1
|
Yoon B, Blokpoel R, Ibn Hadj Hassine C, Ito Y, Albert K, Aczon M, Kneyber MCJ, Emeriaud G, Khemani RG. An overview of patient-ventilator asynchrony in children. Expert Rev Respir Med 2025:1-13. [PMID: 40163381 DOI: 10.1080/17476348.2025.2487165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/19/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
INTRODUCTION Mechanically ventilated children often have patient-ventilator asynchrony (PVA). When a ventilated patient has spontaneous effort, the ventilator attempts to synchronize with the patient, but PVA represents a mismatch between patient respiratory effort and ventilator delivered breaths. AREAS COVERED This review will focus on subtypes of patient ventilator asynchrony, methods to detect or measure PVA, risk factors for and characteristics of patients with PVA subtypes, potential clinical implications, treatment or prevention strategies, and future areas for research. Throughout this review, we will provide pediatric specific considerations. EXPERT OPINION PVA in pediatric patients supported by mechanical ventilation occurs frequently and is understudied. Pediatric patients have unique physiologic and pathophysiologic characteristics which affect PVA. While recognition of PVA and its subtypes is important for bedside clinicians, the clinical implications and risks versus benefits of treatment targeted at reducing PVA remain unknown. Future research should focus on harmonizing PVA terminology, refinement of automated detection technologies, determining which forms of PVA are harmful, and development of PVA-specific ventilator interventions.
Collapse
Affiliation(s)
- Benjamin Yoon
- Section of Critical Care Medicine, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Robert Blokpoel
- Department of Paediatrics, Division of Paediatric Intensive Care, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Chatila Ibn Hadj Hassine
- Pediatric Intensive Care Unit, CHU Sainte Justine, Universite ́ de Montre ́al, Montreal, Quebec C, Canada
| | - Yukie Ito
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | - Kevin Albert
- Pediatric Intensive Care Unit, CHU Sainte Justine, Universite ́ de Montre ́al, Montreal, Quebec C, Canada
| | - Melissa Aczon
- Laura P. and Leland K. Whittier Virtual Pediatric Intensive Care Unit, Department of Anesthesiology Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Martin C J Kneyber
- Department of Paediatrics, Division of Paediatric Intensive Care, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Critical Care, Anaesthesiology, Peri-Operative Medicine and Emergency Medicine (CAPE), University of Groningen, Groningen, The Netherlands
| | - Guillaume Emeriaud
- Pediatric Intensive Care Unit, CHU Sainte Justine, Universite ́ de Montre ́al, Montreal, Quebec C, Canada
| | - Robinder G Khemani
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Blokpoel RGT, Brandsema RBR, Koopman AA, van Dijk J, Kneyber MCJ. Respiratory entrainment related reverse triggering in mechanically ventilated children. Respir Res 2024; 25:142. [PMID: 38528524 DOI: 10.1186/s12931-024-02749-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/25/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND The underlying pathophysiological pathways how reverse triggering is being caused are not fully understood. Respiratory entrainment may be one of these mechanisms, but both terms are used interchangeably. We sought to characterize reverse triggering and the relationship with respiratory entrainment among mechanically ventilated children with and without acute lung injury. METHODS We performed a secondary phyiology analysis of two previously published data sets of invasively mechanically ventilated children < 18 years with and without lung injury mechanically ventilated in a continuous or intermittent mandatory ventilation mode. Ventilator waveforms, electrical activity of the diaphragm measured with surface electromyography and oesophageal tracings were analyzed for entrained and non-entrained reverse triggered breaths. RESULTS In total 102 measurements (3110 min) from 67 patients (median age 4.9 [1.8 ; 19,1] months) were analyzed. Entrained RT was identified in 12 (12%) and non-entrained RT in 39 (38%) recordings. Breathing variability for entrained RT breaths was lower compared to non-entrained RT breaths. We did not observe breath stacking during entrained RT. Double triggering often occurred during non-entrained RT and led to an increased tidal volume. Patients with respiratory entrainment related RT had a shorter duration of MV and length of PICU stay. CONCLUSIONS Reverse triggering is not one entity but a clinical spectrum with different mechanisms and consequences. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Robert G T Blokpoel
- Department of Paediatrics, Division of Paediatric Intensive Care, Beatrix Children's Hospital, University Medical Center Groningen, P.O. Box 30.001 9700 RB, Groningen, CA 62, the Netherlands.
