1
|
Pant R, Pitchaimuthu K, Ossandón JP, Shareef I, Lingareddy S, Finsterbusch J, Kekunnaya R, Röder B. Altered visual cortex excitatory/inhibitory ratio following transient congenital visual deprivation in humans. eLife 2025; 13:RP98143. [PMID: 40377962 DOI: 10.7554/elife.98143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025] Open
Abstract
Non-human animal models have indicated that the ratio of excitation to inhibition (E/I) in neural circuits is experience dependent, and changes across development. Here, we assessed 3T Magnetic Resonance Spectroscopy (MRS) and electroencephalography (EEG) markers of cortical E/I ratio in 10 individuals who had been treated for dense bilateral congenital cataracts, after an average of 12 years of blindness, to test for dependence of the E/I ratio on early visual experience in humans. First, participants underwent MRS scanning at rest with their eyes open and eyes closed, to obtain visual cortex Gamma-Aminobutyric Acid (GABA+) concentration, Glutamate/Glutamine (Glx) concentration, and the concentration ratio of Glx/GABA+, as measures of inhibition, excitation, and E/I ratio, respectively. Subsequently, EEG was recorded to assess aperiodic activity (1-20 Hz) as a neurophysiological measure of the cortical E/I ratio, during rest with eyes open and eyes closed, and during flickering stimulation. Across conditions, congenital cataract-reversal individuals demonstrated a significantly lower visual cortex Glx/GABA+ ratio, and a higher intercept and steeper aperiodic slope at occipital electrodes, compared to age-matched sighted controls. In the congenital cataract-reversal group, a lower Glx/GABA+ ratio was associated with better visual acuity, and Glx concentration correlated positively with the aperiodic intercept in the conditions with visual input. We speculate that these findings result from an increased E/I ratio of the visual cortex as a consequence of congenital blindness, which might require commensurately increased inhibition in order to balance the additional excitation from restored visual input. The lower E/I ratio in congenital cataract-reversal individuals would thus be a consequence of homeostatic plasticity.
Collapse
Affiliation(s)
- Rashi Pant
- Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany
| | - Kabilan Pitchaimuthu
- Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany
- Department of Medicine and Optometry, Linnaeus University, Kalmar, Sweden
| | - José P Ossandón
- Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany
| | - Idris Shareef
- Child Sight Institute, Jasti V Ramanamma Children's Eye Care Centre, LV Prasad Eye Institute, Hyderabad, India
- Department of Psychology, University of Nevada, Reno, United States
| | | | - Jürgen Finsterbusch
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ramesh Kekunnaya
- Child Sight Institute, Jasti V Ramanamma Children's Eye Care Centre, LV Prasad Eye Institute, Hyderabad, India
| | - Brigitte Röder
- Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany
- Child Sight Institute, Jasti V Ramanamma Children's Eye Care Centre, LV Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
2
|
de Almeida VA, Geraci A, Brasil FL, Azevedo IG, da Silva LD, Simion F, Alves Pereira S. Effects of early visual deprivation on face detection in premature newborns. Perception 2025; 54:349-361. [PMID: 40165592 DOI: 10.1177/03010066251323778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
This study examined whether preterm infants possess a predisposition to follow face-like patterns and investigated the potential consequences of limited visual exposure to faces during the first weeks of life in preterm infants who experienced temporary visual deprivation due to phototherapy. The orienting responses (i.e., eyes and head movements toward two types of stimuli [face-like vs. scrambled]) of preterm infants were compared using a visual tracking paradigm. They were divided into two groups: preterm infants who underwent phototherapy for hyperbilirubinemia (experimental group) were compared with those who did not receive phototherapy and had no hyperbilirubinemia (control group). Both groups were assessed at 7 and 14 days of life (i.e., before and after phototherapy for the experimental group). Results demonstrated that both groups presented a preference for face-like stimuli at 7 days of life, which decreased in the experimental group at 14 days. This decrease may be due to the lack of visual experience with faces from wearing safety glasses during phototherapy. The findings supported theoretical views on how visual experiences mediate changes in face preferences.
Collapse
|
3
|
Yang XD, Lyu Y, Wan GM. Compliance with rigid gas-permeable contact lens use in children younger than 6 years in China: a 6-year retrospective study. Graefes Arch Clin Exp Ophthalmol 2025; 263:565-570. [PMID: 39259298 DOI: 10.1007/s00417-024-06637-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/09/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024] Open
Abstract
PURPOSE To explore the abandonment rate and factors influencing the use of rigid gas-permeable contact lenses (RGPCL) among children aged < 6 years. METHODS This retrospective case series study included 70 children aged < 6 years who were fitted with RGPCL for visual rehabilitation between January 2016 and December 2021. We collected data on indications, discontinuation rates, and reasons for discontinuation from medical records and via telephone calls and investigated the factors influencing contact lens abandonment. RESULTS The median age of the 70 participants was 5.0 (interquartile range: 4.0-5.9) years. Further, 36 (51.4%) children stopped wearing contact lenses; among them, 17 (47.2%) stopped within 3 months, and the median duration of lens wearing was 4.0 (interquartile range: 1.0-11.5) months. Additionally, there was a correlation between the duration of lens wearing and lens abandonment (r = -0.698, P < 0.001). A high parental education level (hazard ratio [HR] = 0.425; 95% confidence interval [CI] 0.198, 0.913; P = 0.028) was a protective factor against lens abandonment, while parental assessment indicating harder than expected practicality (HR = 4.062; 95% CI 1.204, 13.707; P = 0.024) was a risk factor for abandonment. CONCLUSION Children aged < 6 years are susceptible to early discontinuation of RGPCL use. Since parents perform daily lens manipulation, they are crucial to the continuity of lens use in these children. To improve RGPCL use continuity, communication and supervision should be strengthened before and after RGPCL fittings.
Collapse
Affiliation(s)
- Xiao-Di Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou, 450000, China.
| | - Yong Lyu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou, 450000, China
| | - Guang-Ming Wan
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou, 450000, China.
| |
Collapse
|
4
|
Fagundes RBB, Silva PYF, Barboni MTS, da Fonseca Filho GG, de Almeida VA, Azevedo IG, Pereira SA. Visual Acuity Thresholds in Preterm Newborns: An Experimental Study. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1049. [PMID: 39334582 PMCID: PMC11430260 DOI: 10.3390/children11091049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024]
Abstract
Purpose: Visual acuity plays a role in mediating neurological development in infants by enabling the differentiation of shapes and discriminating objects. Given the rapid structural development of the brain in the first days of life, this aspect is particularly significant for preterm infants, who typically experience this developmental phase while hospitalized in the neonatal intensive care unit (NICU). Therefore, this study aimed to assess visual acuity thresholds in preterm infants during hospitalization and to evaluate possible correlations between visual acuity and clinical parameters. Methods: A cross-sectional study was conducted in an NICU in Northeast Brazil. The visual acuity thresholds were tested using the Teller Acuity Cards II, comprised of 17 gray cards, with one 4 mm diameter peephole at the center and presented with about 35% reflectance. Preterm infants were positioned supine, at 30° elevation on the laps of their caregivers. The evaluator presented both sides of the cards and observed the eye fixation and reactions on both sides. Results: A total of 42 preterm infants with corrected gestational age between 30 to 36 weeks and 6 days were included. Visual acuity ranged from 0.23 to 0.64 cycle per degree. The mean visual acuity threshold was 0.32 cycles per degree for preterm infants at around 32 weeks of corrected gestational age. The visual acuity was not correlated with gestational age (p = 0.18), and neither were birth weight (p = 0.83) or duration of respiratory support (p = 0.98). However, days of phototherapy were inversely correlated with visual acuity (p = 0.04). Conclusions: Despite the challenges of hospitalization, it was possible to carry out a psychophysical test to assess visual acuity in preterm infants. The visual acuity showed no correlation with clinical parameters such as gestational age, birth weight, and duration of respiratory support. However, there was an inverse correlation between the number of days in phototherapy and visual acuity. Understanding the visual acuity levels in preterm infants during their NICU stay can contribute to tailoring interventions and care strategies that specifically address their visual developmental needs. This knowledge may guide healthcare professionals in optimizing the NICU environment to provide appropriate visual stimuli that support neurological development.
Collapse
Affiliation(s)
- Ruth Batista Bezerra Fagundes
- Physiotherapy Departament, Faculdade Ciências da Saúde do Trairi, Universidade Federal do Rio Grande do Norte (UFRN), Santa Cruz 59200-000, Brazil; (R.B.B.F.); (G.G.d.F.F.); (S.A.P.)
| | - Pedro Ykaro Fialho Silva
- Physiotherapy Department, Campus Universitário Lagoa Nova, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-900, Brazil; (P.Y.F.S.)
| | - Mirella Telles Salgueiro Barboni
- Department of Experimental Psychology, Universidade de São Paulo (USP), São Paulo 05508-030, Brazil;
- Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary
| | - Gentil Gomes da Fonseca Filho
- Physiotherapy Departament, Faculdade Ciências da Saúde do Trairi, Universidade Federal do Rio Grande do Norte (UFRN), Santa Cruz 59200-000, Brazil; (R.B.B.F.); (G.G.d.F.F.); (S.A.P.)
| | - Valeria Azevedo de Almeida
- Physiotherapy Department, Campus Universitário Lagoa Nova, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-900, Brazil; (P.Y.F.S.)
| | - Ingrid Guerra Azevedo
- Vicerrectoría Académica, Universidad Católica de Temuco, Rudecindo Ortega 02950, Campus San Juan Pablo II, Temuco 4780000, La Araucania, Chile
| | - Silvana Alves Pereira
- Physiotherapy Departament, Faculdade Ciências da Saúde do Trairi, Universidade Federal do Rio Grande do Norte (UFRN), Santa Cruz 59200-000, Brazil; (R.B.B.F.); (G.G.d.F.F.); (S.A.P.)
