, St. Gallen, Switzerland
| | - Martin Risch
- Laboratory Dr. Risch, Liebefeld, Bern, Switzerland
- Laboratory Dr. Risch, Buchs, St. Gallen, Switzerland
| | - Lorenz Risch
- Laboratory Dr. Risch, Liebefeld, Bern, Switzerland
- Laboratory Dr. Risch, Buchs, St. Gallen, Switzerland
- Faculty of Medical Science, Private University in the Principality of Liechtenstein (UFL), Triesen, Liechtenstein
| | - Sven N Hobbie
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| | | | | |
Collapse
|
2
|
Klausner JD, Bristow CC, Soge OO, Shahkolahi A, Waymer T, Bolan RK, Philip SS, Asbel LE, Taylor SN, Mena LA, Goldstein DA, Powell JA, Wierzbicki MR, Morris SR. Resistance-Guided Treatment of Gonorrhea: A Prospective Clinical Study. Clin Infect Dis 2021; 73:298-303. [PMID: 32766725 PMCID: PMC8282307 DOI: 10.1093/cid/ciaa596] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/14/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Novel treatment strategies to slow the continued emergence and spread of antimicrobial resistance in Neisseria gonorrhoeae are urgently needed. A molecular assay that predicts in vitro ciprofloxacin susceptibility is now available but has not been systematically studied in human infections. METHODS Using a genotypic polymerase chain reaction assay to determine the status of the N. gonorrhoeae gyrase subunit A serine 91 codon, we conducted a multisite prospective clinical study of the efficacy of a single oral dose of ciprofloxacin 500 mg in patients with culture-positive gonorrhea. Follow-up specimens for culture were collected to determine microbiological cure 5-10 days post-treatment. RESULTS Of the 106 subjects possessing culture-positive infections with wild-type gyrA serine N. gonorrhoeae genotype, the efficacy of single-dose oral ciprofloxacin treatment in the per-protocol population was 100% (95% 1-sided confidence interval, 97.5-100%). CONCLUSIONS Resistance-guided treatment of N. gonorrhoeae infections with single-dose oral ciprofloxacin was highly efficacious. The widespread introduction and scale-up of gyrA serine 91 genotyping in N. gonorrhoeae infections could have substantial medical and public health benefits in settings where the majority of gonococcal infections are ciprofloxacin susceptible. CLINICAL TRIALS REGISTRATION NCT02961751.
Collapse
Affiliation(s)
- Jeffrey D Klausner
- Departments of Medicine and Epidemiology, University of California, Los Angeles, Los Angeles, California, USA
| | - Claire C Bristow
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Olusegun O Soge
- Neisseria Reference Laboratory, University of Washington, Seattle, Washington, USA
| | | | - Toni Waymer
- Social Scientific Systems, Silver Spring, Maryland, USA
| | | | - Susan S Philip
- San Francisco Department of Public Health, San Francisco, California, USA
| | - Lenore E Asbel
- Philadelphia Department of Public Health, Philadelphia, Pennsylvania, USA
| | - Stephanie N Taylor
- Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Leandro A Mena
- University of Mississippi Medical Center, Oxford, Mississippi, USA
| | | | | | | | - Sheldon R Morris
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
3
|
Trick AY, Melendez JH, Chen FE, Chen L, Onzia A, Zawedde A, Nakku-Joloba E, Kyambadde P, Mande E, Matovu J, Atuheirwe M, Kwizera R, Gilliams EA, Hsieh YH, Gaydos CA, Manabe YC, Hamill MM, Wang TH. A portable magnetofluidic platform for detecting sexually transmitted infections and antimicrobial susceptibility. Sci Transl Med 2021; 13:13/593/eabf6356. [PMID: 33980576 DOI: 10.1126/scitranslmed.abf6356] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/23/2021] [Indexed: 12/12/2022]
Abstract
Effective treatment of sexually transmitted infections (STIs) is limited by diagnostics that cannot deliver results rapidly while the patient is still in the clinic. The gold standard methods for identification of STIs are nucleic acid amplification tests (NAATs), which are too expensive for widespread use and have lengthy turnaround times. To address the need for fast and affordable diagnostics, we have developed a portable, rapid, on-cartridge magnetofluidic purification and testing (PROMPT) polymerase chain reaction (PCR) test. We show that it can detect Neisseria gonorrhoeae, the pathogen causing gonorrhea, with simultaneous genotyping of the pathogen for resistance to the antimicrobial drug ciprofloxacin in <15 min. The duplex test was integrated into a low-cost thermoplastic cartridge with automated processing of penile swab samples from patients using magnetic beads. A compact instrument conducted DNA extraction, PCR, and analysis of results while relaying data to the user via a smartphone app. This platform was tested on penile swab samples from sexual health clinics in Baltimore, MD, USA (n = 66) and Kampala, Uganda (n = 151) with an overall sensitivity and specificity of 97.7% (95% CI, 94.7 to 100%) and 97.6% (95% CI, 94.1 to 100%), respectively, for N. gonorrhoeae detection and 100% concordance with culture results for ciprofloxacin resistance. This study paves the way for delivering accessible PCR diagnostics for rapidly detecting STIs at the point of care, helping to guide treatment decisions and combat the rise of antimicrobial resistant pathogens.
