1
|
Ali HR, West RB. Spatial Biology of Breast Cancer. Cold Spring Harb Perspect Med 2024; 14:a041335. [PMID: 38110242 PMCID: PMC11065165 DOI: 10.1101/cshperspect.a041335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Spatial findings have shaped on our understanding of breast cancer. In this review, we discuss how spatial methods, including spatial transcriptomics and proteomics and the resultant understanding of spatial relationships, have contributed to concepts regarding cancer progression and treatment. In addition to discussing traditional approaches, we examine how emerging multiplex imaging technologies have contributed to the field and how they might influence future research.
Collapse
Affiliation(s)
- H Raza Ali
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, United Kingdom
| | - Robert B West
- Department of Pathology, Stanford University Medical Center, Stanford, California 94305, USA
| |
Collapse
|
2
|
Pei J, Zhao X, Patchefsky AS, Flieder DB, Talarchek JN, Testa JR, Wei S. Clinical application of RNA sequencing in sarcoma diagnosis: An institutional experience. Medicine (Baltimore) 2019; 98:e16031. [PMID: 31232935 PMCID: PMC6636967 DOI: 10.1097/md.0000000000016031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Accurate diagnoses of sarcoma are sometimes challenging on conventional histomorphology and immunophenotype. Many specific genetic aberrations including chromosomal translocations have been identified in various sarcomas, which can be detected by fluorescence in situ hybridization and polymerase chain reaction analysis. Next-generation sequencing-based RNA sequencing can screen multiple sarcoma-specific chromosome translocations/fusion genes in 1 test, which is especially useful for sarcoma without obvious differentiation. In this report, we utilized RNA sequencing on formalin-fixed paraffin-embedded (FFPE) specimens to investigate the possibility of diagnosing sarcomas by identifying disease-specific fusion genes. Targeted RNA sequencing was performed on 6 sarcoma cases. The expected genetic alterations (clear cell sarcoma/EWSR1-ATF1, Ewing sarcoma/EWSR1-FLI1, myxoid liposarcoma/DDIT3-FUS) in four cases were detected and confirmed by secondary tests. Interestingly, three SS18 fusion genes (SS18-SSX2B, SS18-SSX2, and SS18-SSX4) were identified in a synovial sarcoma case. A rare fusion gene (EWSR1-PATZ1) was identified in a morphologically challenging case; which enabled us to establish the diagnosis of low grade glioneural tumor. In conclusion, RNA sequencing on FFPE specimen is a reliable method in establishing the diagnosis of sarcoma in daily practice.
Collapse
Affiliation(s)
| | - Xiaofeng Zhao
- Department of Pathology and Laboratory Medicine, Temple University Hospital
| | | | | | | | - Joseph R. Testa
- Genomics Facility, Fox Chase Cancer Center
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA
| | | |
Collapse
|
3
|
Lawlor ER, Sorensen PH. Twenty Years on: What Do We Really Know about Ewing Sarcoma and What Is the Path Forward? Crit Rev Oncog 2016; 20:155-71. [PMID: 26349414 DOI: 10.1615/critrevoncog.2015013553] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ewing sarcoma (ES) is a highly aggressive bone and soft-tissue tumor with peak incidence among adolescents and young adults. Despite advances in local control and systemic chemotherapy, metastatic relapse after an initial clinical remission remains a significant clinical problem. In addition, metastasis at the time of presentation or at relapse continues to be the leading cause of death for patients diagnosed with ES. Since the discovery of the pathognomonic EWS-FLI1 fusion gene more than 20 years ago, much about the molecular and cellular biology of ES pathogenesis has been learned. In addition, more recent exploitation of advances in stem cell and developmental biology has provided key insights into the cellular origins of ES and the role of epigenetic deregulation in tumor initiation and maintenance. Nevertheless, the mechanisms that drive tumor relapse and metastasis remain largely unknown. These gaps in our knowledge continue to hamper the development of novel therapeutic strategies that may improve outcomes for patients with relapsed and metastatic disease. In this article we review the current status of ES biology research, highlighting areas of investigation that we consider to have the greatest potential to yield findings that will translate into clinically significant advances.
