1
|
Performance Evaluation of Bruker Biotyper, ASTA MicroIDSys, and VITEK-MS and Three Extraction Methods for Filamentous Fungal Identification in Clinical Laboratories. J Clin Microbiol 2022; 60:e0081222. [PMID: 36286489 PMCID: PMC9667760 DOI: 10.1128/jcm.00812-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Filamentous fungi are a major cause of life-threatening infections in immunocompromised patients; thus, rapid and accurate identification is critical. Filamentous fungal identification by matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) has been demonstrated with high sensitivity and reproducibility; however, its wider application has been limited in clinical laboratories because of practical challenges such as database availability or lack of standardization.
Collapse
|
2
|
Wang J, Wang H, Cai K, Yu P, Liu Y, Zhao G, Chen R, Xu R, Yu M. Evaluation of three sample preparation methods for the identification of clinical strains by using two MALDI-TOF MS systems. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4696. [PMID: 33421261 PMCID: PMC7900945 DOI: 10.1002/jms.4696] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/16/2020] [Accepted: 12/09/2020] [Indexed: 05/07/2023]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has revolutionized the microbial identification, especially in the clinical microbiology laboratories. However, although numerous studies on the identification of microorganisms by MALDI-TOF MS have been reported previously, few studies focused on the effect of pretreatment on identification. Due to the sensitivity of MALDI-TOF MS, different preparation methods will lead to changes in microbial protein fingerprints. In this study, for evaluating a more appropriate preparation method for the clinical microbiology identification, we analyzed the performance of three sample preparation methods on two different MALDI-TOF MS systems. A total of 321 clinical isolates, 127 species, were employed in the comparative study of three different sample preparation methods including the direct colony transfer method (DCTM), the on-target extraction method (OTEM), and the in-tube extraction method (ITEM) compatible with MALDI-TOF MS. All isolates were tested on the Microflex LT and Autof ms1000 devices. The spectra were analyzed using the Bruker biotyper and the Autof ms1000 systems. The results were confirmed by 16/18S rRNA sequencing. Results reveal that the accuracies of isolates identification by Bruker biotyper successfully identified 83.8%, 96.0%, and 95.3% after performing the DCTM, OTEM, and ITEM, respectively, while the Autof ms1000 identified 97.5%, 100%, and 99.7%. These data suggested that the identification rates are comparable among the three preparation methods using the Autof ms1000 and Bruker microflex LT systems but the OTEM is more suitable and necessary for clinical application, owing to its key advantages of simplicity and accuracy.
Collapse
Affiliation(s)
- Jinghua Wang
- Department of Clinical Microbiology LaboratoryShanghai Center for Clinical LaboratoryShanghaiChina
| | - Hualiang Wang
- Department of Clinical Microbiology LaboratoryShanghai Center for Clinical LaboratoryShanghaiChina
| | - Keya Cai
- Diagnostics DepartmentAutobio Diagnostics Co., Ltd.ZhengzhouChina
| | - Peijuan Yu
- Department of Clinical LaboratorySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yajuan Liu
- Diagnostics DepartmentAutobio Diagnostics Co., Ltd.ZhengzhouChina
| | - Gaoling Zhao
- Diagnostics DepartmentAutobio Diagnostics Co., Ltd.ZhengzhouChina
| | - Rong Chen
- Department of Clinical Microbiology LaboratoryShanghai Center for Clinical LaboratoryShanghaiChina
| | - Rong Xu
- Department of Clinical Microbiology LaboratoryShanghai Center for Clinical LaboratoryShanghaiChina
| | - Maowen Yu
- Department of Clinical LaboratoryJintang First People's HospitalChengduChina
| |
Collapse
|
3
|
Popović NT, Kazazić SP, Strunjak-Perović I, Čož-Rakovac R. Differentiation of environmental aquatic bacterial isolates by MALDI-TOF MS. ENVIRONMENTAL RESEARCH 2017; 152:7-16. [PMID: 27741451 DOI: 10.1016/j.envres.2016.09.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 09/20/2016] [Accepted: 09/24/2016] [Indexed: 05/20/2023]
Abstract
Identification of bacteria in aquatic and environmental applications, for monitoring purposes and research, for health assessments and therapy considerations of farmed and free-living aquatic organisms, still relies on conventional phenotypic and biochemical protocols. Although molecular techniques based on DNA amplification and sequencing are finding ways into diagnostic laboratories, they are time-consuming, costly and difficult in the case of multiplex assays. Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) is a rapid and accurate proteomic method reliable for identification of unknown bacteria to the genus and species level. Upon extension of databases, it will certainly find its position in environmental sciences. The paper presents an overview of the principle of the method, its effectiveness in comparison with conventional and molecular identification procedures, and applicability on environmental and aquatic isolates, discussing its advantages and shortcomings, as well as possible future implementations.