| | - Ruben B R Brandsema
- Department of Paediatrics, Division of Paediatric Intensive Care, Beatrix Children's Hospital, University Medical Center Groningen, P.O. Box 30.001 9700 RB, Groningen, CA 62, the Netherlands
| | - Alette A Koopman
- Department of Paediatrics, Division of Paediatric Intensive Care, Beatrix Children's Hospital, University Medical Center Groningen, P.O. Box 30.001 9700 RB, Groningen, CA 62, the Netherlands
| | - Jefta van Dijk
- Department of Paediatrics, Division of Paediatric Intensive Care, Beatrix Children's Hospital, University Medical Center Groningen, P.O. Box 30.001 9700 RB, Groningen, CA 62, the Netherlands
| | - Martin C J Kneyber
- Department of Paediatrics, Division of Paediatric Intensive Care, Beatrix Children's Hospital, University Medical Center Groningen, P.O. Box 30.001 9700 RB, Groningen, CA 62, the Netherlands
- Critical Care, Anesthesia, Peri-operative medicine & Emergency Medicine (CAPE), University of Groningen, Groningen, the Netherlands
| |
Collapse
|
3
|
Vedrenne-Cloquet M, Khirani S, Griffon L, Collignon C, Renolleau S, Fauroux B. Respiratory effort during noninvasive positive pressure ventilation and continuous positive airway pressure in severe acute viral bronchiolitis. Pediatr Pulmonol 2023. [PMID: 37097049 DOI: 10.1002/ppul.26424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/22/2023] [Accepted: 03/31/2023] [Indexed: 04/26/2023]
Abstract
OBJECTIVES To assess if noninvasive positive pressure ventilation (NIPPV) is associated with a greater reduction in respiratory effort as compared to continuous positive airway pressure (CPAP) during severe acute bronchiolitis, with both supports set either clinically or physiologically. METHODS Twenty infants (median [IQR] age 1.2 [0.9; 3.2] months) treated <24 h with noninvasive respiratory support (CPAP Clin, set at 7 cmH2 O, or NIPPV Clin) for bronchiolitis were included in a prospective single-center crossover study. Esogastric pressures were measured first with the baseline support, then with the other support. For each support, recordings were performed with the clinical setting and a physiological setting (CPAP Phys and NIPPV Phys), aiming at normalising respiratory effort. Patients were then treated with the optimal support. The primary outcome was the greatest reduction in esophageal pressure-time product (PTPES /min). Other outcomes included improvement of the other components of the respiratory effort. RESULTS NIPPV Clin and Phys were associated with a lower PTPES /min (164 [105; 202] and 106 [78; 161] cmH2 O s/min, respectively) than CPAP Clin (178 [145; 236] cmH2 O s/min; p = 0.01 and 2 × 10-4 , respectively). NIPPV Clin and Phys were also associated with a significant reduction of all other markers of respiratory effort as compared to CPAP Clin. PTPES /min with NIPPV (Clin or Phys) was not different from PTPES /min with CPAP Phys. There was no significant difference between physiological and clinical settings. CONCLUSION NIPPV is associated with a significant reduction in respiratory effort as compared to CPAP set at +7 cmH2 O in infants with severe acute bronchiolitis. CPAP Phys performs as well as NIPPV Clin.
Collapse
Affiliation(s)
- Meryl Vedrenne-Cloquet
- Pediatric Noninvasive Ventilation and Sleep Unit, AP-HP, Hôpital Necker Enfants-Malades, Paris, France
- Université de Paris, EA, 7330 VIFASOM, Paris, France
- Pediatric Intensive Care Unit, AP-HP, CHU Necker-Enfants Malades, Paris, France
| | - Sonia Khirani
- Pediatric Noninvasive Ventilation and Sleep Unit, AP-HP, Hôpital Necker Enfants-Malades, Paris, France
- Université de Paris, EA, 7330 VIFASOM, Paris, France
- ASV Santé, Gennevilliers, France
| | - Lucie Griffon
- Pediatric Noninvasive Ventilation and Sleep Unit, AP-HP, Hôpital Necker Enfants-Malades, Paris, France
- Université de Paris, EA, 7330 VIFASOM, Paris, France
| | - Charlotte Collignon
- Pediatric Intensive Care Unit, AP-HP, CHU Necker-Enfants Malades, Paris, France
| | - Sylvain Renolleau
- Université de Paris, EA, 7330 VIFASOM, Paris, France
- Pediatric Intensive Care Unit, AP-HP, CHU Necker-Enfants Malades, Paris, France
| | - Brigitte Fauroux
- Pediatric Noninvasive Ventilation and Sleep Unit, AP-HP, Hôpital Necker Enfants-Malades, Paris, France
- Université de Paris, EA, 7330 VIFASOM, Paris, France
| |
Collapse
|
4
|