- Physiotherapy Department, Campus Universitário Lagoa Nova, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-900, Brazil; (P.Y.F.S.)
| |
Collapse
|
5
|
Lin D, Zhu Q, Zhang S, Zhou F, Zhao L, Wang Q, Chen W, Chen H, Lin X, Feng H, Zhong Q, Chen J, Lin Z, Li X, Xiao W, Zhou Y, Wang J, Li J, Chen W. Postoperative myopic shift and visual acuity rehabilitation in patients with bilateral congenital cataracts. Front Med (Lausanne) 2024; 11:1406287. [PMID: 38756946 PMCID: PMC11096542 DOI: 10.3389/fmed.2024.1406287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Background This study aimed to explore the postoperative myopic shift and its relationship to visual acuity rehabilitation in patients with bilateral congenital cataracts (CCs). Methods Bilateral CC patients who underwent cataract extraction and primary intraocular lens implantations before 6 years old were included and divided into five groups according to surgical ages (<2, 2-3, 3-4, 4-5, and 5-6 years). The postoperative myopic shift rates, spherical equivalents (SEs), and the best corrected visual acuity (BCVA) were measured and analyzed. Results A total of 1,137 refractive measurements from 234 patients were included, with a mean follow-up period of 34 months. The postoperative mean SEs at each follow-up in the five groups were linearly fitted with a mean R2 = 0.93 ± 0.03, which showed a downtrend of SE with age (linear regression). Among patients with a follow-up of 4 years, the mean postoperative myopic shift rate was 0.84, 0.81, 0.68, 0.24, and 0.28 diopters per year (D/y) in the five age groups (from young to old), respectively. The BCVA of those with a surgical age of <2 years at the 4-year visit was 0.26 (LogMAR), and the mean postoperative myopic shift rate was 0.84 D/y. For patients with a surgical age of 2-6 years, a poorer BCVA at the 4-year visit was found in those with higher postoperative myopic shift rates (r = 0.974, p = 0.026, Pearson's correlation test). Conclusion Performing cataract surgery for patients before 2 years old and decreasing the postoperative myopic shift rates for those with a surgical age of 2-6 years may benefit visual acuity rehabilitation.
Collapse
Affiliation(s)
- Duoru Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Qiaolin Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Shuyi Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Fengqi Zhou
- Mayo Clinic College of Medicine and Science, Rochester, MN, United States
- Department of Ophthalmology, Mayo Clinic Health System, Eau Claire, WI, United States
| | - Lanqin Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Qiwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Wan Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Hui Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Xiaoshan Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Huanling Feng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Qiuping Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Jingjing Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Zhuoling Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Xiaoyan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Wei Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Yue Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Jinghui Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Jing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Weirong Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| |
Collapse
|
6
|
Heitmann C, Zhan M, Linke M, Hölig C, Kekunnaya R, van Hoof R, Goebel R, Röder B. Early visual experience refines the retinotopic organization within and across visual cortical regions. Curr Biol 2023; 33:4950-4959.e4. [PMID: 37918397 DOI: 10.1016/j.cub.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 11/04/2023]
Abstract
Early visual areas are retinotopically organized in human and non-human primates. Population receptive field (pRF) size increases with eccentricity and from lower- to higher-level visual areas. Furthermore, the cortical magnification factor (CMF), a measure of how much cortical space is devoted to each degree of visual angle, is typically larger for foveal as opposed to peripheral regions of the visual field. Whether this fine-scale organization within and across visual areas depends on early visual experience has yet been unknown. Here, we employed 7T functional magnetic resonance imaging pRF mapping to assess the retinotopic organization of early visual regions (i.e., V1, V2, and V3) in eight sight recovery individuals with a history of congenital blindness until a maximum of 4 years of age. Compared with sighted controls, foveal pRF sizes in these individuals were larger, and pRF sizes did not show the typical increase with eccentricity and down the visual cortical processing stream (V1-V2-V3). Cortical magnification was overall diminished and decreased less from foveal to parafoveal visual field locations. Furthermore, cortical magnification correlated with visual acuity in sight recovery individuals. The results of this study suggest that early visual experience is essential for refining a presumably innate prototypical retinotopic organization in humans within and across visual areas, which seems to be crucial for acquiring full visual capabilities.
Collapse
Affiliation(s)
- Carolin Heitmann
- Biological Psychology and Neuropsychology Lab, Faculty of Psychology and Movement Sciences, Universität Hamburg, Von-Melle-Park 11, 20146 Hamburg, Germany.
| | - Minye Zhan
- U992 (Cognitive neuroimaging unit), NeuroSpin, INSERM-CEA, 91191 Gif sur Yvette, France
| | - Madita Linke
- Biological Psychology and Neuropsychology Lab, Faculty of Psychology and Movement Sciences, Universität Hamburg, Von-Melle-Park 11, 20146 Hamburg, Germany
| | - Cordula Hölig
- Biological Psychology and Neuropsychology Lab, Faculty of Psychology and Movement Sciences, Universität Hamburg, Von-Melle-Park 11, 20146 Hamburg, Germany
| | - Ramesh Kekunnaya
- U992 (Cognitive neuroimaging unit), NeuroSpin, INSERM-CEA, 91191 Gif sur Yvette, France
| | - Rick van Hoof
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands; Department of Development and Research, Brain Innovation B.V., Oxfordlaan 55, 6229 EV Maastricht, the Netherlands
| | - Brigitte Röder
- Biological Psychology and Neuropsychology Lab, Faculty of Psychology and Movement Sciences, Universität Hamburg, Von-Melle-Park 11, 20146 Hamburg, Germany; Child Sight Institute, Jasti V. Ramanamma Children's Eye Care Center, LV Prasad Eye Institute, Hyderabad, Telangana 500034, India.
| |
Collapse
|
7
|
Calanni JS, Dieguez HH, González Fleitas MF, Canepa E, Berardino B, Repetto EM, Villarreal A, Dorfman D, Rosenstein RE. Early life stress induces visual dysfunction and retinal structural alterations in adult mice. J Neurochem 2022; 165:362-378. [PMID: 36583234 DOI: 10.1111/jnc.15752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/05/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
Early life stress (ELS) is defined as a period of severe and/or chronic trauma, as well as environmental/social deprivation or neglect in the prenatal/early postnatal stage. Presently, the impact of ELS on the retina in the adult stage is unknown. The long-term consequences of ELS at retinal level were analyzed in an animal model of maternal separation with early weaning (MSEW), which mimics early life maternal neglect. For this purpose, mice were separated from the dams for 2 h at postnatal days (PNDs) 4-6, for 3 h at PNDs 7-9, for 4 h at PNDs 10-12, for 6 h at PNDs 13-16, and weaned at PND17. At the end of each separation period, mothers were subjected to movement restriction for 10 min. Control pups were left undisturbed from PND0, and weaned at PND21. Electroretinograms, visual evoked potentials, vision-guided behavioral tests, retinal anterograde transport, and retinal histopathology were examined at PNDs 60-80. MSEW induced long-lasting functional and histological effects at retinal level, including decreased retinal ganglion cell function and alterations in vision-guided behaviors, likely associated to decreased synaptophysin content, retina-superior colliculus communication deficit, increased microglial phagocytic activity, and retinal ganglion cell loss through a corticoid-dependent mechanism. A treatment with mifepristone, injected every 3 days between PNDs 4 and16, prevented functional and structural alterations induced by MSEW. These results suggest that retinal alterations might be included among the childhood adversity-induced threats to life quality, and that an early intervention with mifepristone avoided ELS-induced retinal disturbances.
Collapse
Affiliation(s)
- Juan S Calanni
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Hernán H Dieguez
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - María F González Fleitas
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Eduardo Canepa
- Neuroepigenetics Laboratory, Department of Biological Chemistry and Institute of Biological Chemistry, School of Science, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Bruno Berardino
- Neuroepigenetics Laboratory, Department of Biological Chemistry and Institute of Biological Chemistry, School of Science, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Esteban M Repetto
- Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Alejandro Villarreal
- Molecular Neuropathology Laboratory, School of Medicine, Cellular Biology and Neuroscience Institute, "Prof. E. De Robertis", University of Buenos Aires/CONICET, Argentina
| | - Damian Dorfman
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Ruth E Rosenstein
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| |
Collapse
|
8
|
Bosten JM, Coen-Cagli R, Franklin A, Solomon SG, Webster MA. Calibrating Vision: Concepts and Questions. Vision Res 2022; 201:108131. [PMID: 37139435 PMCID: PMC10151026 DOI: 10.1016/j.visres.2022.108131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The idea that visual coding and perception are shaped by experience and adjust to changes in the environment or the observer is universally recognized as a cornerstone of visual processing, yet the functions and processes mediating these calibrations remain in many ways poorly understood. In this article we review a number of facets and issues surrounding the general notion of calibration, with a focus on plasticity within the encoding and representational stages of visual processing. These include how many types of calibrations there are - and how we decide; how plasticity for encoding is intertwined with other principles of sensory coding; how it is instantiated at the level of the dynamic networks mediating vision; how it varies with development or between individuals; and the factors that may limit the form or degree of the adjustments. Our goal is to give a small glimpse of an enormous and fundamental dimension of vision, and to point to some of the unresolved questions in our understanding of how and why ongoing calibrations are a pervasive and essential element of vision.