Collapse
Affiliation(s)
- Natalija Topić Popović
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Rudjer Bošković Institute, Bijenička cesta 54, 10002 Zagreb, Croatia
| | - Snježana P Kazazić
- Laboratory for Mass Spectrometry, Division of Physical Chemistry, Rudjer Bošković Institute, Bijenička cesta 54, 10002 Zagreb, Croatia.
| | - Ivančica Strunjak-Perović
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Rudjer Bošković Institute, Bijenička cesta 54, 10002 Zagreb, Croatia
| | - Rozelindra Čož-Rakovac
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Rudjer Bošković Institute, Bijenička cesta 54, 10002 Zagreb, Croatia
| |
Collapse
|
4
|
Schröttner P, Gunzer F, Schüppel J, Rudolph WW. Identification of Rare Bacterial Pathogens by 16S rRNA Gene Sequencing and MALDI-TOF MS. J Vis Exp 2016:53176. [PMID: 27500532 PMCID: PMC4993432 DOI: 10.3791/53176] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
There are a number of rare and, therefore, insufficiently described bacterial pathogens which are reported to cause severe infections especially in immunocompromised patients. In most cases only few data, mostly published as case reports, are available which investigate the role of such pathogens as an infectious agent. Therefore, in order to clarify the pathogenic character of such microorganisms, it is necessary to conduct epidemiologic studies which include large numbers of these bacteria. The methods used in such a surveillance study have to meet the following criteria: the identification of the strains has to be accurate according to the valid nomenclature, they should be easy to handle (robustness), economical in routine diagnostics and they have to generate comparable results among different laboratories. Generally, there are three strategies for identifying bacterial strains in a routine setting: 1) phenotypic identification characterizing the biochemical and metabolic properties of the bacteria, 2) molecular techniques such as 16S rRNA gene sequencing and 3) mass spectrometry as a novel proteome based approach. Since mass spectrometry and molecular approaches are the most promising tools for identifying a large variety of bacterial species, these two methods are described. Advances, limitations and potential problems when using these techniques are discussed.
Collapse
Affiliation(s)
- Percy Schröttner
- Institut für Medizinische Mikrobiologie und Hygiene, Medizinische Fakultät Carl Gustav Carus, TU Dresden;
| | - Florian Gunzer
- Institut für Medizinische Mikrobiologie und Hygiene, Medizinische Fakultät Carl Gustav Carus, TU Dresden
| | - Jana Schüppel
- Institut für Virologie, Medizinische Fakultät Carl Gustav Carus, TU Dresden
| | - Wolfram W Rudolph
- Institut für Virologie, Medizinische Fakultät Carl Gustav Carus, TU Dresden
| |
Collapse
|
5
|
Pusztahelyi T, Szabó J, Dombrádi Z, Kovács S, Pócsi I. Foodborne Listeria monocytogenes: A Real Challenge in Quality Control. SCIENTIFICA 2016; 2016:5768526. [PMID: 27239376 PMCID: PMC4867065 DOI: 10.1155/2016/5768526] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/14/2016] [Indexed: 05/30/2023]
Abstract
Listeria monocytogenes is a foodborne pathogen, and the detection and differentiation of this bacterium from the nonpathogenic Listeria species are of great importance to the food industry. Differentiation of Listeria species is very difficult, even with the sophisticated MALDI-TOF MS technique because of the close genetic relationship of the species and the usual gene transfer. The present paper emphasizes the difficulties of the differentiation through the standardized detection and confirmation according to ISO 11290-1:1996 and basic available L. monocytogenes detection methods and tests (such as API Listeria test, MALDI-TOF MS analysis, and hly gene PCR). With the increase of reports on the pathogenesis of atypical Listeria strains in humans, the significance of species level determination has become questionable, especially in food quality control, and the detection of pathogenic characteristics seems to be more relevant.