Koopman AA, van Dijk J, Oppersma E, Blokpoel RGT, Kneyber MCJ. Surface electromyography to quantify neuro-respiratory drive and neuro-mechanical coupling in mechanically ventilated children. Respir Res 2023; 24:77. [PMID: 36915106 PMCID: PMC10010013 DOI: 10.1186/s12931-023-02374-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND The patient's neuro-respiratory drive, measured as electrical activity of the diaphragm (EAdi), quantifies the mechanical load on the respiratory muscles. It correlates with respiratory effort but requires a dedicated esophageal catheter. Transcutaneous (surface) monitoring of respiratory muscle electromyographic (sEMG) signals may be considered a suitable alternative to EAdi because of its non-invasive character, with the additional benefit that it allows for simultaneously monitoring of other respiratory muscles. We therefore sought to study the neuro-respiratory drive and timing of inspiratory muscles using sEMG in a cohort of children enrolled in a pediatric ventilation liberation trial. The neuro-mechanical coupling, relating the pressure generated by the inspiratory muscles to the sEMG signals of these muscles, was also calculated. METHODS This is a secondary analysis of data from a randomized cross-over trial in ventilated patients aged < 5 years. sEMG recordings of the diaphragm and parasternal intercostal muscles (ICM), esophageal pressure tracings and ventilator scalars were simultaneously recorded during continuous spontaneous ventilation and pressure controlled-intermittent mandatory ventilation, and at three levels of pressure support. Neuro-respiratory drive, timing of diaphragm and ICM relative to the mechanical ventilator's inspiration and neuro-mechanical coupling were quantified. RESULTS Twenty-nine patients were included (median age: 5.9 months). In response to decreasing pressure support, both amplitude of sEMG (diaphragm: p = 0.001 and ICM: p = 0.002) and neuro-mechanical efficiency indices increased (diaphragm: p = 0.05 and ICM: p < 0.001). Poor correlations between neuro-respiratory drive and respiratory effort were found, with R2: 0.088 [0.021-0.152]. CONCLUSIONS sEMG allows for the quantification of the electrical activity of the diaphragm and ICM in mechanically ventilated children. Both neuro-respiratory drive and neuro-mechanical efficiency increased in response to lower inspiratory assistance. There was poor correlation between neuro-respiratory drive and respiratory effort. TRIAL REGISTRATION ClinicalTrials.gov ID NCT05254691. Registered 24 February 2022, registered retrospectively.
Collapse
Affiliation(s)
- Alette A Koopman
- Division of Paediatric Critical Care Medicine, Department of Paediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| | - Jefta van Dijk
- Division of Paediatric Critical Care Medicine, Department of Paediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Eline Oppersma
- Cardiovascular and Respiratory Physiology Group, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Robert G T Blokpoel
- Division of Paediatric Critical Care Medicine, Department of Paediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Martin C J Kneyber
- Division of Paediatric Critical Care Medicine, Department of Paediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.,Critical Care, Anaesthesiology, Peri-Operative & Emergency Medicine (CAPE), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Bakkes T, van Diepen A, De Bie A, Montenij L, Mojoli F, Bouwman A, Mischi M, Woerlee P, Turco S. Automated detection and classification of patient-ventilator asynchrony by means of machine learning and simulated data. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 230:107333. [PMID: 36640603 DOI: 10.1016/j.cmpb.2022.107333] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/20/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND OBJECTIVE Mechanical ventilation is a lifesaving treatment for critically ill patients in an Intensive Care Unit (ICU) or during surgery. However, one potential harm of mechanical ventilation is related to patient-ventilator asynchrony (PVA). PVA can cause discomfort to the patient, damage to the lungs, and an increase in the length of stay in the ICU and on the ventilator. Therefore, automated detection algorithms are being developed to detect and classify PVAs, with the goal of optimizing mechanical ventilation. However, the development of these algorithms often requires large labeled datasets; these are generally difficult to obtain, as their collection and labeling is a time-consuming and labor-intensive task, which needs to be performed by clinical experts. METHODS In this work, we aimed to develop a computer algorithm for the automatic detection and classification of PVA. The algorithm employs a neural network for the detection of the breath of the patient. The development of the algorithm was aided by simulations from a recently published model of the patient-ventilator interaction. RESULTS The proposed method was effective, providing an algorithm with reliable detection and classification results of over 90% accuracy. Besides presenting a detection and classification algorithm for a variety of PVAs, here we show that using simulated data in combination with clinical data increases the variability in the training dataset, leading to a gain in performance and generalizability. CONCLUSIONS In the future, these algorithms can be utilized to gain a better understanding of the clinical impact of PVAs and help clinicians to better monitor their ventilation strategies.