Collapse
Affiliation(s)
| | - Ruben Coen-Cagli
- Department of Systems Computational Biology, and Dominick P. Purpura Department of Neuroscience, and Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx NY
| | | | - Samuel G Solomon
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, UK
| | | |
Collapse
|
9
|
Martolini C, Amadeo MB, Campus C, Cappagli G, Gori M. Effects of audio-motor training on spatial representations in long-term late blindness. Neuropsychologia 2022; 176:108391. [DOI: 10.1016/j.neuropsychologia.2022.108391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 08/16/2022] [Accepted: 10/01/2022] [Indexed: 11/15/2022]
|
10
|
May E, Arach P, Kishiki E, Geneau R, Maehara G, Sukhai M, Hamm LM. Learning to see after early and extended blindness: A scoping review. Front Psychol 2022; 13:954328. [PMID: 36389599 PMCID: PMC9648338 DOI: 10.3389/fpsyg.2022.954328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/26/2022] [Indexed: 10/03/2023] Open
Abstract
Purpose If an individual has been blind since birth due to a treatable eye condition, ocular treatment is urgent. Even a brief period of visual deprivation can alter the development of the visual system. The goal of our structured scoping review was to understand how we might better support children with delayed access to ocular treatment for blinding conditions. Method We searched MEDLINE, Embase and Global Health for peer-reviewed publications that described the impact of early (within the first year) and extended (lasting at least 2 years) bilateral visual deprivation. Results Of 551 reports independently screened by two authors, 42 studies met our inclusion criteria. Synthesizing extracted data revealed several trends. The data suggests persistent deficits in visual acuity, contrast sensitivity, global motion, and visual-motor integration, and suspected concerns for understanding complex objects and faces. There is evidence for resilience in color perception, understanding of simple shapes, discriminating between a face and non-face, and the perception of biological motion. There is currently insufficient data about specific (re)habilitation strategies to update low vision services, but there are several insights to guide future research in this domain. Conclusion This summary will help guide the research and services provision to help children learn to see after early and extended blindness.
Collapse
Affiliation(s)
- Eloise May
- School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| | | | | | - Robert Geneau
- Kilimanjaro Centre for Community Ophthalmology, Moshi, Tanzania
- Division of Ophthalmology, University of Cape Town, Cape Town, South Africa
| | - Goro Maehara
- Department of Human Sciences, Kanagawa University, Yokohama, Japan
| | - Mahadeo Sukhai
- Accessibility, Research and International Affairs, Canadian National Institute for the Blind, Toronto, ON, Canada
- Department of Ophthalmology, Faculty of Health Sciences, School of Medicine, Queen's University, Kingston, ON, Canada
| | - Lisa M. Hamm
- School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
Wen Z, Kang Y, Zhang Y, Yang H, Xie B. Alteration of Degree Centrality in Adolescents With Early Blindness. Front Hum Neurosci 2022; 16:935642. [PMID: 35832871 PMCID: PMC9271564 DOI: 10.3389/fnhum.2022.935642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/06/2022] [Indexed: 12/02/2022] Open
Abstract
Congenital nystagmus in infants and young children can lead to early blindness (EB). Previous neuroimaging studies have demonstrated that EB is accompanied by alterations in brain structure and function. However, the effects of visual impairment and critical developmental periods on brain functional connectivity at rest have been unclear. Here, we used the voxel-wise degree centrality (DC) method to explore the underlying functional network brain activity in adolescents with EB. Twenty-one patients with EBs and 21 sighted controls (SCs) underwent magnetic resonance imaging. Differences between the two groups were assessed using the DC method. Moreover, the support vector machine (SVM) method was used to differentiate patients with EB patients from the SCs according to DC values. Compared with the SCs, the patients with EB had increased DC values in the bilateral cerebellum_6, cerebellum vermis_4_5, bilateral supplementary motor areas (SMA), and left fusiform gyrus; the patients with EB had decreased DC values in the bilateral rectal gyrus and left medial orbital frontal gyrus. The SVM classification of the DC values achieved an overall accuracy of 70.45% and an area under the curve of 0.86 in distinguishing between the patients with EB and the SCs. Our study may reveal the neuromechanism of neuroplasticity in EB; the findings provide an imaging basis for future development of restorative visual therapies and sensory substitution devices, and future assessments of visual rehabilitation efficacy.
Collapse
Affiliation(s)
- Zhi Wen
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Kang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Zhang
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huaguang Yang
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Baojun Xie
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Baojun Xie,
| |
Collapse
|
12
|
Abstract
For four decades, investigations of the biological basis of critical periods in the developing mammalian visual cortex were dominated by study of the consequences of altered early visual experience in cats and nonhuman primates. The neural deficits thus revealed also provided insight into the origin and neural basis of human amblyopia that in turn motivated additional studies of humans with abnormal early visual input. Recent human studies point to deficits arising from alterations in all visual cortical areas and even in nonvisual cortical regions. As the new human data accumulated in parallel with a near-complete shift toward the use of rodent animal models for the study of neural mechanisms, it is now essential to review the human data and the earlier animal data obtained from cats and monkeys to infer general conclusions and to optimize future choice of the most appropriate animal model. Expected final online publication date for the Annual Review of Vision Science, Volume 8 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Donald E Mitchell
- Department of Psychology & Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada;
| | - Daphne Maurer
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada;
| |
Collapse
|
13
|
Galli J, Loi E, Molinaro A, Calza S, Franzoni A, Micheletti S, Rossi A, Semeraro F, Fazzi E, CP Collaborative Group. Age-Related Effects on the Spectrum of Cerebral Visual Impairment in Children With Cerebral Palsy. Front Hum Neurosci 2022; 16:750464. [PMID: 35308614 PMCID: PMC8924515 DOI: 10.3389/fnhum.2022.750464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
Background Cerebral Visual Impairment (CVI) is a very common finding in children affected by Cerebral Palsy (CP). In this paper we studied the characteristics of CVI of a large group of children with CP and CVI, describing their neurovisual profiles according to three different age subgroups (subgroup 1: infants 6 months–2 years; subgroup 2: pre-school age 3–5 years; subgroup 3: school age ≥ 6 years). Methods We enrolled 180 subjects (104 males, mean age 66 ± 42.6 months; range 6–192 months) with CP and CVI for the study. We carried out a demographic and clinical data collection, neurological examination, developmental or cognitive assessment, and a video-recorded visual function assessment including an evaluation of ophthalmological characteristics, oculomotor functions, and basic visual functions. In school-aged children, we also performed an evaluation of their cognitive-visual profiles. Results There were signs of CVI in all the three subgroups. Subgroup 1 (62 children) and subgroup 2 (50 children) were different for fixation (p = 0.02), visual acuity (p = 0.03) and contrast sensitivity (p < 0.01), being more frequently impaired in younger children. Comparing subgroup 2 with subgroup 3 (68 children), the older children presented more frequently myopia (p = 0.02) while the younger ones esotropia (p = 0.02) and alteration in smooth pursuit (p = 0.03) and saccades (p < 0.01). Furthermore, fixation, smooth pursuit, visual acuity, contrast sensitivity and visual filed (p < 0.01) were more frequently impaired in younger children (subgroup 1) compared to the older ones. Multiple correspondence analysis (MCA) confirmed the different neurovisual profiles according to age: younger children with CP showed more signs of CVI compared to the older ones. 34 out of 68 children belonging to subgroup 3 underwent the cognitive visual evaluation; an impairment of cognitive visual skills was detected in 21 subjects. Conclusion Younger children with CP showed more signs of CVI compared to the older ones, likely for the physiological maturation of visual system and mechanisms of neuroplasticity. In this direction, we suggest an early neurovisual evaluation to detect any weak visual functions.
Collapse
Affiliation(s)
- Jessica Galli
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Unit of Child Neurology and Psychiatry, ASST Spedali Civili of Brescia, Brescia, Italy
- *Correspondence: Jessica Galli,
| | - Erika Loi
- Unit of Child Neurology and Psychiatry, ASST Spedali Civili of Brescia, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Anna Molinaro
- Unit of Child Neurology and Psychiatry, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Stefano Calza
- BDbiomed, BODaI Lab, University of Brescia, Brescia, Italy
| | - Alessandra Franzoni
- Department of Neurological and Vision Sciences, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Serena Micheletti
- Unit of Child Neurology and Psychiatry, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Andrea Rossi
- Unit of Child Neurology and Psychiatry, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Francesco Semeraro
- Department of Neurological and Vision Sciences, ASST Spedali Civili of Brescia, Brescia, Italy
- Eye Clinic, University of Brescia, Brescia, Italy
| | - Elisa Fazzi
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Unit of Child Neurology and Psychiatry, ASST Spedali Civili of Brescia, Brescia, Italy
| | | |
Collapse
|
14
|
Xiang Y, Long E, Liu Z, Li X, Lin Z, Zhu Y, Chen C, Lin H. Study to establish visual acuity norms with Teller Acuity Cards II for infants from southern China. Eye (Lond) 2021; 35:2787-2792. [PMID: 33235349 PMCID: PMC8452650 DOI: 10.1038/s41433-020-01314-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 10/28/2020] [Accepted: 11/10/2020] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVES To establish the norms of binocular and monocular acuity and interocular acuity differences for southern Chinese infants and compare these norms with the results for northern Chinese infants. METHODS A prospective, comparative, and noninterventional study was conducted from January to August 2018. Teller Acuity Cards II were used to determine the binocular and monocular acuity of infants. The tolerance intervals and limits with a stated proportion and probability were used to evaluate the norms of binocular and monocular acuity and interocular acuity differences. An unpaired t-test was used to compare the obtained norms with the reported northern Chinese norms. RESULTS The tolerance intervals of binocular acuity (mean acuity of 3.73, 7.35, and 12.01 cpd, respectively, at 12, 24, and 36 months), monocular acuity (mean acuity of 2.88, 6.91, and 10.75 cpd, respectively, at 12, 24, and 36 months), and interocular acuity differences (mean difference of 0.92, 2.89, and 3.99 cpd, respectively, at 12, 24, and 36 months) were obtained, exhibiting an increasing trend with age. The binocular visual acuity norms of southern Chinese infants were significantly lower than those in northern China (4.37 vs. 6.9 cpd at 8 months and 7.35 vs. 26 cpd at 24 months) (P = 0.011). CONCLUSIONS Northern and southern Chinese infants exhibited distinct acuity norms and visual development patterns. The establishment of population-specific visual acuity norms is necessary for current populations of infants from different regions.