Collapse
Affiliation(s)
- Alexander Y Trick
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Johan H Melendez
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Fan-En Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Liben Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Annet Onzia
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Aidah Zawedde
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | | | - Peter Kyambadde
- AIDS Control Program, Division of Sexually Transmitted Infections, Ministry of Health, Kampala, Uganda
| | - Emmanuel Mande
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Joshua Matovu
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Maxine Atuheirwe
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Richard Kwizera
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Elizabeth A Gilliams
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Sexual Health Clinics, Baltimore City Health Department, Baltimore, MD 21205, USA
| | - Yu-Hsiang Hsieh
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Charlotte A Gaydos
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yukari C Manabe
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Matthew M Hamill
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Sexual Health Clinics, Baltimore City Health Department, Baltimore, MD 21205, USA
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA. .,Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.,Institute for NanoBiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
4
|
Chaudry AE, Klausner JD. A Narrative Review of Clinical Treatment Outcomes of Neisseria gonorrhoeae Infection With Ciprofloxacin by Minimum Inhibitory Concentration and Anatomic Site. Sex Transm Dis 2021; 48:385-392. [PMID: 33229966 DOI: 10.1097/olq.0000000000001334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Neisseria gonorrhoeae infections are becoming increasingly resistant to recommended treatments. Resistance-guided therapy may mitigate the continued emergence of resistance by enabling the use of previously recommended treatments like ciprofloxacin. To describe the effectiveness of ciprofloxacin to treat "susceptible" infections, we estimated the clinical efficacy of ciprofloxacin at various minimum inhibitory concentrations (MICs) and anatomic sites. METHODS We reviewed publicly available reports using the PubMed.gov database and search terms "gonorrhea/drug therapy"[Mesh] AND "ciprofloxacin". We included clinical treatment studies in which ciprofloxacin was administered alone to treat N. gonorrhoeae, specimens were collected for N. gonorrhoeae culture from each infection, the MIC was determined for ≥90% of infective strains, and individual treatment outcomes were clearly defined. We recorded those data, ciprofloxacin dose and infection site. We calculated the frequency of treatment success and 95% confidence intervals (CIs). RESULTS Twenty studies from 1985 to 2020 met our inclusion criteria. Ciprofloxacin at commonly used doses eliminated 99.2% (95% CI, 98.5%-99.6%; n = 1439) of gonococcal infections with MICs <0.125 μg/mL, 76.3% (95% CI, 59.8%-88.6%; n = 38) of infections with MICs from 0.125 to 0.5 μg/mL, and 30.1% (95% CI, 20.5%-41.2%; n = 83) of infections with MICs ≥1 μg/mL across anatomic sites. CONCLUSIONS Ciprofloxacin reliably eliminated gonococcal infections with MICs <0.125 μg/mL across anatomic sites. Molecular assays predicting MICs of ciprofloxacin <0.125 μg/mL of gonococcal strains can allow for reintroduction of ciprofloxacin in gonorrhea treatment. Clinicians can confidently use ciprofloxacin to treat susceptible gonococcal infections.
