1
|
Liu B, Liu W, Li H, Zhai N, Lv C, Song X, Yang S. circ0066187 promotes pulmonary fibrogenesis through targeting STAT3-mediated metabolism signal pathway. Cell Mol Life Sci 2025; 82:79. [PMID: 39969586 PMCID: PMC11839971 DOI: 10.1007/s00018-025-05613-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/12/2025] [Accepted: 02/02/2025] [Indexed: 02/20/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial pneumonia, with increasing incidence and prevalence. One of the cellular characteristics is the differentiation of fibroblasts to myofibroblasts. However, the metabolic-related signaling pathway regulated by circular RNAs (circRNAs) during this process remains unclear. Here, we demonstrated that circ0066187 promoted fibroblast-to-myofibroblast differentiation by metabolic-related signaling pathway. Mechanism analysis research identified that circ0066187 directly targeted signal transducer and activator of transcription 3 (STAT3)-mediated metabolism signal pathway to enhance fibroblast-to-myofibroblast differentiation by sponging miR-29b-2-5p, resulting in pulmonary fibrosis. Integrative multi-omics analysis of metabolomics and proteomics revealed three pathways co-enriched in proteomics and metabolomics, namely, Protein digestion and absorption, PI3K-Akt signaling pathway, and FoxO signaling pathway. In these three signaling pathways, seven differentially expressed metabolites such as L-glutamine, L-proline, adenosine monophosphate (AMP), L-arginine, L-phenylalanine, L-lysine and L-tryptophan, and six differentially expressed proteins containing dipeptidyl peptidase-4 (DPP4), cyclin D1 (CCND1), cyclin-dependent kinase 2 (CDK2), fibroblast growth factor 2 (FGF2), collagen type VI alpha 1 (COL6A1) and superoxide dismutase 2 (SOD2) were co-enriched. Gain-and loss-of-function studies and rescue experiments were performed to verify that circ0066187 promoted STAT3 expression by inhibiting miR-29b-2-5p expression to control the above metabolites and proteins. As a result, these metabolites and proteins provided the material basis and energy requirements for the progression of pulmonary fibrosis. In conclusion, circ0066187 can function as a profibrotic metabolism-related factor, and interference with circ0066187 can prevent pulmonary fibrosis. The finding supported that circ0066187 can be a metabolism-related therapeutic target for IPF treatment.
Collapse
Affiliation(s)
- Bo Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, 256603, Shandong, China
| | - Weili Liu
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, 256603, Shandong, China
| | - Hongbo Li
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, 256603, Shandong, China
| | - Nailiang Zhai
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, 256603, Shandong, China
| | - Changjun Lv
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, 256603, Shandong, China
- Shandong Key Lab of Complex Medical Intelligence and Aging, Yantai, 264003, Shandong, China
| | - Xiaodong Song
- Shandong Key Lab of Complex Medical Intelligence and Aging, Yantai, 264003, Shandong, China
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Shuanying Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
2
|
Reyes-Jiménez E, Ramírez-Hernández AA, Santos-Álvarez JC, Velázquez-Enríquez JM, González-García K, Carrasco-Torres G, Villa-Treviño S, Baltiérrez-Hoyos R, Vásquez-Garzón VR. Coadministration of 3'5-dimaleamylbenzoic acid and quercetin decrease pulmonary fibrosis in a systemic sclerosis model. Int Immunopharmacol 2023; 122:110664. [PMID: 37481854 DOI: 10.1016/j.intimp.2023.110664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/10/2023] [Accepted: 07/16/2023] [Indexed: 07/25/2023]
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by microvascular compromise and fibrosis. Pulmonary fibrosis, a prominent pulmonary complication in SSc, results in impaired lung function due to excessive accumulation of extracellular matrix components. This study aimed to investigate the effects of coadministration of 3'5-dimaleamylbenzoic acid (AD) and quercetin (Q) on key events in the development and maintenance of pulmonary fibrosis in a bleomycin (BLM)-induced SSc mouse model. The model was induced in CD1 mice through BLM administration using osmotic mini pumps. Subsequently, mice were treated with AD (6 mg/kg) plus Q (10 mg/kg) and sacrificed at 21 and 28 days post BLM administration. Histopathological analysis was performed by hematoxylin and eosin staining and Masson's trichrome staining. Immunohistochemistry was used to determine the expression of proliferation, proinflammatory, profibrotic and oxidative stress markers. The coadministration of AD and Q during the fibrotic phase of the BLM-induced SSc model led to attenuated histological alterations and pulmonary fibrosis, reflected in the recovery of alveolar spaces (30 %, p < 0.01) and decreased collagen deposits (50 %, p < 0.001). This effect was achieved by decreasing the expression of the proliferative markers cyclin D1 (87 %, p < 0.0001) and PCNA (43 %, p < 0.0001), inflammatory markers COX-2 (71 %, p < 0.0001) and iNOS (84 %, p < 0.0001), profibrotic markers α-SMA (80 %, p < 0.0001) and TGF-β (81 %, p < 0.0001) and the lipid peroxidation marker 4-HNE (43 %, p < 0.01). The antifibrotic effect of this combined therapy is associated with the regulation of proliferation, inflammation and oxidative stress, mechanisms involved in the development and progression of the fibrotic process. Our novel therapeutic strategy is the first approach to propose the use of the combination of prooxidant and antioxidant compounds as a potential strategy for SSc-associated pulmonary fibrosis.