Collapse
Affiliation(s)
- Elizabeth R Lawlor
- Department of Pediatrics & Communicable Diseases and Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Poul H Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Marino-Enriquez A. Advances in the Molecular Analysis of Soft Tissue Tumors and Clinical Implications. Surg Pathol Clin 2016; 8:525-37. [PMID: 26297069 DOI: 10.1016/j.path.2015.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The emergence of high-throughput molecular technologies has accelerated the discovery of novel diagnostic, prognostic and predictive molecular markers. Clinical implementation of these technologies is expected to transform the practice of surgical pathology. In soft tissue tumor pathology, accurate interpretation of comprehensive genomic data provides useful diagnostic and prognostic information, and informs therapeutic decisions. This article reviews recently developed molecular technologies, focusing on their application to the study of soft tissue tumors. Emphasis is made on practical issues relevant to the surgical pathologist. The concept of genomically-informed therapies is presented as an essential motivation to identify targetable molecular alterations in sarcoma.
Collapse
Affiliation(s)
- Adrian Marino-Enriquez
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Brenca M, Maestro R. Massive parallel sequencing in sarcoma pathobiology: state of the art and perspectives. Expert Rev Anticancer Ther 2015; 15:1473-88. [PMID: 26536249 DOI: 10.1586/14737140.2015.1108192] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Sarcomas are an aggressive and highly heterogeneous group of mesenchymal malignancies with different morphologies and clinical behavior. Current therapeutic strategies remain unsatisfactory. Cytogenetic and molecular characterization of these tumors is resulting in the breakdown of the classical histopathological categories into molecular subgroups that better define sarcoma pathobiology and pave the way to more precise diagnostic criteria and novel therapeutic opportunities. The purpose of this short review is to summarize the state-of-the-art on the exploitation of massive parallel sequencing technologies, also known as next generation sequencing, in the elucidation of sarcoma pathobiology and to discuss how these applications may impact on diagnosis, prognosis and therapy of these tumors.
Collapse
Affiliation(s)
- Monica Brenca
- a Experimental Oncology 1 , CRO Aviano National Cancer Institute , Aviano , PN 33081 , Italy
| | - Roberta Maestro
- a Experimental Oncology 1 , CRO Aviano National Cancer Institute , Aviano , PN 33081 , Italy
| |
Collapse
|
6
|
Gene fusion detection in formalin-fixed paraffin-embedded benign fibrous histiocytomas using fluorescence in situ hybridization and RNA sequencing. J Transl Med 2015; 95:1071-6. [PMID: 26121314 DOI: 10.1038/labinvest.2015.83] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/04/2015] [Accepted: 05/13/2015] [Indexed: 11/08/2022] Open
Abstract
Benign fibrous histiocytomas (FH) can be subdivided into several morphological and clinical subgroups. Recently, gene fusions involving either one of two protein kinase C genes (PRKCB and PRKCD) or the ALK gene were described in FH. We here wanted to evaluate the frequency of PRKCB and PRKCD gene fusions in FH. Using interphase fluorescence in situ hybridization on sections from formalin-fixed paraffin-embedded (FFPE) tumors, 36 cases could be analyzed. PRKCB or PRKCD rearrangements were seen in five tumors: 1/7 regular, 0/3 aneurysmal, 0/6 cellular, 2/7 epithelioid, 0/1 atypical, 2/10 deep, and 0/2 metastatic lesions. We also evaluated the status of the ALK gene in selected cases, finding rearrangements in 3/7 epithelioid and 0/1 atypical lesions. To assess the gene fusion status of FH further, deep sequencing of RNA (RNA-Seq) was performed on FFPE tissue from eight cases with unknown gene fusion status, as well as on two FH and six soft tissue sarcomas with known gene fusions; of the latter eight positive controls, the expected fusion transcript was found in all but one, while 2/8 FH with unknown genetic status showed fusion transcripts, including a novel KIRREL/PRKCA chimera. Thus, also a third member of the PRKC family is involved in FH tumorigenesis. We conclude that gene fusions involving PRKC genes occur in several morphological (regular, cellular, aneurysmal, epithelioid) and clinical (cutaneous, deep) subsets of FH, but they seem to account for only a minority of the cases. In epithelioid lesions, however, rearrangements of PRKC or ALK were seen, as mutually exclusive events, in the majority (5/7) of cases. Finally, the study also shows that RNA-Seq is a promising tool for identifying gene fusions in FFPE tissues.