Collapse
Affiliation(s)
- Ameen E Chaudry
- From the David Geffen School of Medicine at University of California Los Angeles
| | | |
Collapse
|
5
|
Addressing Neisseria gonorrhoeae Treatment Resistance With the DNA Gyrase A Assay: An Economic Study, United States. Sex Transm Dis 2020; 47:111-113. [PMID: 31688726 DOI: 10.1097/olq.0000000000001090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Targeted antibiotics could delay emergence of resistant Neisseria gonorrhoeae. The DNA gyrase subunit A assay predicts susceptibility to ciprofloxacin. A model found that adding a $50 gyrase subunit A test for asymptomatic patients screened for N. gonorrhoeae resulted in cost neutrality. When ciprofloxacin susceptibility was high, a $114 test resulted in savings.
Collapse
|
6
|
Ebeyan S, Windsor M, Bordin A, Mhango L, Erskine S, Trembizki E, Mokany E, Tan LY, Whiley D. Evaluation of the ResistancePlus GC (beta) assay: a commercial diagnostic test for the direct detection of ciprofloxacin susceptibility or resistance in Neisseria gonorrhoeae. J Antimicrob Chemother 2020; 74:1820-1824. [PMID: 30897201 DOI: 10.1093/jac/dkz108] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 02/04/2019] [Accepted: 02/22/2019] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVES To evaluate the performance of the ResistancePlus GC (beta) assay for the simultaneous detection of Neisseria gonorrhoeae and gyrA S91 markers of resistance (S91F) and susceptibility (WT) to ciprofloxacin, from both clinical specimens and isolates. METHODS Performance was assessed on several sample banks, including N. gonorrhoeae isolates (n = 822), non-gonococcal isolates (n = 110), N. gonorrhoeae-positive clinical specimens (n = 402) and N. gonorrhoeae-negative specimens (n = 290). Results were compared with previous testing data, including S91 genotyping and phenotypic resistance profiles. RESULTS Overall, the assay demonstrated 100% sensitivity for N. gonorrhoeae detection in clinical isolates. For gyrA S91 mutation detection in clinical isolates, the assay showed 100% sensitivity/specificity compared with the genotype, and >99%/>97% sensitivity/specificity when compared with phenotype. For positive clinical specimens, the assay demonstrated >96% sensitivity for N. gonorrhoeae detection and 100% sensitivity/specificity for gyrA S91 mutation detection. The assay demonstrated >99% specificity for N. gonorrhoeae detection against non-gonococcal isolates and 100% specificity for negative clinical specimens. CONCLUSIONS The ResistancePlus GC (beta) assay is suitable for the detection of N. gonorrhoeae and gyrA markers associated with resistance/susceptibility to ciprofloxacin directly in clinical samples. This assay could be implemented for the individualized treatment of gonorrhoea infections as well as to enhance current antimicrobial resistance surveillance methods.
Collapse
Affiliation(s)
| | | | - Amanda Bordin
- Faculty of Medicine, Centre for Clinical Research, The University of Queensland, Herston, Queensland, Australia
| | - Lebogang Mhango
- Faculty of Medicine, Centre for Clinical Research, The University of Queensland, Herston, Queensland, Australia
| | | | - Ella Trembizki
- Faculty of Medicine, Centre for Clinical Research, The University of Queensland, Herston, Queensland, Australia
| | - Elisa Mokany
- SpeeDx Pty Ltd, Sydney, New South Wales, Australia
| | - Lit Yeen Tan
- SpeeDx Pty Ltd, Sydney, New South Wales, Australia
| | - David Whiley
- Faculty of Medicine, Centre for Clinical Research, The University of Queensland, Herston, Queensland, Australia.,Pathology Queensland Central Laboratory, Brisbane, Queensland, Australia
| | | |
Collapse
|
7
|
Abstract
INTRODUCTION Point-of-care (POC) tests for Neisseria gonorrhoeae (Ng) are urgently needed to control the gonorrhea epidemic, so patients can receive immediate diagnoses and treatment. While the advent of nucleic acid amplification tests (NAATs) has improved the accuracy of Ng identification, very few POC assays are able to provide results of such tests at the clinical visit. Additionally, antimicrobial resistance (AMR) presents a unique treatment challenge for Ng. AREAS COVERED This review notes that older POC tests have lower sensitivity for Ng, compared to the currently-available NAATs, and are not adequate for the current demand for high sensitivity. Promising newer assays, which can be used at the POC are covered. This review also includes data about clinicians' and patients' acceptability and expectations of POC tests for Ng, testing of extragenital specimens, pooling studies, as well as their impact clinically, and use in low-resource settings. EXPERT OPINION The ability to use POC tests to identify and immediately treat Ng infections at the patient encounter offers many benefits and opportunities. POC tests for Ng are currently available, but not widely used especially in low-resource settings. Further development of POC tests with AMR testing capacity is needed to help guide antimicrobial stewardship.