Collapse
Affiliation(s)
- Tom Bakkes
- Eindhoven University of Technology, Groene Loper 19, 5612 AP Eindhoven, the Netherlands.
| | - Anouk van Diepen
- Eindhoven University of Technology, Groene Loper 19, 5612 AP Eindhoven, the Netherlands
| | - Ashley De Bie
- Catharina Ziekenhuis Eindhoven, Michelangelolaan 2, 5623 EJ Eindhoven, the Netherlands
| | - Leon Montenij
- Catharina Ziekenhuis Eindhoven, Michelangelolaan 2, 5623 EJ Eindhoven, the Netherlands
| | - Francesco Mojoli
- Department of Diagnostic, University of Pavia, S.da Nuova, 65, 27100 Pavia, Italy
| | - Arthur Bouwman
- Catharina Ziekenhuis Eindhoven, Michelangelolaan 2, 5623 EJ Eindhoven, the Netherlands
| | - Massimo Mischi
- Eindhoven University of Technology, Groene Loper 19, 5612 AP Eindhoven, the Netherlands
| | - Pierre Woerlee
- Eindhoven University of Technology, Groene Loper 19, 5612 AP Eindhoven, the Netherlands
| | - Simona Turco
- Eindhoven University of Technology, Groene Loper 19, 5612 AP Eindhoven, the Netherlands
| |
Collapse
|
6
|
Vedrenne-Cloquet M, Khirani S, Khemani R, Lesage F, Oualha M, Renolleau S, Chiumello D, Demoule A, Fauroux B. Pleural and transpulmonary pressures to tailor protective ventilation in children. Thorax 2023; 78:97-105. [PMID: 35803726 DOI: 10.1136/thorax-2021-218538] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/12/2022] [Indexed: 02/07/2023]
Abstract
This review aims to: (1) describe the rationale of pleural (PPL) and transpulmonary (PL) pressure measurements in children during mechanical ventilation (MV); (2) discuss its usefulness and limitations as a guide for protective MV; (3) propose future directions for paediatric research. We conducted a scoping review on PL in critically ill children using PubMed and Embase search engines. We included peer-reviewed studies using oesophageal (PES) and PL measurements in the paediatric intensive care unit (PICU) published until September 2021, and excluded studies in neonates and patients treated with non-invasive ventilation. PL corresponds to the difference between airway pressure and PPL Oesophageal manometry allows measurement of PES, a good surrogate of PPL, to estimate PL directly at the bedside. Lung stress is the PL, while strain corresponds to the lung deformation induced by the changing volume during insufflation. Lung stress and strain are the main determinants of MV-related injuries with PL and PPL being key components. PL-targeted therapies allow tailoring of MV: (1) Positive end-expiratory pressure (PEEP) titration based on end-expiratory PL (direct measurement) may be used to avoid lung collapse in the lung surrounding the oesophagus. The clinical benefit of such strategy has not been demonstrated yet. This approach should consider the degree of recruitable lung, and may be limited to patients in which PEEP is set to achieve an end-expiratory PL value close to zero; (2) Protective ventilation based on end-inspiratory PL (derived from the ratio of lung and respiratory system elastances), might be used to limit overdistention and volutrauma by targeting lung stress values < 20-25 cmH2O; (3) PPL may be set to target a physiological respiratory effort in order to avoid both self-induced lung injury and ventilator-induced diaphragm dysfunction; (4) PPL or PL measurements may contribute to a better understanding of cardiopulmonary interactions. The growing cardiorespiratory system makes children theoretically more susceptible to atelectrauma, myotrauma and right ventricle failure. In children with acute respiratory distress, PPL and PL measurements may help to characterise how changes in PEEP affect PPL and potentially haemodynamics. In the PICU, PPL measurement to estimate respiratory effort is useful during weaning and ventilator liberation. Finally, the use of PPL tracings may improve the detection of patient ventilator asynchronies, which are frequent in children. Despite these numerous theoritcal benefits in children, PES measurement is rarely performed in routine paediatric practice. While the lack of robust clincal data partially explains this observation, important limitations of the existing methods to estimate PPL in children, such as their invasiveness and technical limitations, associated with the lack of reference values for lung and chest wall elastances may also play a role. PPL and PL monitoring have numerous potential clinical applications in the PICU to tailor protective MV, but its usefulness is counterbalanced by technical limitations. Paediatric evidence seems currently too weak to consider oesophageal manometry as a routine respiratory monitoring. The development and validation of a noninvasive estimation of PL and multimodal respiratory monitoring may be worth to be evaluated in the future.