Collapse
|
7
|
Smith SM, Coleman J, Bridge JA, Iwenofu OH. Molecular diagnostics in soft tissue sarcomas and gastrointestinal stromal tumors. J Surg Oncol 2015; 111:520-31. [PMID: 25772665 DOI: 10.1002/jso.23882] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/11/2014] [Indexed: 12/17/2022]
Abstract
Soft tissue sarcomas are rare malignant heterogenous tumors of mesenchymal origin with over fifty subtypes. The use of hematoxylin and eosin stained sections (and immunohistochemistry) in the morphologic assessment of these tumors has been the bane of clinical diagnosis until recently. The last decade has witnessed considerable progress in the understanding and application of molecular techniques in refining the current understanding of soft tissue sarcomas and gastrointestinal stromal tumors beyond the limits of traditional approaches. Indeed, the identification of reciprocal chromosomal translocations and fusion genes in some subsets of sarcomas with potential implications in the pathogenesis, diagnosis and treatment has been revolutionary. The era of molecular targeted therapy presents a platform that continues to drive biomarker discovery and personalized medicine in soft tissue sarcomas and gastrointestinal stromal tumors. In this review, we highlight how the different molecular techniques have enhanced the diagnosis of these tumors with prognostic and therapeutic implications.
Collapse
Affiliation(s)
- Stephen M Smith
- Department of Pathology & Laboratory Medicine, Wexner Medical Center at The Ohio State University, Columbus, Ohio
| | | | | | | |
Collapse
|
8
|
Dearing KR, Weiss GJ. Translating next-generation sequencing from clinical trials to clinical practice for the treatment of advanced cancers. Per Med 2015; 12:155-162. [PMID: 29754537 DOI: 10.2217/pme.14.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Next-generation sequencing (NGS) is being applied in oncology care to identify specific molecular aberrations of patient's tumors. The use of NGS now allows for sequencing entire human genomes within a reasonable cost and practical time frames for treatment decision making. Further delineation of epigenetics, transcriptomics, metagenomics and NGS at the level of circulating tumor DNA reveal ever increasing complexity to understand these interactions and the roles they play in cancer. With the improvement in understanding the study of proteomics, it has become clear that NGS has room for innovation to someday include sequencing of proteins. Early embarkation of NGS incorporated into clinical trials has begun. Here, we review the feasibility and practicality of translating NGS from clinical trials to clinical practice.
Collapse
Affiliation(s)
- Kristen R Dearing
- Cancer Treatment Centers of America, 14200 Celebrate Life Way, Goodyear, AZ 85338, USA
| | - Glen J Weiss
- Cancer Treatment Centers of America, 14200 Celebrate Life Way, Goodyear, AZ 85338, USA.,CRAB-Clinical Trials Consortium, 1730 Minor Ave., Seattle, WA 98101, USA
| |
Collapse
|
9
|
Cancer genomics: why rare is valuable. J Mol Med (Berl) 2015; 93:369-81. [PMID: 25676695 PMCID: PMC4366545 DOI: 10.1007/s00109-015-1260-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/26/2014] [Accepted: 01/29/2015] [Indexed: 02/07/2023]
Abstract
Rare conditions are sometimes ignored in biomedical research because of difficulties in obtaining specimens and limited interest from fund raisers. However, the study of rare diseases such as unusual cancers has again and again led to breakthroughs in our understanding of more common diseases. It is therefore unsurprising that with the development and accessibility of next-generation sequencing, much has been learnt from studying cancers that are rare and in particular those with uniform biological and clinical behavior. Herein, we describe how shotgun sequencing of cancers such as granulosa cell tumor, endometrial stromal sarcoma, epithelioid hemangioendothelioma, ameloblastoma, small-cell carcinoma of the ovary, clear-cell carcinoma of the ovary, nonepithelial ovarian tumors, chondroblastoma, and giant cell tumor of the bone has led to rapidly translatable discoveries in diagnostics and tumor taxonomies, as well as providing insights into cancer biology.