Collapse
Affiliation(s)
- Tünde Pusztahelyi
- Central Laboratory, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Út 138, 4032 Debrecen, Hungary
| | - Judit Szabó
- Department of Medical Microbiology, Clinical Centre, University of Debrecen, Nagyerdei Körút 98, 4032 Debrecen, Hungary
| | - Zsuzsanna Dombrádi
- Department of Medical Microbiology, Clinical Centre, University of Debrecen, Nagyerdei Körút 98, 4032 Debrecen, Hungary
| | - Szilvia Kovács
- Central Laboratory, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Út 138, 4032 Debrecen, Hungary
| | - István Pócsi
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem Tér 1, 4032 Debrecen, Hungary
| |
Collapse
|
6
|
Abstract
Real-time PCR is the traditional face of nucleic acid detection in the diagnostic microbiology laboratory and is now generally regarded as robust enough to be widely adopted. Methods based on nucleic acid detection of this type are bringing increased accuracy to diagnosis in areas where culture is difficult and/or expensive, and these methods are often effective partners to other rapid molecular diagnostic tools such as matrix-assisted laser desorption ionisation-time of flight mass spectrometry (MALDI-TOF MS). This change in practice has particularly affected the recognition of viruses and fastidious or antibiotic-exposed bacteria, but has been also shown to be effective in the recognition of troublesome or specialised phenotypes such as antiviral resistance and transmissible antibiotic resistance in the Enterobacteriaceae. Quantitation and high-intensity sequencing (of multiple whole genomes) has brought new opportunities as well as new challenges to the microbiology community. Diagnostic microbiologists currently training might be expected to deal less with the culture-based techniques of the last half-century than with the high-volume data and complex analyses of the next.
Collapse
|
7
|
Abstract
Rapid, accurate diagnostic laboratory tests are needed to improve clinical outcomes of invasive fungal disease (IFD). Traditional direct microscopy, culture and histological techniques constitute the 'gold standard' against which newer tests are judged. Molecular diagnostic methods, whether broad-range or fungal-specific, have great potential to enhance sensitivity and speed of IFD diagnosis, but have varying specificities. The use of PCR-based assays, DNA sequencing, and other molecular methods including those incorporating proteomic approaches such as matrix-assisted laser desorption ionisation-time of flight mass spectroscopy (MALDI-TOF MS) have shown promising results. These are used mainly to complement conventional methods since they require standardisation before widespread implementation can be recommended. None are incorporated into diagnostic criteria for defining IFD. Commercial assays may assist standardisation. This review provides an update of molecular-based diagnostic approaches applicable to biological specimens and fungal cultures in microbiology laboratories. We focus on the most common pathogens, Candida and Aspergillus, and the mucormycetes. The position of molecular-based approaches in the detection of azole and echinocandin antifungal resistance is also discussed.