Collapse
Affiliation(s)
- Yifan Xiang
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Erping Long
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhenzhen Liu
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Li
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhuoling Lin
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yi Zhu
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China ,grid.26790.3a0000 0004 1936 8606Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, USA
| | - Chuan Chen
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China ,grid.26790.3a0000 0004 1936 8606Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, USA
| | - Haotian Lin
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China ,grid.12981.330000 0001 2360 039XCenter of Precision Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
15
|
Pitchaimuthu K, Dormal G, Sourav S, Shareef I, Rajendran SS, Ossandón JP, Kekunnaya R, Röder B. Steady state evoked potentials indicate changes in nonlinear neural mechanisms of vision in sight recovery individuals. Cortex 2021; 144:15-28. [PMID: 34562698 DOI: 10.1016/j.cortex.2021.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/15/2021] [Accepted: 08/05/2021] [Indexed: 11/25/2022]
Abstract
Humans with a transient phase of congenital pattern vision deprivation have been observed to feature prevailing deficits, particularly in higher order visual functions. However, the neural correlates of these prevalent visual impairments remain unclear. To probe different visual processing stages, we measured steady state visual evoked potentials (SSVEPs) generated by luminance flicker stimuli at 6.1 Hz, with superimposed horizontal periodic motion at 2.1 Hz or 2.4 Hz. SSVEP responses at the fundamental and second harmonic of luminance flicker frequency, and at their intermodulation frequencies with motion information, were analyzed. Three groups were tested: (1) 15 individuals who had suffered a lack of pattern vision from birth due to the presence of bilateral total congenital cataracts (CC group), which were surgically removed between 4 months and 22 years of age, (2) 13 individuals with reversed developmental i.e., later developing cataracts (DC group), and (3) normally sighted control participants (SC group; n = 13) matched in age and sex to the CC individuals. SSVEPs at the second harmonic frequency (i.e., 12.2 Hz) and at the intermodulation frequencies (8.2 Hz, and 8.5 Hz) were attenuated in the CC group. In contrast, fundamental frequency responses (i.e., at 6.1 Hz) were not significantly altered in the CC group compared to the control groups (SC and DC groups). Based on previous evidence on the role of striate vs. extrastriate generators of fundamental vs. second harmonics of SSVEPs, these results provide evidence for a stronger experience dependence of extrastriate than striate cortical processing, and furthermore, suggest a sensitive period for the development of putative nonlinear neural mechanisms hypothesized to mediate visual feature binding.
Collapse
Affiliation(s)
- Kabilan Pitchaimuthu
- Biological Psychology and Neuropsychology, University of Hamburg, Von-Melle-Park 11, 20146 Hamburg, Germany.
| | - Giulia Dormal
- Biological Psychology and Neuropsychology, University of Hamburg, Von-Melle-Park 11, 20146 Hamburg, Germany
| | - Suddha Sourav
- Biological Psychology and Neuropsychology, University of Hamburg, Von-Melle-Park 11, 20146 Hamburg, Germany
| | - Idris Shareef
- Biological Psychology and Neuropsychology, University of Hamburg, Von-Melle-Park 11, 20146 Hamburg, Germany; Child Sight Institute, Jasti V Ramanamma Children's Eye Care Center, L V Prasad Eye Institute, 500 034 Hyderabad, India
| | - Siddhart S Rajendran
- Biological Psychology and Neuropsychology, University of Hamburg, Von-Melle-Park 11, 20146 Hamburg, Germany; Child Sight Institute, Jasti V Ramanamma Children's Eye Care Center, L V Prasad Eye Institute, 500 034 Hyderabad, India
| | - José Pablo Ossandón
- Biological Psychology and Neuropsychology, University of Hamburg, Von-Melle-Park 11, 20146 Hamburg, Germany
| | - Ramesh Kekunnaya
- Child Sight Institute, Jasti V Ramanamma Children's Eye Care Center, L V Prasad Eye Institute, 500 034 Hyderabad, India
| | - Brigitte Röder
- Biological Psychology and Neuropsychology, University of Hamburg, Von-Melle-Park 11, 20146 Hamburg, Germany
| |
Collapse
|
16
|
Webber AL, Camuglia JE. A pragmatic approach to amblyopia diagnosis: evidence into practice. Clin Exp Optom 2021; 101:451-459. [DOI: 10.1111/cxo.12662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 01/05/2018] [Accepted: 01/09/2018] [Indexed: 01/15/2023] Open
Affiliation(s)
- Ann L Webber
- School of Optometry and Vision Science, and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia,
| | - Jayne E Camuglia
- Department of Ophthalmology, Children's Health Queensland Hospital and Health Service, Brisbane, Queensland, Australia,
- School of Medicine, The University of Queensland, Brisbane, Queensland, Australia,
| |
Collapse
|
17
|
Biological Action Identification Does Not Require Early Visual Input for Development. eNeuro 2020; 7:ENEURO.0534-19.2020. [PMID: 33060179 PMCID: PMC7598910 DOI: 10.1523/eneuro.0534-19.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 08/16/2020] [Accepted: 08/27/2020] [Indexed: 11/21/2022] Open
Abstract
Visual input during the first years of life is vital for the development of numerous visual functions. While normal development of global motion perception seems to require visual input during an early sensitive period, the detection of biological motion (BM) does not seem to do so. A more complex form of BM processing is the identification of human actions. Here, we tested whether identification rather than detection of BM is experience dependent. A group of human participants who had been treated for congenital cataracts (CC; of up to 18 years in duration, CC group) had to identify ten actions performed by human line figures. In addition, they performed a coherent motion (CM) detection task, which required identifying the direction of CM amid the movement of random dots. As controls, developmental cataract (DC) reversal individuals (DC group) who had undergone the same surgical treatment as CC group were included. Moreover, normally sighted controls were tested both with vision blurred to match the visual acuity (VA) of CC individuals [vision matched (VM) group] and with full sight [sighted control (SC) group]. The CC group identified biological actions with an extraordinary high accuracy (on average ∼85% correct) and was indistinguishable from the VM control group. By contrast, CM processing impairments of the CC group persisted even after controlling for VA. These results in the same individuals demonstrate an impressive resilience of BM processing to aberrant early visual experience and at the same time a sensitive period for the development of CM processing.
Collapse
|
18
|
Long E, Chen J, Wu X, Liu Z, Wang L, Jiang J, Li W, Zhu Y, Chen C, Lin Z, Li J, Li X, Chen H, Guo C, Zhao L, Nie D, Liu X, Liu X, Dong Z, Yun B, Wei W, Xu F, Lv J, Li M, Ling S, Zhong L, Chen J, Zheng Q, Zhang L, Xiang Y, Tan G, Huang K, Xiang Y, Lin D, Zhang X, Dongye M, Wang D, Chen W, Liu X, Lin H, Liu Y. Artificial intelligence manages congenital cataract with individualized prediction and telehealth computing. NPJ Digit Med 2020; 3:112. [PMID: 32904507 PMCID: PMC7455726 DOI: 10.1038/s41746-020-00319-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 08/12/2020] [Indexed: 12/20/2022] Open
Abstract
A challenge of chronic diseases that remains to be solved is how to liberate patients and medical resources from the burdens of long-term monitoring and periodic visits. Precise management based on artificial intelligence (AI) holds great promise; however, a clinical application that fully integrates prediction and telehealth computing has not been achieved, and further efforts are required to validate its real-world benefits. Taking congenital cataract as a representative, we used Bayesian and deep-learning algorithms to create CC-Guardian, an AI agent that incorporates individualized prediction and scheduling, and intelligent telehealth follow-up computing. Our agent exhibits high sensitivity and specificity in both internal and multi-resource validation. We integrate our agent with a web-based smartphone app and prototype a prediction-telehealth cloud platform to support our intelligent follow-up system. We then conduct a retrospective self-controlled test validating that our system not only accurately detects and addresses complications at earlier stages, but also reduces the socioeconomic burdens compared to conventional methods. This study represents a pioneering step in applying AI to achieve real medical benefits and demonstrates a novel strategy for the effective management of chronic diseases.