Collapse
Affiliation(s)
- Edilburga Reyes-Jiménez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca, Mexico
| | - Alma Aurora Ramírez-Hernández
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca, Mexico
| | - Jovito Cesar Santos-Álvarez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca, Mexico
| | - Juan Manuel Velázquez-Enríquez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca, Mexico
| | - Karina González-García
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca, Mexico
| | - Gabriela Carrasco-Torres
- Centro de Investigación en Ciencias Aplicadas y Tecnología Avanzada, Unidad Morelos, Instituto Politécnico Nacional, Morelos, Mexico
| | - Saúl Villa-Treviño
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Rafael Baltiérrez-Hoyos
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca, Mexico; CONAHCYT-Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca, Mexico
| | - Verónica Rocío Vásquez-Garzón
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca, Mexico; CONAHCYT-Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca, Mexico.
| |
Collapse
|
3
|
Ulke HM, Mutze K, Lehmann M, Wagner DE, Heinzelmann K, Günther A, Eickelberg O, Königshoff M. The Oncogene ECT2 Contributes to a Hyperplastic, Proliferative Lung Epithelial Cell Phenotype in Idiopathic Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2020; 61:713-726. [PMID: 31145635 DOI: 10.1165/rcmb.2019-0047oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) and lung cancer are progressive lung diseases with a poor prognosis. IPF is a risk factor for the development of lung cancer, and the incidence of lung cancer is increased in patients with IPF. The disease pathogenesis of IPF and lung cancer involves common genetic alterations, dysregulated pathways, and the emergence of hyperplastic and metaplastic epithelial cells. Here, we aimed to identify novel, common mediators that might contribute to epithelial cell reprogramming in IPF. Gene set enrichment analysis of publicly available non-small cell lung cancer and IPF datasets revealed a common pattern of misregulated genes linked to cell proliferation and transformation. The oncogene ECT2 (epithelial cell transforming sequence 2), a guanine nucleotide exchange factor for Rho GTPases, was highly enriched in both IPF and non-small cell lung cancer compared with nondiseased controls. Increased expression of ECT2 was verified by qPCR and Western blotting in bleomycin-induced lung fibrosis and human IPF tissue. Immunohistochemistry demonstrated strong expression of ECT2 staining in hyperplastic alveolar epithelial type II (ATII) cells in IPF, as well as its colocalization with proliferating cell nuclear antigen, a well-known proliferation marker. Increased ECT2 expression coincided with enhanced proliferation of primary mouse ATII cells as analyzed by flow cytometry. ECT2 knockdown in ATII cells resulted in decreased proliferation and collagen I expression in vitro. These data suggest that the oncogene ECT2 contributes to epithelial cell reprogramming in IPF, and further emphasize the hyperplastic, proliferative ATII cell as a potential target in patients with IPF and lung cancer.