Collapse
Affiliation(s)
- Meryl Vedrenne-Cloquet
- Pediatric intensive care unit, Necker-Enfants Malades Hospitals, Paris, France .,Université de Paris Cité, VIFASOM, Paris, France.,Pediatric Non Invasive Ventilation Unit, Necker-Enfants Malades Hospitals, Paris, France
| | - Sonia Khirani
- Pediatric Non Invasive Ventilation Unit, Necker-Enfants Malades Hospitals, Paris, France.,ASV Santé, Genevilliers, France
| | - Robinder Khemani
- Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Fabrice Lesage
- Pediatric intensive care unit, Necker-Enfants Malades Hospitals, Paris, France
| | - Mehdi Oualha
- Pediatric intensive care unit, Necker-Enfants Malades Hospitals, Paris, France
| | - Sylvain Renolleau
- Pediatric intensive care unit, Necker-Enfants Malades Hospitals, Paris, France
| | - Davide Chiumello
- Dipartimento di Anestesia, Rianimazione e Terapia del Dolore, Fondazione, IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Alexandre Demoule
- Service de Médecine Intensive et Réanimation (Département R3S), AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Paris, France.,UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005 Paris, Sorbonne Université, INSERM, Paris, France
| | - Brigitte Fauroux
- Université de Paris Cité, VIFASOM, Paris, France.,Pediatric Non Invasive Ventilation Unit, Necker-Enfants Malades Hospitals, Paris, France
| |
Collapse
|
7
|
Early Neuromuscular Blockade in Moderate-to-Severe Pediatric Acute Respiratory Distress Syndrome. Crit Care Med 2022; 50:e445-e457. [PMID: 35029869 DOI: 10.1097/ccm.0000000000005426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Objectives The use of neuromuscular blocking agents (NMBAs) in pediatric acute respiratory distress syndrome (PARDS) is common but unsupported by efficacy data. We sought to compare the outcomes between patients with moderate-to-severe PARDS receiving continuous NMBA during the first 48 hours of endotracheal intubation (early NMBA) and those without. Design Secondary analysis of data from the Randomized Evaluation of Sedation Titration for Respiratory Failure (RESTORE) clinical trial, a pediatric multicenter cluster randomized trial of sedation. Setting Thirty-one PICUs in the United States. Patients Children 2 weeks to 17 years receiving invasive mechanical ventilation (MV) for moderate-to-severe PARDS (i.e., oxygenation index >= 8 and bilateral infiltrates on chest radiograph on days 0-1 of endotracheal intubation). Interventions NMBA for the entire duration of days 1 and 2 after intubation. Measurements and Main Results Among 1,182 RESTORE patients with moderate-to-severe PARDS, 196 (17%) received early NMBA for a median of 50.0% ventilator days (interquartile range, 33.3-60.7%). The propensity score model predicting the probability of receiving early NMBA included high-frequency oscillatory ventilation on days 0-2 (odds ratio [OR], 7.61; 95% CI, 4.75-12.21) and severe PARDS on days 0-1 (OR, 2.16; 95% CI, 1.50-3.12). After adjusting for risk category, early use of NMBA was associated with a longer duration of MV (hazard ratio, 0.57; 95% CI, 0.48-0.68; p < 0.0001), but not with mortality (OR, 1.62; 95% CI, 0.92-2.85; p = 0.096) compared with no early use of NMBA. Other outcomes including cognitive, functional, and physical impairment at 6 months post-PICU discharge were similar. Outcomes did not differ when comparing high versus low NMBA usage sites or when patients were stratified by baseline PaO2/FIO2 less than 150. Conclusions Early NMBA use was associated with a longer duration of MV. This propensity score analysis underscores the need for a randomized controlled trial in pediatrics.
Collapse
|
8
|
Abstract
OBJECTIVES To explore the level and time course of patient-ventilator asynchrony in mechanically ventilated children and the effects on duration of mechanical ventilation, PICU stay, and Comfort Behavior Score as indicator for patient comfort. DESIGN Secondary analysis of physiology data from mechanically ventilated children. SETTING Mixed medical-surgical tertiary PICU in a university hospital. PATIENTS Mechanically ventilated children 0-18 years old were eligible for inclusion. Excluded were patients who were unable to initiate and maintain spontaneous breathing from any cause. MEASUREMENTS AND MAIN RESULTS Twenty-nine patients were studied with a total duration of 109 days. Twenty-two study days (20%) were excluded because patients were on neuromuscular blockade or high-frequency oscillatory ventilation, yielding 87 days (80%) for analysis. Patient-ventilator asynchrony was detected through analysis of daily recorded ventilator airway pressure, flow, and volume versus time scalars. Approximately one of every three breaths was asynchronous. The percentage of asynchronous breaths significantly increased over time, with the highest prevalence on the day of extubation. There was no correlation with the Comfort Behavior score. The percentage of asynchronous breaths during the first 24 hours was inversely correlated with the duration of mechanical ventilation. Patients with severe patient-ventilator asynchrony (asynchrony index > 10% or > 75th percentile of the calculated asynchrony index) did not have a prolonged duration of ventilation. CONCLUSIONS The level of patient-ventilator asynchrony increased over time was not related to patient discomfort and inversely related to the duration of mechanical ventilation.