Collapse
Affiliation(s)
- Erping Long
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jingjing Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaohang Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhenzhen Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Liming Wang
- School of Computer Science and Technology, Xidian University, Xi’an, China
- School of Software, Xidian University, Xi’an, China
| | - Jiewei Jiang
- School of Electronics Engineering, Xi’an University of Posts and Telecommunications, Xi’an, China
| | - Wangting Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yi Zhu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida USA
| | - Chuan Chen
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida USA
| | - Zhuoling Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Hui Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chong Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lanqin Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Daoyao Nie
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Shenzhen University School of Medicine, Shenzhen, China
| | - Xinhua Liu
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Shenzhen University School of Medicine, Shenzhen, China
| | - Xin Liu
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Shenzhen University School of Medicine, Shenzhen, China
| | - Zhe Dong
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Bo Yun
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wenbin Wei
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Fan Xu
- Department of Ophthalmology, People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi China
| | - Jian Lv
- Department of Ophthalmology, People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi China
| | - Min Li
- Department of Ophthalmology, People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi China
| | - Shiqi Ling
- Department of Ophthalmology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Lei Zhong
- Department of Ophthalmology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Junhong Chen
- Puning People’s Hospital, Southern Medical University, Jieyang, China
| | - Qishan Zheng
- Puning People’s Hospital, Southern Medical University, Jieyang, China
| | - Li Zhang
- Department of Ophthalmology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Xiang
- Department of Ophthalmology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Tan
- The First Affiliated Hospital of University of South China, Hengyang, China
| | - Kai Huang
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou, 510060 China
| | - Yifan Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Duoru Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xulin Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Meimei Dongye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Dongni Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Weirong Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiyang Liu
- School of Computer Science and Technology, Xidian University, Xi’an, China
- School of Software, Xidian University, Xi’an, China
| | - Haotian Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
19
|
Park WJ, Fine I. New insights into cortical development and plasticity: from molecules to behavior. CURRENT OPINION IN PHYSIOLOGY 2020; 16:50-60. [PMID: 32923755 PMCID: PMC7480792 DOI: 10.1016/j.cophys.2020.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The human brain contains 100 billion neurons, and each neuron can have up to 200,000 connections to other neurons. Recent advancements in neuroscience-ranging from molecular studies in animal models to behavioral studies in humans-have given us deeper insights into the development of this extraordinarily intricate system. Studies show a complex interaction between biological predispositions and environment; while the gross neuroanatomy and low-level functions develop early prior to receiving environmental inputs, functional selectivity is shaped through experience, governed by the maturation of local excitatory and inhibitory circuits and synaptic plasticity during sensitive periods early in development. Plasticity does not end with the closing of the early sensitive period - the environment continues to play an important role in learning throughout the lifespan. Recent work delineating the cascade of events that initiates, controls and ends sensitive periods, offers new hope of eventually being able to remediate various clinical conditions by selectively reopening plasticity.
Collapse
Affiliation(s)
- Woon Ju Park
- Department of Psychology, University of Washington, Seattle, WA 98195
| | - Ione Fine
- Department of Psychology, University of Washington, Seattle, WA 98195
| |
Collapse
|
20
|
Colombo J, Gustafson KM, Carlson SE. Critical and Sensitive Periods in Development and Nutrition. ANNALS OF NUTRITION AND METABOLISM 2020; 75 Suppl 1:34-42. [PMID: 32554960 DOI: 10.1159/000508053] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/16/2020] [Indexed: 12/14/2022]
Abstract
Critical or sensitive periods in the life of an organism during which certain experiences or conditions may exert disproportionate influence (either for harm or benefit) on long-term developmental outcomes have been the subject of investigation for over a century. This chapter reviews research in the context of the development of social preferences and sensory systems, with a summary of the criteria for defining such a period and the evidence necessary to establish its existence. The notion of nutritional programming, central to the Barker/Developmental Origins hypotheses of health and disease, represents a variant of the critical/sensitive period concept. It is implicit in these hypotheses that the fetal period is a time during which metabolic and physiological systems are malleable and thus susceptible to either insult or enhancement by nutrient intake. Evidence for critical/sensitive periods or nutritional programming requires a systematic manipulation of the age at which nutritional conditions or supplements are implemented. While common in research using animal models, the approach is difficult to establish in epidemiological studies and virtually nonexistent in human clinical trials. Future work seeking to establish definitive evidence for critical/sensitive periods or programming may be advanced by harmonized outcome measures in experimental trials across which the timing, duration, and dose of nutrients is varied.
Collapse
Affiliation(s)
- John Colombo
- Department of Psychology and Schiefelbusch Institute for Life Span Studies, University of Kansas, Lawrence, Kansas, USA,
| | - Kathleen M Gustafson
- Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Susan E Carlson
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
21
|
Abstract
The developing visual brain is an integrated system, linking analysis of the visual input to visuomotor control, visual cognition, and attention. Major points in human visual development are the presence of rudimentary pathways present at birth which can control fixation behavior, with subsequent development of specific functions. These functions include the emergence of cortical selectivity; the integration of local signals to provide global representations of motion, shape, and space; the development of visuomotor modules for eye movements, manual reaching, and locomotion; and the development of distinct attentional systems. Measures of these processes in infancy and early childhood can provide indicators of broader brain development in the at-risk child. A key system in development is the dorsal cortical stream. Measures of global motion processing, visuomotor actions, and attention suggest that this system is particularly vulnerable in children with a wide range of neurodevelopmental disorders. Early disorders of the eye (strabismus, cataract) reveal the level of plasticity in the developing visual system and the ways in which early experience can affect the course of functional development.
Collapse
Affiliation(s)
- Janette Atkinson
- Faculty of Brain Sciences, University College London, London, United Kingdom.
| | - Oliver Braddick
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
22
|
Abstract
Anisometropic amblyopia is unilateral by definition and current treatment recommendations reflect that characteristic. However, recent research suggests a binocular component that deserves consideration. The aim of this review is to consider the levels of anisometropia deemed amblyogenic, and the cortical changes that occur in the presence of anisometropic amblyopia. Particular attention is given to cortical changes that impact the binocularity of these individuals. Knowledge of binocular deficits in anisometropic amblyopia has implications for current, accepted treatment regimens which are monocular in nature. Therefore, the integrity of binocular function in anisometropic amblyopia and its impact on the visual outcome will be evaluated. Given the rise in binocular treatments under clinical trial for amblyopia, this review also aims to evaluate the evidence of potentially enhanced benefits to anisometropic amblyopes from proposed new binocular therapies.
Collapse
Affiliation(s)
| | - Charlotte J Codina
- Academic Unit of Ophthalmology and Orthoptics, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK
| |
Collapse
|
23
|
How Early Experience Shapes Human Development: The Case of Psychosocial Deprivation. Neural Plast 2019; 2019:1676285. [PMID: 30774652 PMCID: PMC6350537 DOI: 10.1155/2019/1676285] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/26/2018] [Accepted: 10/01/2018] [Indexed: 02/02/2023] Open
Abstract
Experience plays an essential role in building brain architecture after birth. The question we address in this paper is what happens to brain and behavior when a young child is deprived of key experiences during critical periods of brain development. We focus in particular on the consequences of institutional rearing, with implication for the tens of millions of children around the world who from an early age experience profound psychosocial deprivation. Evidence is clear that deprivation can lead to a host of both short- and long-term consequences, including perturbations in brain structure and function, changes at cellular and molecular levels, and a plethora of psychological and behavioral impairments.
Collapse
|
24
|
Amadeo MB, Campus C, Gori M. Impact of years of blindness on neural circuits underlying auditory spatial representation. Neuroimage 2019; 191:140-149. [PMID: 30710679 DOI: 10.1016/j.neuroimage.2019.01.073] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/10/2019] [Accepted: 01/29/2019] [Indexed: 11/30/2022] Open
Abstract
Early visual deprivation impacts negatively on spatial bisection abilities. Recently, an early (50-90 ms) ERP response, selective for sound position in space, has been observed in the visual cortex of sighted individuals during the spatial but not the temporal bisection task. Here, we clarify the role of vision on spatial bisection abilities and neural correlates by studying late blind individuals. Results highlight that a shorter period of blindness is linked to a stronger contralateral activation in the visual cortex and a better performance during the spatial bisection task. Contrarily, not lateralized visual activation and lower performance are observed in individuals with a longer period of blindness. To conclude, the amount of time spent without vision may gradually impact on neural circuits underlying the construction of spatial representations in late blind participants. These findings suggest a key relationship between visual deprivation and auditory spatial abilities in humans.
Collapse
Affiliation(s)
- Maria Bianca Amadeo
- Unit for Visually Impaired People (U-VIP), Fondazione Istituto Italiano di Tecnologia, Via E. Melen, 83 - 16152, Genova, Italy; Università degli studi di Genova, Department of Informatics, Bioengineering, Robotics and Systems Engineering, Via all'Opera Pia, 13 - 16145, Genova, Italy
| | - Claudio Campus
- Unit for Visually Impaired People (U-VIP), Fondazione Istituto Italiano di Tecnologia, Via E. Melen, 83 - 16152, Genova, Italy
| | - Monica Gori
- Unit for Visually Impaired People (U-VIP), Fondazione Istituto Italiano di Tecnologia, Via E. Melen, 83 - 16152, Genova, Italy.
| |
Collapse
|
25
|
Abstract
Children who are treated for congenital cataracts later exhibit impairments in configural face analysis. This has been explained in terms of a critical period for the acquisition of normal face processing. Here, we consider a more parsimonious account according to which deficits in configural analysis result from the abnormally high initial retinal acuity that children treated for cataracts experience, relative to typical newborns. According to this proposal, the initial period of low retinal acuity characteristic of normal visual development induces extended spatial processing in the cortex that is important for configural face judgments. As a computational test of this hypothesis, we examined the effects of training with high-resolution or blurred images, and staged combinations, on the receptive fields and performance of a convolutional neural network. The results show that commencing training with blurred images creates receptive fields that integrate information across larger image areas and leads to improved performance and better generalization across a range of resolutions. These findings offer an explanation for the observed face recognition impairments after late treatment of congenital blindness, suggest an adaptive function for the acuity trajectory in normal development, and provide a scheme for improving the performance of computational face recognition systems.
Collapse
|
26
|
Abstract
The primary visual cortex (V1) is the first cortical area that processes visual information. Normal development of V1 depends on binocular vision during the critical period, and age-related losses of vision are linked with neurobiological changes in V1. Animal studies have provided important details about the neurobiological mechanisms in V1 that support normal vision or are changed by visual diseases. There is very little information, however, about those neurobiological mechanisms in human V1. That lack of information has hampered the translation of biologically inspired treatments from preclinical models to effective clinical treatments. We have studied human V1 to characterize the expression of neurobiological mechanisms that regulate visual perception and neuroplasticity. We have identified five stages of development for human V1 that start in infancy and continue across the life span. Here, we describe these stages, compare them with visual and anatomical milestones, and discuss implications for translating treatments for visual disorders that depend on neuroplasticity of V1 function.