Collapse
|
8
|
Mwaigwisya S, Assiri RAM, O'Grady J. Emerging commercial molecular tests for the diagnosis of bloodstream infection. Expert Rev Mol Diagn 2015; 15:681-92. [PMID: 25866124 DOI: 10.1586/14737159.2015.1029459] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bloodstream infection (BSI) by microorganisms can lead to sepsis. This condition has a high mortality rate, which rises significantly with delays in initiation of appropriate antimicrobial treatment. Current culture methods for diagnosing BSI have long turnaround times and poor clinical sensitivity. While clinicians wait for culture diagnosis, patients are treated empirically, which can result in inappropriate treatment, undesirable side effects and contribute to drug resistance development. Molecular diagnostics assays that target pathogen DNA can identify pathogens and resistance markers within hours. Early diagnosis improves antibiotic stewardship and is associated with favorable clinical outcomes. Nonetheless, limitations of current molecular diagnostic methods are substantial. This article reviews recent commercially available molecular methods that use pathogen DNA to diagnose BSI, either by testing positive blood cultures or directly testing patient blood. We critically assess these tests and their application in clinical microbiology. A view of future directions in BSI diagnosis is also provided.
Collapse
|
9
|
Bourassa L, Butler-Wu SM. MALDI-TOF Mass Spectrometry for Microorganism Identification. METHODS IN MICROBIOLOGY 2015. [DOI: 10.1016/bs.mim.2015.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
The many facets of Raman spectroscopy for biomedical analysis. Anal Bioanal Chem 2014; 407:699-717. [DOI: 10.1007/s00216-014-8311-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/20/2014] [Accepted: 10/31/2014] [Indexed: 12/13/2022]
|
11
|
Donoghue S, Vekic D, Wehrhahn M, Whitfeld M. Staphylococcus lugdunensis: case report and discussion. Australas J Dermatol 2014; 55:301-3. [DOI: 10.1111/ajd.12209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stephen Donoghue
- Skin and Cancer Foundation Darlinghurst Sydney New South Wales Australia
| | - Dunja Vekic
- St Vincent's Hospital Sydney New South Wales Australia
| | | | - Margot Whitfeld
- Skin and Cancer Foundation Darlinghurst Sydney New South Wales Australia
- St Vincent's Hospital Sydney New South Wales Australia
| |
Collapse
|
12
|
CIEF separation, UV detection, and quantification of ampholytic antibiotics and bacteria from different matrices. Anal Bioanal Chem 2014; 406:6285-96. [DOI: 10.1007/s00216-014-8053-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/25/2014] [Accepted: 07/18/2014] [Indexed: 01/24/2023]
|
13
|
The Genus Scedosporium and Pseudallescheria: Current Challenges in Laboratory Diagnosis. CURRENT CLINICAL MICROBIOLOGY REPORTS 2014. [DOI: 10.1007/s40588-014-0001-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
de Almeida Júnior JN, Figueiredo DSY, Toubas D, Del Negro GMB, Motta AL, Rossi F, Guitard J, Morio F, Bailly E, Angoulvant A, Mazier D, Benard G, Hennequin C. Usefulness of matrix-assisted laser desorption ionisation-time-of-flight mass spectrometry for identifying clinical Trichosporon isolates. Clin Microbiol Infect 2014; 20:784-90. [PMID: 24355037 DOI: 10.1111/1469-0691.12502] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 11/12/2013] [Accepted: 12/10/2013] [Indexed: 11/27/2022]
Abstract
Trichosporon spp. have recently emerged as significant human pathogens. Identification of these species is important, both for epidemiological purposes and for therapeutic management, but conventional identification based on biochemical traits is hindered by the lack of updates to the species databases provided by the different commercial systems. In this study, 93 strains, or isolates, belonging to 16 Trichosporon species were subjected to both molecular identification using IGS1 gene sequencing and matrix-assisted laser desorption ionisation-time-of-flight (MALDI-TOF) analysis. Our results confirmed the limits of biochemical systems for identifying Trichosporon species, because only 27 (36%) of the isolates were correctly identified using them. Different protein extraction procedures were evaluated, revealing that incubation for 30 min with 70% formic acid yields the spectra with the highest scores. Among the six different reference spectra databases that were tested, a specific one composed of 18 reference strains plus seven clinical isolates allowed the correct identification of 67 of the 68 clinical isolates (98.5%). Although until recently it has been less widely applied to the basidiomycetous fungi, MALDI-TOF appears to be a valuable tool for identifying clinical Trichosporon isolates at the species level.