Collapse
|
9
|
Frequency and Risk Factors for Reverse Triggering in Pediatric Acute Respiratory Distress Syndrome during Synchronized Intermittent Mandatory Ventilation. Ann Am Thorac Soc 2021; 18:820-829. [PMID: 33326335 DOI: 10.1513/annalsats.202008-1072oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rationale: Reverse triggering (RT) occurs when respiratory effort begins after a mandatory breath is initiated by the ventilator. RT may exacerbate ventilator-induced lung injury and lead to breath stacking.Objectives: We sought to describe the frequency and risk factors for RT among patients with acute respiratory distress syndrome (ARDS) and identify risk factors for breath stacking.Methods: We performed a secondary analysis of physiologic data from children on synchronized intermittent mandatory pressure-controlled ventilation enrolled in a single-center randomized controlled trial for ARDS. When children had a spontaneous effort on esophageal manometry, waveforms were recorded and independently analyzed by two investigators to identify RT.Results: We included 81,990 breaths from 100 patient-days and 36 patients. Overall, 2.46% of breaths were RTs, occurring in 15/36 patients (41.6%). A higher tidal volume and a minimal difference between neural respiratory rate and set ventilator rate were independently associated with RT (P = 0.001) in multivariable modeling. Breath stacking occurred in 534 (26.5%) of 2,017 RT breaths and in 14 (93.3%) of 15 patients with RT. In multivariable modeling, breath stacking was more likely to occur when total airway Δpressure (peak inspiratory pressure - positive end-expiratory pressure [PEEP]) at the time patient effort began, peak inspiratory pressure, PEEP, and Δpressure were lower and when patient effort started well after the ventilator-initiated breath (higher phase angle) (all P < 0.05). Together, these parameters were highly predictive of breath stacking (area under the curve, 0.979).Conclusions: Patients with higher tidal volume who have a set ventilator rate close to their spontaneous respiratory rate are more likely to have RT, which results in breath stacking >25% of the time.Clinical trial registered with ClinicalTrials.gov (NCT03266016).
Collapse
|
10
|
Christophe M, Julien B, Gilles C. Improving synchrony in young infants supported by noninvasive ventilation for severe bronchiolitis: Yes, we can… so we should! Pediatr Pulmonol 2021; 56:319-322. [PMID: 33270991 DOI: 10.1002/ppul.25184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/01/2020] [Accepted: 11/15/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Milési Christophe
- Department of Neonatal Medicine and Pediatric Intensive Care, Arnaud de Villeneuve Hospital, Montpellier University Hospital Center, Montpellier, France
| | - Baleine Julien
- Department of Neonatal Medicine and Pediatric Intensive Care, Arnaud de Villeneuve Hospital, Montpellier University Hospital Center, Montpellier, France
| | - Cambonie Gilles
- Department of Neonatal Medicine and Pediatric Intensive Care, Arnaud de Villeneuve Hospital, Montpellier University Hospital Center, Montpellier, France
| |
Collapse
|
11
|
Abstract
Purpose of Review Knowledge of ventilator waveforms is important for clinicians working with children requiring mechanical ventilation. This review covers the basics of how to interpret and use data from ventilator waveforms in the pediatric intensive care unit. Recent Findings Patient-ventilator asynchrony (PVA) is a common finding in pediatric patients and observed in approximately one-third of ventilator breaths. PVA is associated with worse outcomes including increased length of mechanical ventilation, increased length of stay, and increased mortality. Identification of PVA is possible with a thorough knowledge of ventilator waveforms. Summary Ventilator waveforms are graphical descriptions of how a breath is delivered to a patient. These include three scalars (flow versus time, volume versus time, and pressure versus time) and two loops (pressure-volume and flow-volume). Thorough understanding of both scalars and loops, and their characteristic appearances, is essential to being able to evaluate a patient’s respiratory mechanics and interaction with the ventilator.
Collapse
Affiliation(s)
- Elizabeth Emrath
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, Medical University of South Carolina, 125 Doughty Street, MSC 917, Charleston, SC 29425 USA
| |
Collapse
|
12
|
Blokpoel RGT, Koopman AA, van Dijk J, Kneyber MCJ. Additional work of breathing from trigger errors in mechanically ventilated children. Respir Res 2020; 21:296. [PMID: 33172465 PMCID: PMC7653668 DOI: 10.1186/s12931-020-01561-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/01/2020] [Indexed: 01/12/2023] Open
Abstract
Background Patient–ventilator asynchrony is associated with increased morbidity and mortality. A direct causative relationship between Patient–ventilator asynchrony and adverse clinical outcome have yet to be demonstrated. It is hypothesized that during trigger errors excessive pleural pressure swings are generated, contributing to increased work-of-breathing and self-inflicted lung injury. The objective of this study was to determine the additional work-of-breathing and pleural pressure swings caused by trigger errors in mechanically ventilated children. Methods Prospective observational study in a tertiary paediatric intensive care unit in an university hospital. Patients ventilated > 24 h and < 18 years old were studied. Patients underwent a 5-min recording of the ventilator flow–time, pressure–time and oesophageal pressure–time scalar. Pressure–time–product calculations were made as a proxy for work-of-breathing. Oesophageal pressure swings, as a surrogate for pleural pressure swings, during trigger errors were determined. Results Nine-hundred-and-fifty-nine trigger errors in 28 patients were identified. The additional work-of-breathing caused by trigger errors showed great variability among patients. The more asynchronous breaths were present the higher the work-of-breathing of these breaths. A higher spontaneous breath rate led to a lower amount of trigger errors. Patient–ventilator asynchrony was not associated with prolonged duration of mechanical ventilation or paediatric intensive care stay. Conclusions The additional work-of-breathing caused by trigger errors in ventilated children can take up to 30–40% of the total work-of-breathing. Trigger errors were less common in patients breathing spontaneously and those able to generate higher pressure–time–product and pressure swings. Trial registration Not applicable.