Collapse
Affiliation(s)
- Caitlin R Siu
- McMaster Integrative Neuroscience Discovery and Study (MiNDS) Program, McMaster University, Hamilton, ON, Canada
| | - Kathryn M Murphy
- McMaster Integrative Neuroscience Discovery and Study (MiNDS) Program, McMaster University, Hamilton, ON, Canada.,Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
27
|
Layer-specific Developmental Changes in Excitation and Inhibition in Rat Primary Visual Cortex. eNeuro 2017; 4:eN-CFN-0402-17. [PMID: 29379869 PMCID: PMC5779119 DOI: 10.1523/eneuro.0402-17.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 01/08/2023] Open
Abstract
Cortical circuits are profoundly shaped by experience during postnatal development. The consequences of altered vision during the critical period for ocular dominance plasticity have been extensively studied in rodent primary visual cortex (V1). However, little is known about how eye opening, a naturally occurring event, influences the maturation of cortical microcircuits. Here we used a combination of slice electrophysiology and immunohistochemistry in rat V1 to ask whether manipulating the time of eye opening for 3 or 7 d affects cortical excitatory and inhibitory synaptic transmission onto excitatory neurons uniformly across layers or induces laminar-specific effects. We report that binocular delayed eye opening for 3 d showed similar reductions of excitatory and inhibitory synaptic transmission in layers 2/3, 4, and 5. Synaptic transmission recovered to age-matched control levels if the delay was prolonged to 7 d, suggesting that these changes were dependent on binocular delay duration. Conversely, laminar-specific and long-lasting effects were observed if eye opening was delayed unilaterally. Our data indicate that pyramidal neurons located in different cortical laminae have distinct sensitivity to altered sensory drive; our data also strongly suggest that experience plays a fundamental role in not only the maturation of synaptic transmission, but also its coordination across cortical layers.
Collapse
|
28
|
Dynamic response to initial stage blindness in visual system development. Clin Sci (Lond) 2017; 131:1515-1527. [DOI: 10.1042/cs20170234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/09/2017] [Accepted: 05/24/2017] [Indexed: 11/17/2022]
Abstract
Sensitive periods and experience-dependent plasticity have become core issues in visual system development. Converging evidence indicates that visual experience is an indispensable factor in establishing mature visual system circuitry during sensitive periods and the visual system exhibits substantial plasticity while facing deprivation. The mechanisms that underlie the environmental regulation of visual system development and plasticity are of great interest but need further exploration. Here, we investigated a unique sample of human infants who experienced initial stage blindness (beginning at birth and lasting for 2–8 months) before the removal of bilateral cataracts. Retinal thickness (RT), axial length (AL), refractive status, visual grating acuity and genetic integrity were recorded during the preoperative period or at surgery and then during follow-up. The results showed that the development of the retina is malleable and associated with external environmental influences. Our work supported that the retina might play critical roles in the development of the experience-dependent visual system and its malleability might partly contribute to the sensitive period plasticity.
Collapse
|
29
|
Azañón E, Camacho K, Morales M, Longo MR. The Sensitive Period for Tactile Remapping Does Not Include Early Infancy. Child Dev 2017; 89:1394-1404. [PMID: 28452406 DOI: 10.1111/cdev.12813] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Visual input during development seems crucial in tactile spatial perception, given that late, but not congenitally, blind people are impaired when skin-based and tactile external representations are in conflict (when crossing the limbs). To test whether there is a sensitive period during which visual input is necessary, 14 children (age = 7.95) and a teenager (LM; age = 17.38) deprived of early vision by cataracts, and whose sight was restored during the first 5 months and at age 7, respectively, were tested. Tactile localization with arms crossed and uncrossed was measured. Children showed a crossing effect indistinguishable from a control group (Ns = 28, age = 8.24), whereas LM showed no crossing effect (Ns controls = 14, age = 20.78). This demonstrates a sensitive period which, critically, does not include early infancy.
Collapse
|
30
|
|
31
|
Segalowitz SJ, Sternin A, Lewis TL, Dywan J, Maurer D. Electrophysiological evidence of altered visual processing in adults who experienced visual deprivation during infancy. Dev Psychobiol 2017; 59:375-389. [PMID: 28181225 DOI: 10.1002/dev.21502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 12/23/2016] [Accepted: 01/01/2017] [Indexed: 11/11/2022]
Abstract
We examined the role of early visual input in visual system development by testing adults who had been born with dense bilateral cataracts that blocked all patterned visual input during infancy until the cataractous lenses were removed surgically and the eyes fitted with compensatory contact lenses. Patients viewed checkerboards and textures to explore early processing regions (V1, V2), Glass patterns to examine global form processing (V4), and moving stimuli to explore global motion processing (V5). Patients' ERPs differed from those of controls in that (1) the V1 component was much smaller for all but the simplest stimuli and (2) extrastriate components did not differentiate amongst texture stimuli, Glass patterns, or motion stimuli. The results indicate that early visual deprivation contributes to permanent abnormalities at early and mid levels of visual processing, consistent with enduring behavioral deficits in the ability to process complex textures, global form, and global motion.
Collapse
Affiliation(s)
| | | | - Terri L Lewis
- McMaster University, Hamilton, Canada.,The Hospital for Sick Children, Toronto, Canada
| | - Jane Dywan
- Brock University, St. Catharines, Ontario, Canada
| | - Daphne Maurer
- McMaster University, Hamilton, Canada.,The Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
32
|
Early Binocular Input Is Critical for Development of Audiovisual but Not Visuotactile Simultaneity Perception. Curr Biol 2017; 27:583-589. [PMID: 28190731 DOI: 10.1016/j.cub.2017.01.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/23/2016] [Accepted: 01/05/2017] [Indexed: 11/20/2022]
Abstract
Temporal simultaneity provides an essential cue for integrating multisensory signals into a unified perception. Early visual deprivation, in both animals and humans, leads to abnormal neural responses to audiovisual signals in subcortical and cortical areas [1-5]. Behavioral deficits in integrating complex audiovisual stimuli in humans are also observed [6, 7]. It remains unclear whether early visual deprivation affects visuotactile perception similarly to audiovisual perception and whether the consequences for either pairing differ after monocular versus binocular deprivation [8-11]. Here, we evaluated the impact of early visual deprivation on the perception of simultaneity for audiovisual and visuotactile stimuli in humans. We tested patients born with dense cataracts in one or both eyes that blocked all patterned visual input until the cataractous lenses were removed and the affected eyes fitted with compensatory contact lenses (mean duration of deprivation = 4.4 months; range = 0.3-28.8 months). Both monocularly and binocularly deprived patients demonstrated lower precision in judging audiovisual simultaneity. However, qualitatively different outcomes were observed for the two patient groups: the performance of monocularly deprived patients matched that of young children at immature stages, whereas that of binocularly deprived patients did not match any stage in typical development. Surprisingly, patients performed normally in judging visuotactile simultaneity after either monocular or binocular deprivation. Therefore, early binocular input is necessary to develop normal neural substrates for simultaneity perception of visual and auditory events but not visual and tactile events.
Collapse
|
33
|
van den Boomen C, Peters JC. Spatial Frequency Discrimination: Effects of Age, Reward, and Practice. PLoS One 2017; 12:e0169800. [PMID: 28135272 PMCID: PMC5279743 DOI: 10.1371/journal.pone.0169800] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 12/21/2016] [Indexed: 12/21/2022] Open
Abstract
Social interaction starts with perception of the world around you. This study investigated two fundamental issues regarding the development of discrimination of higher spatial frequencies, which are important building blocks of perception. Firstly, it mapped the typical developmental trajectory of higher spatial frequency discrimination. Secondly, it developed and validated a novel design that could be applied to improve atypically developed vision. Specifically, this study examined the effect of age and reward on task performance, practice effects, and motivation (i.e., number of trials completed) in a higher spatial frequency (reference frequency: 6 cycles per degree) discrimination task. We measured discrimination thresholds in children aged between 7 to 12 years and adults (N = 135). Reward was manipulated by presenting either positive reinforcement or punishment. Results showed a decrease in discrimination thresholds with age, thus revealing that higher spatial frequency discrimination continues to develop after 12 years of age. This development continues longer than previously shown for discrimination of lower spatial frequencies. Moreover, thresholds decreased during the run, indicating that discrimination abilities improved. Reward did not affect performance or improvement. However, in an additional group of 5-6 year-olds (N = 28) punishments resulted in the completion of fewer trials compared to reinforcements. In both reward conditions children aged 5-6 years completed only a fourth or half of the run (64 to 128 out of 254 trials) and were not motivated to continue. The design thus needs further adaptation before it can be applied to this age group. Children aged 7-12 years and adults completed the run, suggesting that the design is successful and motivating for children aged 7-12 years. This study thus presents developmental differences in higher spatial frequency discrimination thresholds. Furthermore, it presents a design that can be used in future developmental studies that require multiple stimulus presentations such as visual perceptual learning.
Collapse
Affiliation(s)
- Carlijn van den Boomen
- Dept. of Developmental Psychology, Utrecht University, Heidelberglaan 1, Room H0.66, CS, Utrecht, The Netherlands
| | - Judith Carolien Peters
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, MD Maastricht, The Netherlands
- Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| |
Collapse
|
34
|
Stern-Ellran K, Zilcha-Mano S, Sebba R, Levit Binnun N. Disruptive Effects of Colorful vs. Non-colorful Play Area on Structured Play-A Pilot Study with Preschoolers. Front Psychol 2016; 7:1661. [PMID: 27840614 PMCID: PMC5083879 DOI: 10.3389/fpsyg.2016.01661] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/11/2016] [Indexed: 11/13/2022] Open
Abstract
To contribute to young children's development, sensory enrichment is often provided via colorful play areas. However, little is known about the effects of colorful environments on children while they engage in age-appropriate tasks and games. Studies in adults suggest that aspects of color can distract attention and impair performance, and children are known to have less developed attentional and executive abilities than adults. Preliminary studies conducted in children aged 5-8 suggest that the colorfulness of both distal (e.g., wall decorations) and proximal (e.g., the surface of the desktop) environments can have a disruptive effect on children's performance. The present research seeks to extend the previous studies to an even younger age group and focus on proximal colorfulness. With a sample of 15 pre-schoolers (3-4 years old) we examined whether a colorful play surface compared to a non-colorful (white) play surface would affect engagement in developmentally appropriate structured play. Our pilot findings suggest that a colorful play surface interfered with preschoolers' structured play, inducing more behaviors indicating disruption in task execution compared with a non-colorful play surface. The implications of the current study for practice and further research are discussed.