Collapse
Affiliation(s)
- J N de Almeida Júnior
- Central Laboratory Division-LIM03, Hospital das Clínicas da FMUSP, São Paulo, Brazil; INSERM, U945, Paris, France; Mycology Laboratory-LIM-53, Instituto de Medicina Tropical, FMUSP, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kiechle FL, Arcenas RC, Rogers LC. Establishing benchmarks and metrics for disruptive technologies, inappropriate and obsolete tests in the clinical laboratory. Clin Chim Acta 2014; 427:131-6. [PMID: 23732401 PMCID: PMC7124233 DOI: 10.1016/j.cca.2013.05.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 05/24/2013] [Accepted: 05/25/2013] [Indexed: 12/31/2022]
Abstract
Benchmarks and metrics related to laboratory test utilization are based on evidence-based medical literature that may suffer from a positive publication bias. Guidelines are only as good as the data reviewed to create them. Disruptive technologies require time for appropriate use to be established before utilization review will be meaningful. Metrics include monitoring the use of obsolete tests and the inappropriate use of lab tests. Test utilization by clients in a hospital outreach program can be used to monitor the impact of new clients on lab workload. A multi-disciplinary laboratory utilization committee is the most effective tool for modifying bad habits, and reviewing and approving new tests for the lab formulary or by sending them out to a reference lab.
Collapse
Affiliation(s)
- Frederick L Kiechle
- Memorial Healthcare System, Pathology Consultants of South Broward, LLP, Department of Pathology, 3501 Johnson Street, Hollywood, FL 33021, USA.
| | | | | |
Collapse
|
16
|
Patel VL, Kaufman DR, Kannampallil TG. Diagnostic Reasoning and Decision Making in the Context of Health Information Technology. ACTA ACUST UNITED AC 2013. [DOI: 10.1177/1557234x13492978] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Diagnostic reasoning and medical decision making have been focal areas of research in the fields of medical education, cognition, and artificial intelligence in medicine. Drawing on several decades worth of research, we propose an integrated summary of prior research on diagnostic reasoning and decision making—in terms of both historical development and theoretical shifts. We also characterize the changes in research and theory resulting from the incorporation and adoption of health information technology in the clinical work place. In this paper, we differentiate between the various forms of diagnostic reasoning and trace the evolution of the various models of reasoning, including knowledge-based, exemplar-based, and visual strategies. We also discuss the effect of clinical expertise on reasoning processes. Within the medical decision-making research, we delineate the various approaches highlighting decision-making errors that arise due to the nature of heuristics and biases and other factors. Although there has been significant progress in our understanding, there is still a need for greater theoretical integration of disparate empirical phenomena. Specifically, there is a need to reconcile the various characterizations of reasoning and to evaluate the similarity and differences in the context of current health care practice. Finally, we discuss the role of human factors research in the study of clinical environments and also in relation to devising approaches and methodologies for understanding, evaluating, and supporting the diagnostic reasoning and decision processes.