Collapse
Affiliation(s)
- Robert G T Blokpoel
- Department of Paediatrics, Division of Paediatric Intensive Care, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Internal Postal Code CA 62, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands.
| | - Alette A Koopman
- Department of Paediatrics, Division of Paediatric Intensive Care, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Internal Postal Code CA 62, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Jefta van Dijk
- Department of Paediatrics, Division of Paediatric Intensive Care, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Internal Postal Code CA 62, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Martin C J Kneyber
- Department of Paediatrics, Division of Paediatric Intensive Care, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Internal Postal Code CA 62, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands.,Critical Care, Anaesthesiology, Peri-Operative Medicine and Emergency Medicine (CAPE), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
13
|
Ventre KM. The inscrutable signatures of patient-ventilator asynchrony: all the light we cannot see. Minerva Anestesiol 2020; 87:278-282. [PMID: 33054023 DOI: 10.23736/s0375-9393.20.15087-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kathleen M Ventre
- Department of Pediatrics, Critical Care Medicine, Albany Medical Center, Albany, NY, USA -
| |
Collapse
|
14
|
DI Nardo M, Lonero M, Staffieri F, DI Mussi R, Murgolo F, Lorusso P, Pham T, Picardo SG, Perrotta D, Cecchetti C, RavÀ L, Grasso S. Can visual inspection of the electrical activity of the diaphragm improve the detection of patient-ventilator asynchronies by pediatric critical care physicians? Minerva Anestesiol 2020; 87:319-324. [PMID: 32755090 DOI: 10.23736/s0375-9393.20.14543-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Patient-ventilator asynchronies are challenging during pediatric mechanical ventilation. We hypothesized that monitoring the electrical activity of the diaphragm (EAdi) together with the "standard" airway opening pressure (Pao) and flow-time waveforms during pressure support ventilation would improve the ability of a cohort of critical care physicians to detect asynchronies in ventilated children. METHODS We recorded the flow, Pao and EAdi waveforms in ten consecutive patients. The recordings were split in periods of 15 s, each reproducing a ventilator screenshot. From this pool, a team of four experts selected the most representative screenshots including at least one of the three most common asynchronies (missed efforts, auto-triggering and double triggering) and split them into two versions, respectively showing or not the EAdi waveforms. The screenshots were shown in random order in a questionnaire to sixty experienced pediatric intensivists that were asked to identify any episode of patient-ventilator asynchrony. RESULTS Among the ten patients included in the study, only eight had EAdi tracings without artifacts and were analyzed. When the Eadi waveform was shown, the auto-triggering detection improved from 13% to 67% (P<0.0001) and the missed efforts detection improved from 43% to 95% (P<0.0001). The detection of double triggering, instead, did not improve (85% with the EAdi vs. 78% without the EAdi waveform; P=0.52). CONCLUSIONS This single center study suggests that the EAdi waveform may improve the ability of pediatric intensivists to detect missed efforts and auto-triggering asynchronies. Further studies are required to determine the clinical implications of these findings.