Collapse
Affiliation(s)
- Henrik M Ulke
- Lung Repair and Regeneration, Comprehensive Pneumology Center, Ludwig Maximilians University, University Hospital Großhadern, and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany
| | - Kathrin Mutze
- Lung Repair and Regeneration, Comprehensive Pneumology Center, Ludwig Maximilians University, University Hospital Großhadern, and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany
| | - Mareike Lehmann
- Lung Repair and Regeneration, Comprehensive Pneumology Center, Ludwig Maximilians University, University Hospital Großhadern, and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany
| | - Darcy E Wagner
- Lung Repair and Regeneration, Comprehensive Pneumology Center, Ludwig Maximilians University, University Hospital Großhadern, and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany.,Lung Bioengineering and Regeneration, Lund University, Lund, Sweden
| | - Katharina Heinzelmann
- Lung Repair and Regeneration, Comprehensive Pneumology Center, Ludwig Maximilians University, University Hospital Großhadern, and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany
| | - Andreas Günther
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, Justus Liebig University Giessen, Member of the German Center for Lung Research, Giessen, Germany; and
| | - Oliver Eickelberg
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Denver, Aurora, Colorado
| | - Melanie Königshoff
- Lung Repair and Regeneration, Comprehensive Pneumology Center, Ludwig Maximilians University, University Hospital Großhadern, and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany.,Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Denver, Aurora, Colorado
| |
Collapse
|
4
|
Mahmoudi T, Abdolmohammadi K, Bashiri H, Mohammadi M, Rezaie MJ, Fathi F, Fakhari S, Rezaee MA, Jalili A, Rahmani MR, Tayebi L. Hydrogen Peroxide Preconditioning Promotes Protective Effects of Umbilical Cord Vein Mesenchymal Stem Cells in Experimental Pulmonary Fibrosis. Adv Pharm Bull 2020; 10:72-80. [PMID: 32002364 PMCID: PMC6983995 DOI: 10.15171/apb.2020.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/27/2019] [Accepted: 07/02/2019] [Indexed: 12/15/2022] Open
Abstract
Purpose: Idiopathic pulmonary fibrosis (IPF) is a progressive lung disorder with few available treatments. Mesenchymal stem cell therapy (MSCT), an innovative approach, has high therapeutic potential when used to treat IPF. According to recent data, preconditioning of MSCs can improve their therapeutic effects. Our research focuses on investigating the anti-inflammatory and antifibrotic effects of H2 O2 -preconditioned MSCs (p-MSCs) on mice with bleomycin-induced pulmonary fibrosis (PF). Methods: Eight-week-old male C57BL/6 mice were induced with PF by intratracheal (IT) instillation of bleomycin (4 U/kg). Human umbilical cord vein-derived MSCs (hUCV-MSCs) were isolated and exposed to a sub-lethal concentration (15 μM for 24 h) of H2 O2 in vitro. One week following the injection of bleomycin, 2×105 MSCs or p-MSCs were injected (IT) into the experimental PF. The survival rate and weight of mice were recorded, and 14 days after MSCs injection, all mice were sacrificed. Lung tissue was removed from these mice to examine the myeloperoxidase (MPO) activity, histopathological changes (hematoxylin-eosin and Masson's trichrome) and expression of transforming growth factor beta 1 (TGF-β1) and alpha-smooth muscle actin (α-SMA) through immunohistochemistry (IHC) staining. Results: Compared to the PF+MSC group, p-MSCs transplantation results in significantly decreased connective tissue (P<0.05) and collagen deposition. Additionally, it is determined that lung tissue in the PF+pMSC group has increased alveolar space (P<0.05) and diminished expression of TGF-β1 and α-SMA. Conclusion: The results demonstrate that MSCT using p-MSCs decreases inflammatory and fibrotic factors in bleomycin-induced PF, while also able to increase the therapeutic potency of MSCT in IPF.
Collapse
Affiliation(s)
- Tayebeh Mahmoudi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Kamal Abdolmohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Bashiri
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Medical Laboratory Sciences, Faculty of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mehdi Mohammadi
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Jafar Rezaie
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Fardin Fathi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Shohreh Fakhari
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Ali Rezaee
- Department of Medical Laboratory Sciences, Faculty of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Zoonoses Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Ali Jalili
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Reza Rahmani
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Zoonoses Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| |
Collapse
|