Collapse
Affiliation(s)
- Charlotte A Gaydos
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University , Baltimore, Maryland, USA
| | - Johan H Melendez
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University , Baltimore, Maryland, USA
| |
Collapse
|
8
|
Melendez JH, Hsieh YH, Barnes M, Hardick J, Gilliams EA, Gaydos CA. Can Ciprofloxacin be Used for Precision Treatment of Gonorrhea in Public STD Clinics? Assessment of Ciprofloxacin Susceptibility and an Opportunity for Point-of-Care Testing. Pathogens 2019; 8:pathogens8040189. [PMID: 31615000 PMCID: PMC6963864 DOI: 10.3390/pathogens8040189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/01/2019] [Accepted: 10/04/2019] [Indexed: 11/26/2022] Open
Abstract
Background: Given the lack of new antimicrobials to treat Neisseria gonorrhoeae (NG) infections, reusing previously recommended antimicrobials has been proposed as a strategy to control the spread of multi-drug-resistant NG. We assessed ciprofloxacin susceptibility in a large sample set of NG isolates and identified correlates associated with ciprofloxacin-resistant NG infections. Methods: NG isolates collected in Baltimore, Maryland between 2014 and 2016 were evaluated by Gyrase A (gyrA) PCR and E-test for susceptibility to ciprofloxacin. Clinical characteristics and demographics were evaluated by multivariate regression analysis to identify correlates of ciprofloxacin-resistant NG infections. Results: 510 NG isolates from predominately African American (96.5%), heterosexual (85.7%), and HIV-negative (92.5%) male subjects were included in the study. The overall percentage of isolates with mutant gyrA sequences, indicative of ciprofloxacin resistance, was 32.4%, and significantly increased from 24.7% in 2014 to 45.2% in 2016 (p < 0.001). Participants older than 35 years of age were 2.35 times more likely to have a gyrA mutant NG infection than younger participants (p < 0.001). Race, sexual orientation, symptomology, or co-infection the HIV or syphilis were not associated with a particular NG gyrA genotype. Conclusions: Resistance to ciprofloxacin in Baltimore is lower than other regions and indicates that in this environment, use of ciprofloxacin may be appropriate for targeted treatment provided utilization of enhanced surveillance tools. The targeted use of ciprofloxacin may be more beneficial for individuals under 35 years of age. Point-of-care tests for NG diagnosis and susceptibility testing are urgently needed to identify individuals who can be treated with this targeted approach.
Collapse
Affiliation(s)
- Johan H Melendez
- Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| | - Yu-Hsiang Hsieh
- Department of Emergency Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Mathilda Barnes
- Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| | - Justin Hardick
- Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| | | | - Charlotte A Gaydos
- Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
9
|
Bailey AL, Potter RF, Wallace MA, Johnson C, Dantas G, Burnham CA. Genotypic and Phenotypic Characterization of Antimicrobial Resistance in Neisseria gonorrhoeae: a Cross-Sectional Study of Isolates Recovered from Routine Urine Cultures in a High-Incidence Setting. mSphere 2019; 4:e00373-19. [PMID: 31341071 PMCID: PMC6656870 DOI: 10.1128/msphere.00373-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/05/2019] [Indexed: 12/30/2022] Open
Abstract
The objectives of this study were to perform genomic and phenotypic characterization of antimicrobial resistance in Neisseria gonorrhoeae isolates recovered from urine samples from patients in St. Louis, MO, USA. Sixty-four clinical isolates were banked over a 2-year period and subjected to antimicrobial susceptibility testing (AST) by Kirby-Bauer disk diffusion (penicillin, tetracycline, cefuroxime, and ciprofloxacin) and gradient diffusion (tetracycline, doxycycline, azithromycin, ceftriaxone, cefixime, ciprofloxacin, gemifloxacin, and delafloxacin). The medical records for the patients were evaluated to determine the demographics, location, and prescribed treatment regimen. Isolate draft genomes were assembled from Illumina shotgun sequencing data, and resistance determinants were identified by ResFinder and PointFinder. Of the 64 isolates, 97% were nonsusceptible to penicillin, with resistant isolates all containing the blaTEM-1b gene; 78 and 81% of isolates were nonsusceptible to tetracycline and doxycycline, respectively, with resistant isolates all containing the tet(M) gene. One isolate