Collapse
Affiliation(s)
- Keren Stern-Ellran
- Faculty of Architecture and Town Planning, Technion - Israel Institute of Technology Haifa, Israel
| | | | - Rachel Sebba
- Faculty of Architecture and Town Planning, Technion - Israel Institute of Technology Haifa, Israel
| | - Nava Levit Binnun
- Baruch Ivcher School of Psychology, Sagol Center for Brain and Mind, Interdisciplinary Center Herzliya Herzliya, Israel
| |
Collapse
|
35
|
|
36
|
Stirman J, Townsend LB, Smith S. A touchscreen based global motion perception task for mice. Vision Res 2016; 127:74-83. [PMID: 27497283 DOI: 10.1016/j.visres.2016.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 11/17/2022]
Abstract
Global motion perception is a function of higher, or extrastriate, visual system circuitry. These circuits can be engaged in visually driven navigation, a behavior at which mice are adept. However, the properties of global motion perception in mice are unclear. Therefore, we developed a touchscreen-based, two-alternative forced choice (2AFC) task to explore global motion detection in mice using random dot kinematograms (RDK). Performance data was used to compute coherence thresholds for global motion perception. The touchscreen-based task allowed for parallel training and testing with multiple chambers and minimal experimenter intervention with mice performing hundreds of trials per session. Parameters of the random dot kinematograms, including dot size, lifetime, and speed, were tested. Mice learned to discriminate kinematograms whose median motion direction differed by 90 degrees in 7-24days after a 10-14day pre-training period. The average coherence threshold (measured at 70% correct) in mice for this task was 22±5%, with a dot diameter of 3.88mm and speed of 58.2mm/s. Our results confirm the ability of mice to perform global motion discriminations, and the touchscreen assay provides a flexible, automated, and relatively high throughput method with which to probe complex visual function in mice.
Collapse
Affiliation(s)
- Jeffrey Stirman
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Leah B Townsend
- Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Spencer Smith
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
37
|
Abstract
Low vision is any type of visual impairment that affects activities of daily living. In the context of low vision, we define plasticity as changes in brain or perceptual behavior that follow the onset of visual impairment and that are not directly due to the underlying pathology. An important goal of low-vision research is to determine how plasticity affects visual performance of everyday activities. In this review, we consider the levels of the visual system at which plasticity occurs, the impact of age and visual experience on plasticity, and whether plastic changes are spontaneous or require explicit training. We also discuss how plasticity may affect low-vision rehabilitation. Developments in retinal imaging, noninvasive brain imaging, and eye tracking have supplemented traditional clinical and psychophysical methods for assessing how the visual system adapts to visual impairment. Findings from contemporary research are providing tools to guide people with low vision in adopting appropriate rehabilitation strategies.
Collapse
Affiliation(s)
- Gordon E Legge
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota 55455;
| | - Susana T L Chung
- School of Optometry, University of California, Berkeley, California 94720;
| |
Collapse
|
38
|
Butler BE, Chabot N, Lomber SG. Quantifying and comparing the pattern of thalamic and cortical projections to the posterior auditory field in hearing and deaf cats. J Comp Neurol 2016; 524:3042-63. [DOI: 10.1002/cne.24005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/21/2016] [Accepted: 03/24/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Blake E. Butler
- Cerebral Systems Laboratory; University of Western Ontario; London Ontario Canada N6A 5C2
- Department of Physiology and Pharmacology; University of Western Ontario; London Ontario Canada N6A 5C1
- Brain and Mind Institute; University of Western Ontario; London Ontario Canada N6A 5B7
| | - Nicole Chabot
- Cerebral Systems Laboratory; University of Western Ontario; London Ontario Canada N6A 5C2
- Department of Physiology and Pharmacology; University of Western Ontario; London Ontario Canada N6A 5C1
- Brain and Mind Institute; University of Western Ontario; London Ontario Canada N6A 5B7
| | - Stephen G. Lomber
- Cerebral Systems Laboratory; University of Western Ontario; London Ontario Canada N6A 5C2
- Department of Physiology and Pharmacology; University of Western Ontario; London Ontario Canada N6A 5C1
- Department of Psychology; University of Western Ontario; London Ontario Canada N6A 5C2
- Brain and Mind Institute; University of Western Ontario; London Ontario Canada N6A 5B7
- National Centre for Audiology; University of Western Ontario; London Ontario Canada N6G 1H1
| |
Collapse
|
39
|
Eaton NC, Sheehan HM, Quinlan EM. Optimization of visual training for full recovery from severe amblyopia in adults. ACTA ACUST UNITED AC 2016; 23:99-103. [PMID: 26787781 PMCID: PMC4749829 DOI: 10.1101/lm.040295.115] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/01/2015] [Indexed: 11/25/2022]
Abstract
The severe amblyopia induced by chronic monocular deprivation is highly resistant to reversal in adulthood. Here we use a rodent model to show that recovery from deprivation amblyopia can be achieved in adults by a two-step sequence, involving enhancement of synaptic plasticity in the visual cortex by dark exposure followed immediately by visual training. The perceptual learning induced by visual training contributes to the recovery of vision and can be optimized to drive full recovery of visual acuity in severely amblyopic adults.
Collapse
Affiliation(s)
- Nicolette C Eaton
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA
| | - Hanna Marie Sheehan
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA
| | - Elizabeth M Quinlan
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA Neuroscience and Cognitive Sciences Program, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
40
|
Sale A, Berardi N. Active training for amblyopia in adult rodents. Front Behav Neurosci 2015; 9:281. [PMID: 26578911 PMCID: PMC4621305 DOI: 10.3389/fnbeh.2015.00281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/06/2015] [Indexed: 11/13/2022] Open
Abstract
Amblyopia is the most diffused form of visual function impairment affecting one eye, with a prevalence of 1–5% in the total world population. Amblyopia is usually caused by an early functional imbalance between the two eyes, deriving from anisometropia, strabismus, or congenital cataract, leading to severe deficits in visual acuity, contrast sensitivity and stereopsis. While amblyopia can be efficiently treated in children, it becomes irreversible in adults, as a result of a dramatic decline in visual cortex plasticity which occurs at the end of the critical period (CP) in the primary visual cortex. Notwithstanding this widely accepted dogma, recent evidence in animal models and in human patients have started to challenge this view, revealing a previously unsuspected possibility to enhance plasticity in the adult visual system and to achieve substantial visual function recovery. Among the new proposed intervention strategies, non invasive procedures based on environmental enrichment, physical exercise or visual perceptual learning (vPL) appear particularly promising in terms of future applicability in the clinical setting. In this survey, we will review recent literature concerning the application of these behavioral intervention strategies to the treatment of amblyopia, with a focus on possible underlying molecular and cellular mechanisms.
Collapse
Affiliation(s)
- Alessandro Sale
- Neuroscience Institute, National Research Council Pisa, Italy
| | - Nicoletta Berardi
- Neuroscience Institute, National Research Council Pisa, Italy ; Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence Florence, Italy
| |
Collapse
|
41
|
|
42
|
Crossmodal plasticity in the fusiform gyrus of late blind individuals during voice recognition. Neuroimage 2014; 103:374-382. [DOI: 10.1016/j.neuroimage.2014.09.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 09/04/2014] [Accepted: 09/22/2014] [Indexed: 11/19/2022] Open
|
43
|
Bonaccorsi J, Berardi N, Sale A. Treatment of amblyopia in the adult: insights from a new rodent model of visual perceptual learning. Front Neural Circuits 2014; 8:82. [PMID: 25076874 PMCID: PMC4100600 DOI: 10.3389/fncir.2014.00082] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 06/27/2014] [Indexed: 11/19/2022] Open
Abstract
Amblyopia is the most common form of impairment of visual function affecting one eye, with a prevalence of about 1–5% of the total world population. Amblyopia usually derives from conditions of early functional imbalance between the two eyes, owing to anisometropia, strabismus, or congenital cataract, and results in a pronounced reduction of visual acuity and severe deficits in contrast sensitivity and stereopsis. It is widely accepted that, due to a lack of sufficient plasticity in the adult brain, amblyopia becomes untreatable after the closure of the critical period in the primary visual cortex. However, recent results obtained both in animal models and in clinical trials have challenged this view, unmasking a previously unsuspected potential for promoting recovery even in adulthood. In this context, non invasive procedures based on visual perceptual learning, i.e., the improvement in visual performance on a variety of simple visual tasks following practice, emerge as particularly promising to rescue discrimination abilities in adult amblyopic subjects. This review will survey recent work regarding the impact of visual perceptual learning on amblyopia, with a special focus on a new experimental model of perceptual learning in the amblyopic rat.