Collapse
|
10
|
Abstract
Several histological grading systems for soft tissue sarcomas have been described since the early 1980s. Their main objective is to select patients for adjuvant chemotherapy. Two histological grading systems are used in daily practice, the National Cancer Institute (NCI) and the French Federation of Cancer Centers Sarcoma Group (FNCLCC) systems. They have been devised by combining histological parameters: number of mitoses per high-power field, the presence of necrosis, cellular and nuclear morphology and the degree of cellularity for the NCI grading; and tumour differentiation, mitotic index and extent of necrosis for the French system. Histological grading is far more appropriate to assess the risk of metastasis. However, several limitations prevent its use: grade cannot be applied to all histological types, its reproducibility is not perfect, a three-grade system generates an intermediate grade with undetermined prognosis, and finally the core needle biopsy, now widely used for the diagnosis of soft tissue sarcoma, is not the best sample to assess the grade. The development of molecular grading in addition to histological grading probably represents the next step. Molecular signatures based on quantitative evaluation of chromosomal complexity such as CINSARC (complexity index in sarcomas) appear as a strong independent predictive factor for metastasis in several types of sarcoma, and even in several other types of cancer. When they can be instituted in daily practice on formalin fixed, paraffin embedded material, molecular signatures will not only provide information on risk of metastasis, but also better understanding of cancer development, response or resistance to evaluated drugs, and potential targets for future treatments.
Collapse
|
11
|
Sweeney RT, McClary AC, Myers BR, Biscocho J, Neahring L, Kwei KA, Qu K, Gong X, Ng T, Jones CD, Varma S, Odegaard JI, Sugiyama T, Koyota S, Rubin BP, Troxell ML, Pelham RJ, Zehnder JL, Beachy PA, Pollack JR, West RB. Identification of recurrent SMO and BRAF mutations in ameloblastomas. Nat Genet 2014; 46:722-5. [PMID: 24859340 DOI: 10.1038/ng.2986] [Citation(s) in RCA: 245] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 04/21/2014] [Indexed: 12/18/2022]
Abstract
Here we report the discovery of oncogenic mutations in the Hedgehog and mitogen-activated protein kinase (MAPK) pathways in over 80% of ameloblastomas, locally destructive odontogenic tumors of the jaw, by genomic analysis of archival material. Mutations in SMO (encoding Smoothened, SMO) are common in ameloblastomas of the maxilla, whereas BRAF mutations are predominant in tumors of the mandible. We show that a frequently occurring SMO alteration encoding p.Leu412Phe is an activating mutation and that its effect on Hedgehog-pathway activity can be inhibited by arsenic trioxide (ATO), an anti-leukemia drug approved by the US Food and Drug Administration (FDA) that is currently in clinical trials for its Hedgehog-inhibitory activity. In a similar manner, ameloblastoma cells harboring an activating BRAF mutation encoding p.Val600Glu are sensitive to the BRAF inhibitor vemurafenib. Our findings establish a new paradigm for the diagnostic classification and treatment of ameloblastomas.
Collapse
Affiliation(s)
- Robert T Sweeney
- 1] Department of Pathology, Stanford University, Stanford, California, USA. [2]
| | - Andrew C McClary
- 1] Department of Pathology, Stanford University, Stanford, California, USA. [2]
| | - Benjamin R Myers
- 1] Department of Biochemistry, Stanford University, Stanford, California, USA. [2] Department of Developmental Biology, Stanford University, Stanford, California, USA. [3] Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA. [4] Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA. [5]
| | - Jewison Biscocho
- 1] Department of Pathology, Stanford University, Stanford, California, USA. [2]
| | - Lila Neahring
- 1] Department of Biochemistry, Stanford University, Stanford, California, USA. [2] Department of Developmental Biology, Stanford University, Stanford, California, USA. [3] Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA. [4] Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Kevin A Kwei
- 1] Genomic Health, Redwood City, California, USA. [2]
| | - Kunbin Qu
- Genomic Health, Redwood City, California, USA
| | - Xue Gong
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Tony Ng
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carol D Jones
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Sushama Varma
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Justin I Odegaard
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Toshihiro Sugiyama
- Department of Biochemistry, Akita University Graduate School of Medicine, Akita, Japan