Collapse
|
17
|
Chudobova D, Nejdl L, Gumulec J, Krystofova O, Rodrigo MAM, Kynicky J, Ruttkay-Nedecky B, Kopel P, Babula P, Adam V, Kizek R. Complexes of silver(I) ions and silver phosphate nanoparticles with hyaluronic acid and/or chitosan as promising antimicrobial agents for vascular grafts. Int J Mol Sci 2013; 14:13592-614. [PMID: 23812079 PMCID: PMC3742205 DOI: 10.3390/ijms140713592] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/03/2013] [Accepted: 06/05/2013] [Indexed: 11/16/2022] Open
Abstract
Polymers are currently widely used to replace a variety of natural materials with respect to their favourable physical and chemical properties, and due to their economic advantage. One of the most important branches of application of polymers is the production of different products for medical use. In this case, it is necessary to face a significant disadvantage of polymer products due to possible and very common colonization of the surface by various microorganisms that can pose a potential danger to the patient. One of the possible solutions is to prepare polymer with antibacterial/antimicrobial properties that is resistant to bacterial colonization. The aim of this study was to contribute to the development of antimicrobial polymeric material ideal for covering vascular implants with subsequent use in transplant surgery. Therefore, the complexes of polymeric substances (hyaluronic acid and chitosan) with silver nitrate or silver phosphate nanoparticles were created, and their effects on gram-positive bacterial culture of Staphylococcus aureus were monitored. Stages of formation of complexes of silver nitrate and silver phosphate nanoparticles with polymeric compounds were characterized using electrochemical and spectrophotometric methods. Furthermore, the antimicrobial activity of complexes was determined using the methods of determination of growth curves and zones of inhibition. The results of this study revealed that the complex of chitosan, with silver phosphate nanoparticles, was the most suitable in order to have an antibacterial effect on bacterial culture of Staphylococcus aureus. Formation of this complex was under way at low concentrations of chitosan. The results of electrochemical determination corresponded with the results of spectrophotometric methods and verified good interaction and formation of the complex. The complex has an outstanding antibacterial effect and this effect was of several orders higher compared to other investigated complexes.
Collapse
Affiliation(s)
- Dagmar Chudobova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (D.C.); (L.N.); (M.A.M.R.); (B.R.-N.); (P.K.); (V.A.)
| | - Lukas Nejdl
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (D.C.); (L.N.); (M.A.M.R.); (B.R.-N.); (P.K.); (V.A.)
| | - Jaromir Gumulec
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mails: (J.G.); (P.B.)
| | - Olga Krystofova
- Karel Englis College, Sujanovo nam. 356/1, CZ-602 00, Brno, Czech Republic; E-Mails: (O.K.); (J.K.)
| | - Miguel Angel Merlos Rodrigo
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (D.C.); (L.N.); (M.A.M.R.); (B.R.-N.); (P.K.); (V.A.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mails: (J.G.); (P.B.)
| | - Jindrich Kynicky
- Karel Englis College, Sujanovo nam. 356/1, CZ-602 00, Brno, Czech Republic; E-Mails: (O.K.); (J.K.)
| | - Branislav Ruttkay-Nedecky
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (D.C.); (L.N.); (M.A.M.R.); (B.R.-N.); (P.K.); (V.A.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mails: (J.G.); (P.B.)
| | - Pavel Kopel
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (D.C.); (L.N.); (M.A.M.R.); (B.R.-N.); (P.K.); (V.A.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mails: (J.G.); (P.B.)
| | - Petr Babula
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mails: (J.G.); (P.B.)
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (D.C.); (L.N.); (M.A.M.R.); (B.R.-N.); (P.K.); (V.A.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mails: (J.G.); (P.B.)
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (D.C.); (L.N.); (M.A.M.R.); (B.R.-N.); (P.K.); (V.A.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mails: (J.G.); (P.B.)
| |
Collapse
|
18
|
Ngounou Wetie AG, Sokolowska I, Wormwood K, Beglinger K, Michel TM, Thome J, Darie CC, Woods AG. Mass spectrometry for the detection of potential psychiatric biomarkers. J Mol Psychiatry 2013; 1:8. [PMID: 25408901 PMCID: PMC4223884 DOI: 10.1186/2049-9256-1-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 02/12/2013] [Indexed: 12/20/2022] Open
Abstract
The search for molecules that can act as potential biomarkers is increasing in the scientific community, including in the field of psychiatry. The field of proteomics is evolving and its indispensability for identifying biomarkers is clear. Among proteomic tools, mass spectrometry is the core technique for qualitative and quantitative identification of protein markers. While significant progress has been made in the understanding of biomarkers for neurodegenerative diseases such as Alzheimer's disease, multiple sclerosis and Parkinson's disease, psychiatric disorders have not been as extensively investigated. Recent and successful applications of mass spectrometry-based proteomics in fields such as cardiovascular disease, cancer, infectious diseases and neurodegenerative disorders suggest a similar path for psychiatric disorders. In this brief review, we describe mass spectrometry and its use in psychiatric biomarker research and highlight some of the possible challenges of undertaking this type of work. Further, specific examples of candidate biomarkers are highlighted. A short comparison of proteomic with genomic methods for biomarker discovery research is presented. In summary, mass spectrometry-based techniques may greatly facilitate ongoing efforts to understand molecular mechanisms of psychiatric disorders.