Collapse
Affiliation(s)
- Joyce Bonaccorsi
- Department of Medicine, Institute of Neuroscience CNR, National Research Council (CNR) Pisa, Italy
| | - Nicoletta Berardi
- Department of Medicine, Institute of Neuroscience CNR, National Research Council (CNR) Pisa, Italy ; Department of Psychology, Florence University Florence, Italy
| | - Alessandro Sale
- Department of Medicine, Institute of Neuroscience CNR, National Research Council (CNR) Pisa, Italy
| |
Collapse
|
44
|
Hamm LM, Black J, Dai S, Thompson B. Global processing in amblyopia: a review. Front Psychol 2014; 5:583. [PMID: 24987383 PMCID: PMC4060804 DOI: 10.3389/fpsyg.2014.00583] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/25/2014] [Indexed: 01/13/2023] Open
Abstract
Amblyopia is a neurodevelopmental disorder of the visual system that is associated with disrupted binocular vision during early childhood. There is evidence that the effects of amblyopia extend beyond the primary visual cortex to regions of the dorsal and ventral extra-striate visual cortex involved in visual integration. Here, we review the current literature on global processing deficits in observers with either strabismic, anisometropic, or deprivation amblyopia. A range of global processing tasks have been used to investigate the extent of the cortical deficit in amblyopia including: global motion perception, global form perception, face perception, and biological motion. These tasks appear to be differentially affected by amblyopia. In general, observers with unilateral amblyopia appear to show deficits for local spatial processing and global tasks that require the segregation of signal from noise. In bilateral cases, the global processing deficits are exaggerated, and appear to extend to specialized perceptual systems such as those involved in face processing.
Collapse
Affiliation(s)
- Lisa M Hamm
- Department of Optometry and Vision Science, University of Auckland Auckland, New Zealand
| | - Joanna Black
- Department of Optometry and Vision Science, University of Auckland Auckland, New Zealand
| | - Shuan Dai
- Department of Ophthalmology, Starship Children's Hospital Auckland, New Zealand ; Department of Ophthalmology, University of Auckland Auckland, New Zealand
| | - Benjamin Thompson
- Department of Optometry and Vision Science, University of Auckland Auckland, New Zealand ; Department of Optometry and Vision Science, University of Waterloo Waterloo, Canada
| |
Collapse
|
45
|
Qin W, Xuan Y, Liu Y, Jiang T, Yu C. Functional Connectivity Density in Congenitally and Late Blind Subjects. Cereb Cortex 2014; 25:2507-16. [PMID: 24642421 DOI: 10.1093/cercor/bhu051] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Visual deprivation during different developmental periods leads to different structural and functional alterations in the brain; however, the effects of visual deprivation on the spontaneous functional organization of the brain remain largely unknown. In this study, we used voxel-based functional connectivity density (FCD) analyses to investigate the effects of visual deprivation during different developmental periods on the spontaneous functional organization of the brain. Compared with the sighted controls (SC), both the congenitally blind (CB) and the late blind (LB) exhibited decreased short- and long-range FCDs in the primary visual cortex (V1) and decreased long-range FCDs in the primary somatosensory and auditory cortices. Although both the CB and LB exhibited increased short-range FCD in the dorsal visual stream, the CB exhibited greater increases in the short- and long-range FCDs in the ventral visual stream and hippocampal complex compared with the LB. Moreover, the short-range FCD of the left V1 exhibited a significant positive correlation with the duration of blindness in the LB. Our findings suggest that visual deprivation before the developmental sensitive period can induce more extensive brain functional reorganization than does visual deprivation after the sensitive period, which may underlie an enhanced capacity for processing nonvisual information in the CB.
Collapse
Affiliation(s)
- Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging
| | - Yun Xuan
- Department of Anatomy, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300052, China
| | - Yong Liu
- Brainnetome Center, Institute of Automation, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging
| |
Collapse
|
46
|
Taliaz D. Skills development in infants: a possible role for widespread neurogenesis? Front Behav Neurosci 2013; 7:178. [PMID: 24348353 PMCID: PMC3844860 DOI: 10.3389/fnbeh.2013.00178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 11/08/2013] [Indexed: 01/19/2023] Open
Affiliation(s)
- Dekel Taliaz
- Department of Neuroscience and Mental Health, The Hospital for Sick Children Toronto, ON, Canada
| |
Collapse
|
47
|
Balmer TS, Pallas SL. Refinement but not maintenance of visual receptive fields is independent of visual experience. Cereb Cortex 2013; 25:904-17. [PMID: 24108803 DOI: 10.1093/cercor/bht281] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Visual deprivation is reported to prevent or delay the development of mature receptive field (RF) properties in primary visual cortex (V1) in several species. In contrast, visual deprivation neither prevents nor delays refinement of RF size in the superior colliculus (SC) of Syrian hamsters, although vision is required for RF maintenance in the SC. Here, we report that, contrary to expectation, visual cortical RF refinement occurs normally in dark-reared animals. As in the SC, a brief period of visual experience is required to maintain V1 RF refinement in adulthood. Whereas in the SC, 3 days of visual experience within a sensitive period (P37-40) was sufficient to protect RFs from deprivation-induced enlargement in adulthood, 7 days (P33-40) were required for RF size maintenance in V1. Thus, spontaneous activity is sufficient for RF refinement at these 2 levels of the visual pathway, and visual input is necessary only to prevent deprivation-induced RF enlargement in adulthood. These studies show that sensory experience during a late juvenile sensitive period protects the visual pathway against sensory deprivation in adulthood, and suggest that more importance may have been placed on the role of early visual experience in visual RF development than is warranted.
Collapse
Affiliation(s)
- Timothy S Balmer
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Sarah L Pallas
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
48
|
Wang BS, Feng L, Liu M, Liu X, Cang J. Environmental enrichment rescues binocular matching of orientation preference in mice that have a precocious critical period. Neuron 2013; 80:198-209. [PMID: 24012279 DOI: 10.1016/j.neuron.2013.07.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2013] [Indexed: 01/12/2023]
Abstract
Experience shapes neural circuits during critical periods in early life. The timing of critical periods is regulated by both genetics and the environment. Here we study the functional significance of such temporal regulations in the mouse primary visual cortex, where critical period plasticity drives binocular matching of orientation preference. We find that the binocular matching is permanently disrupted in mice that have a precocious critical period due to genetically enhanced inhibition. The disruption is specific to one type of neuron, the complex cells, which, as we reveal, normally match after the simple cells. Early environmental enrichment completely rescues the deficit by inducing histone acetylation and consequently advancing the matching process to coincide with the precocious plasticity. Our experiments thus demonstrate that the proper timing of the critical period is essential for establishing normal binocularity and the detrimental impact of its genetic misregulation can be ameliorated by environmental manipulations via epigenetic mechanisms.
Collapse
Affiliation(s)
- Bor-Shuen Wang
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA; Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL 60208, USA
| | | | | | | | | |
Collapse
|
49
|
Hu S, Jin H, Chen Z, Mo L, Liu J. Failure in developing high-level visual functions after occipitoparietal lesions at an early age: a case study. Cortex 2013; 49:2689-99. [PMID: 23947986 DOI: 10.1016/j.cortex.2013.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 04/06/2013] [Accepted: 07/13/2013] [Indexed: 11/15/2022]
Abstract
Previous functional magnetic resonance imaging (fMRI) studies have identified several regions in the ventral visual pathway that are specialized for processing faces, words and general objects. However, little is known about the origin of the functional selectivity of these regions. Here, we reported a pediatric patient who suffered a left occipitoparietal lesion in the first year after birth from a subdural hematoma. After the hematoma was removed at the age of six, the hemianopia in the right visual field was alleviated, and no obvious deficits in low-level vision were observed in the patient at the age of twelve. In line with the behavioral observations, meridian mappings with fMRI showed that the early visual cortex of the left hemisphere was significantly activated, which was similar to that of the intact right hemisphere. However, the left ventral temporal cortex failed to show selective responses for faces, words and objects, which were in contrast to the normal selective responses for these objects in the right counterpart. Therefore, it is likely that the development of object selectivity in the ventral temporal cortex depends on visual inputs from the early visual cortex at an early age.
Collapse
Affiliation(s)
- Siyuan Hu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | | | | | | | | |
Collapse
|
50
|
Sanyal T, Kumar V, Nag TC, Jain S, Sreenivas V, Wadhwa S. Prenatal loud music and noise: differential impact on physiological arousal, hippocampal synaptogenesis and spatial behavior in one day-old chicks. PLoS One 2013; 8:e67347. [PMID: 23861759 PMCID: PMC3702537 DOI: 10.1371/journal.pone.0067347] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 05/15/2013] [Indexed: 12/01/2022] Open
Abstract
Prenatal auditory stimulation in chicks with species-specific sound and music at 65 dB facilitates spatial orientation and learning and is associated with significant morphological and biochemical changes in the hippocampus and brainstem auditory nuclei. Increased noradrenaline level due to physiological arousal is suggested as a possible mediator for the observed beneficial effects following patterned and rhythmic sound exposure. However, studies regarding the effects of prenatal high decibel sound (110 dB; music and noise) exposure on the plasma noradrenaline level, synaptic protein expression in the hippocampus and spatial behavior of neonatal chicks remained unexplored. Here, we report that high decibel music stimulation moderately increases plasma noradrenaline level and positively modulates spatial orientation, learning and memory of one day-old chicks. In contrast, noise at the same sound pressure level results in excessive increase of plasma noradrenaline level and impairs the spatial behavior. Further, to assess the changes at the molecular level, we have quantified the expression of functional synapse markers: synaptophysin and PSD-95 in the hippocampus. Compared to the controls, both proteins show significantly increased expressions in the music stimulated group but decrease in expressions in the noise group. We propose that the differential increase of plasma noradrenaline level and altered expression of synaptic proteins in the hippocampus are responsible for the observed behavioral consequences following prenatal 110 dB music and noise stimulation.
Collapse
Affiliation(s)
- Tania Sanyal
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Vivek Kumar
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Suman Jain
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Vishnu Sreenivas
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Shashi Wadhwa
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
- * E-mail:
| |
Collapse
|