was classified as non-wild-type to azithromycin, and all isolates were susceptible to ceftriaxone; 89% of patients received this combination of drugs as first-line therapy. Six percent of isolates were resistant to ciprofloxacin, with most resistant isolates containing multiple gyrA and parC mutations. Correlation between disk and gradient diffusion AST devices was high for tetracycline and ciprofloxacin (R2 > 99% for both). The rates of N. gonorrhoeae antibiotic resistance in St. Louis are comparable to current rates reported nationally, except ciprofloxacin resistance was less common in our cohort. Strong associations between specific genetic markers and phenotypic susceptibility testing hold promise for the utility of genotype-based diagnostic assays to guide directed antibiotic therapy.IMPORTANCENeisseria gonorrhoeae causes the sexually transmitted infection gonorrhea, which is most commonly diagnosed using a DNA-based detection method that does not require growth and isolation of N. gonorrhoeae in the laboratory. This is problematic because the rates of antibiotic resistance in N. gonorrhoeae are increasing, but without isolating the organism in the clinical laboratory, antibiotic susceptibility testing cannot be performed on strains recovered from clinical specimens. We observed an increase in the frequency of urine cultures growing N. gonorrhoeae after we implemented a total laboratory automation system for culture in our clinical laboratory. Here, we report on the rates of resistance to multiple historically used, first-line, and potential future-use antibiotics for 64 N. gonorrhoeae isolates. We found that the rates of antibiotic resistance in our isolates were comparable to national rates. Additionally, resistance to specific antibiotics correlated closely with the presence of genetic resistance genes, suggesting that DNA-based tests could also be designed to guide antibiotic therapy for treating gonorrhea.
Collapse
Affiliation(s)
- Adam L Bailey
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Robert F Potter
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Meghan A Wallace
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Caitlin Johnson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gautam Dantas
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - C A Burnham
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
10
|
Antimicrobial Susceptibility of Neisseria gonorrhoeae Isolates in Baltimore, Maryland, 2016: The Importance of Sentinel Surveillance in the Era of Multi-Drug-Resistant Gonorrhea. Antibiotics (Basel) 2018; 7:antibiotics7030077. [PMID: 30126088 PMCID: PMC6165464 DOI: 10.3390/antibiotics7030077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/01/2018] [Accepted: 08/14/2018] [Indexed: 12/12/2022] Open
Abstract
The increasing rates of gonorrhea infections and the global emergence and spread of multi-drug-resistant Neisseria gonorrhoeae (NG) threaten the successful management of gonorrhea. In the era of nucleic acid amplification tests (NAATs), surveillance projects are urgently needed to monitor prevalence and trends in the antimicrobial susceptibility of NG. In this study, we retrospectively determined the susceptibility profile of NG isolates to previously and currently prescribed antimicrobials. NG isolates collected in Baltimore, Maryland between January and October 2016 were evaluated by the E-test method and/or molecular methods for susceptibility to ceftriaxone, azithromycin, ciprofloxacin, tetracycline, gentamicin, and penicillin. One-hundred and forty-three NG isolates from African-American males (98.6%), primarily heterosexual (88.8%), ranging in age from 15 to 69 years of age were included in the study. Ciprofloxacin resistance was observed in 44.1% of isolates. Plasmid-mediated resistance to penicillin and tetracycline resistance was detected in 22.4% and 10.1% of isolates, respectively. Three isolates (2.1%) displayed high-level resistance to azithromycin (minimum inhibitory concentration (MIC) > 256 μg/mL). Forty-three percent of isolates were resistant or had decreased susceptibility to three antimicrobials (ciprofloxacin, tetracycline, and penicillin). All isolates were susceptible to ceftriaxone and gentamicin. Overall, the epidemiology of antimicrobial resistant NG in Baltimore continues to evolve, and the emergence of azithromycin resistance in this population emphasizes the need for continued sentinel surveillance programs to monitor susceptibility trends and aid in treatment recommendations.
Collapse
|