| | - Souichi Koyota
- Department of Biochemistry, Akita University Graduate School of Medicine, Akita, Japan
| | - Brian P Rubin
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Megan L Troxell
- Department of Pathology, Oregon Health and Sciences University, Portland, Oregon, USA
| | | | - James L Zehnder
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Philip A Beachy
- 1] Department of Biochemistry, Stanford University, Stanford, California, USA. [2] Department of Developmental Biology, Stanford University, Stanford, California, USA. [3] Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA. [4] Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA
| | | | - Robert B West
- Department of Pathology, Stanford University, Stanford, California, USA
| |
Collapse
|
12
|
Qadir MA, Zhan SH, Kwok B, Bruestle J, Drees B, Popescu OE, Sorensen PH. ChildSeq-RNA: A next-generation sequencing-based diagnostic assay to identify known fusion transcripts in childhood sarcomas. J Mol Diagn 2014; 16:361-70. [PMID: 24517889 DOI: 10.1016/j.jmoldx.2014.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 12/26/2013] [Accepted: 01/02/2014] [Indexed: 10/25/2022] Open
Abstract
Childhood sarcomas can be extremely difficult to accurately diagnose on the basis of morphological characteristics alone. Ancillary methods, such as RT-PCR or fluorescence in situ hybridization, to detect pathognomonic gene fusions can help to distinguish these tumors. Two major deficiencies of these assays are their inability to identify gene fusions at nucleotide resolution or to detect multiple gene fusions simultaneously. We developed a next-generation sequencing-based assay designated ChildSeq-RNA that uses the Ion Torrent platform to screen for EWSR1-FLI1 and EWSR1-ERG, PAX3-FOXO1 and PAX7-FOXO1, EWSR1-WT1, and ETV6-NTRK3 fusions of Ewing sarcoma (ES), alveolar rhabdomyosarcoma, desmoplastic small round cell tumor, and congenital fibrosarcoma, respectively. To rapidly analyze resulting data, we codeveloped a bioinformatics tool, termed ChildDecode, that operates on a scalable, cloud-computing platform. Total RNA from four ES cell lines plus 33 clinical samples representing ES, alveolar rhabdomyosarcoma, desmoplastic small round cell tumor, and congenital fibrosarcoma tumors was subjected to ChildSeq-RNA. This accurately identified corresponding gene fusions in each tumor type, with no examples of false positive fusion detection in this proof-of-concept study. Comparison with previous RT-PCR findings demonstrated high sensitivity (96.4%; 95% CI, 82.3%-99.4%) and specificity (100%; 95% CI, 56.6%-100%) of ChildSeq-RNA to detect gene fusions. Herein, we propose ChildSeq-RNA as a novel tool to detect gene fusions in childhood sarcomas at single-nucleotide resolution.
Collapse
Affiliation(s)
- Mohammed A Qadir
- Department of Molecular Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Shing H Zhan
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Brian Kwok
- Department of Molecular Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | | | - Becky Drees
- Spiral Genetics Corporation, Seattle, Washington
| | - Oana-Eugenia Popescu
- Department of Anatomical Pathology, Children's and Women's Health Centre of British Columbia, Vancouver, British Columbia, Canada
| | - Poul H Sorensen
- Department of Molecular Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
13
|
van de Rijn M, Guo X, Sweeney RT, Beck AH, West RB. Molecular pathological analysis of sarcomas using paraffin-embedded tissue: current limitations and future possibilities. Histopathology 2013; 64:163-70. [PMID: 24107169 DOI: 10.1111/his.12290] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Sarcomas of soft tissue and bone are rare neoplasms that can be separated into a large number of different diagnostic entities. Over the years, a number of diagnostic markers have been developed that aid pathologists in reaching the appropriate diagnoses. Many of these markers are sarcoma-specific proteins that can be detected by immunohistochemistry in formalin-fixed, paraffin-embedded (FFPE) sections. In addition, a wide range of molecular studies have been developed that can detect gene mutations, gene amplifications or chromosomal translocations in FFPE material. Until recently, most sequencing-based approaches relied on the availability of fresh frozen tissue. However, with the advent of next-generation sequencing technologies, FFPE material is increasingly being used as a tool to identify novel immunohistochemistry markers, gene mutations, and chromosomal translocations, and to develop diagnostic tests.
Collapse
Affiliation(s)
- Matt van de Rijn
- Department of Pathology, Stanford University Medical Center, Stanford, CA, USA
| | | | | | | | | |
Collapse
|