Collapse
Affiliation(s)
- Armand G Ngounou Wetie
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810 USA
| | - Izabela Sokolowska
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810 USA
| | - Kelly Wormwood
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810 USA
| | - Katherine Beglinger
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810 USA
| | - Tanja Maria Michel
- Department of Psychiatry, University of Rostock, Rostock, Gehlsheimer Straße 20, D-18147 Germany
| | - Johannes Thome
- Department of Psychiatry, University of Rostock, Rostock, Gehlsheimer Straße 20, D-18147 Germany ; College of Medicine, Swansea University, Singleton Park, Swansea, SA2 8PP UK
| | - Costel C Darie
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810 USA
| | - Alisa G Woods
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810 USA ; Neuropsychology Clinic and Psychoeducation Services, SUNY Plattsburgh, 101 Broad St, Plattsburgh, 12901 NY USA
| |
Collapse
|
19
|
Wu Y, Li L. Development of Isotope Labeling Liquid Chromatography–Mass Spectrometry for Metabolic Profiling of Bacterial Cells and Its Application for Bacterial Differentiation. Anal Chem 2013; 85:5755-63. [DOI: 10.1021/ac400330z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yiman Wu
- Department of Chemistry, University of Alberta Edmonton, Alberta T6G 2G2, Canada
| | - Liang Li
- Department of Chemistry, University of Alberta Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
20
|
Malainine SM, Moussaoui W, Prévost G, Scheftel JM, Mimouni R. Rapid identification of Vibrio parahaemolyticus isolated from shellfish, sea water and sediments of the Khnifiss lagoon, Morocco, by MALDI-TOF mass spectrometry. Lett Appl Microbiol 2013; 56:379-86. [PMID: 23464928 DOI: 10.1111/lam.12060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/13/2013] [Accepted: 02/19/2013] [Indexed: 11/30/2022]
Abstract
We establish the presence of Vibrio parahaemolyticus and deepen the comparison of isolates using MALDI-TOF MS for the typing of isolates originating from the Khnifiss lagoon (Morocco). Amongst 48 samples from sea water, sediment and shellfish isolated from different sites of Khnifiss lagoon, Morocco, we obtained 22 isolates of V. parahaemolyticus identified by Vitek 2™ System (bioMérieux) and MALDI Biotyper™ (Bruker Daltonics). All isolates were highly resistant to ampicillin and ticarcillin, moderately resistant to cefalotin, but sensitive to 16 other antimicrobials tested. MALDI-TOF MS was used to discriminate between closely related environmental strains of V. parahaemolyticus. A clustering and distribution based on MALDI-TOF spectra were generated using the BioTyper 1.1™ software. Despite low diversity in regard to the biochemical characteristics and antimicrobial resistance, the isolates evoke a larger biodiversity when analysed through mass spectra of abundant proteins. Different evaluations of a cut-off value showed that, when placed at a 10% threshold of the whole diversity, isolates differed by at least three mass peaks.
Collapse
Affiliation(s)
- S M Malainine
- Faculty of Sciences, Laboratory of Biotechnology & Valorisation of Natural Resources, University Ibn Zohr, Agadir, Morocco.
| | | | | | | | | |
Collapse
|