Collapse
Affiliation(s)
- Matteo DI Nardo
- Department of Pediatric Anesthesia and Critical Care Medicine, Bambino Gesù Children's Hospital, Rome, Italy
| | - Margherita Lonero
- Department of Pediatric Anesthesia and Critical Care Medicine, Bambino Gesù Children's Hospital, Rome, Italy -
| | - Francesco Staffieri
- Section of Veterinary Clinics and Animal Production, Department of Emergency and Organ Transplantation, Aldo Moro University of Bari, Bari, Italy
| | - Rosa DI Mussi
- Section of Anesthesia and Intensive Care, Department of Emergency and Organ Transplantation, Aldo Moro University of Bari, Bari, Italy
| | - Francesco Murgolo
- Section of Anesthesia and Intensive Care, Department of Emergency and Organ Transplantation, Aldo Moro University of Bari, Bari, Italy
| | - Pantaleo Lorusso
- Section of Anesthesia and Intensive Care, Department of Emergency and Organ Transplantation, Aldo Moro University of Bari, Bari, Italy
| | | | - Sergio G Picardo
- Department of Pediatric Anesthesia and Critical Care Medicine, Bambino Gesù Children's Hospital, Rome, Italy
| | - Daniela Perrotta
- Department of Pediatric Anesthesia and Critical Care Medicine, Bambino Gesù Children's Hospital, Rome, Italy
| | - Corrado Cecchetti
- Department of Pediatric Anesthesia and Critical Care Medicine, Bambino Gesù Children's Hospital, Rome, Italy
| | - Lucilla RavÀ
- Unit of Epidemiology and Biostatistics, Bambino Gesù Children's Hospital, Rome, Italy
| | - Salvatore Grasso
- Section of Anesthesia and Intensive Care, Department of Emergency and Organ Transplantation, Aldo Moro University of Bari, Bari, Italy
| |
Collapse
|
15
|
Spinazzola G, Costa R, De Luca D, Chidini G, Ferrone G, Piastra M, Conti G. Pressure Support Ventilation (PSV) versus Neurally Adjusted Ventilatory Assist (NAVA) in difficult to wean pediatric ARDS patients: a physiologic crossover study. BMC Pediatr 2020; 20:334. [PMID: 32631305 PMCID: PMC7338290 DOI: 10.1186/s12887-020-02227-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/24/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neurally adjusted ventilatory assist (NAVA) is an innovative mode for assisted ventilation that improves patient-ventilator interaction in children. The aim of this study was to assess the effects of patient-ventilator interaction comparing NAVA with pressure support ventilation (PSV) in patients difficult to wean from mechanical ventilation after moderate pediatric acute respiratory distress syndrome (PARDS). METHODS In this physiological crossover study, 12 patients admitted in the Pediatric Intensive Care Unit (PICU) with moderate PARDS failing up to 3 spontaneous breathing trials in less than 7 days, were enrolled. Patients underwent three study conditions lasting 1 h each: PSV1, NAVA and PSV2. RESULTS The Asynchrony Index (AI) was significantly reduced during the NAVA trial compared to both the PSV1 and PSV2 trials (p = 0.001). During the NAVA trial, the inspiratory and expiratory trigger delays were significantly shorter compared to those obtained during PSV1 and PSV2 trials (Delaytrinspp < 0.001, Delaytrexpp = 0.013). These results explain the significantly longer Timesync observed during the NAVA trial (p < 0.001). In terms of gas exchanges, PaO2 value significantly improved in the NAVA trial with respect to the PSV trials (p < 0.02). The PaO2/FiO2 ratio showed a significant improvement during the NAVA trial compared to both the PSV1 and PSV2 trials (p = 0.004). CONCLUSIONS In this specific PICU population, presenting difficulty in weaning after PARDS, NAVA was associated with a reduction of the AI and a significant improvement in oxygenation compared to PSV mode. TRIAL REGISTRATION ClinicalTrial.gov Identifier: NCT04360590 "Retrospectively registered".
Collapse
Affiliation(s)
- Giorgia Spinazzola
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo F. Vito 1, 00168, Rome, Italy.
| | - Roberta Costa
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo F. Vito 1, 00168, Rome, Italy
| | - Daniele De Luca
- Division of Pediatric and Neonatal Critical Care, South Paris University Hospital, Medical Centers "A. Beclere" Assistance Publique-Hopitaux de Paris (APHP), Paris, France
| | - Giovanna Chidini
- Pediatric Intensive Care Unit, Department of Anesthesia, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuliano Ferrone
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo F. Vito 1, 00168, Rome, Italy
| | - Marco Piastra
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo F. Vito 1, 00168, Rome, Italy
| | - Giorgio Conti
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo F. Vito 1, 00168, Rome, Italy.,Division of Pediatric and Neonatal Critical Care, South Paris University Hospital, Medical Centers "A. Beclere" Assistance Publique-Hopitaux de Paris (APHP), Paris, France.,Pediatric Intensive Care Unit, Department of Anesthesia, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
16
|
Abstract
OBJECTIVES This review discusses the different techniques used at the bedside to assess respiratory muscle function in critically ill children and their clinical applications. DATA SOURCES A scoping review of the medical literature on respiratory muscle function assessment in critically ill children was conducted using the PubMed search engine. STUDY SELECTION We included all scientific, peer-reviewed studies about respiratory muscle function assessment in critically ill children, as well as some key adult studies. DATA EXTRACTION Data extracted included findings or comments about techniques used to assess respiratory muscle function. DATA SYNTHESIS Various promising physiologic techniques are available to assess respiratory muscle function at the bedside of critically ill children throughout the disease process. During the acute phase, this assessment allows a better understanding of the pathophysiological mechanisms of the disease and an optimization of the ventilatory support to increase its effectiveness and limit its potential complications. During the weaning process, these physiologic techniques may help predict extubation success and therefore optimize ventilator weaning. CONCLUSIONS Physiologic techniques are useful to precisely assess respiratory muscle function and to individualize and optimize the management of mechanical ventilation in children. Among all the available techniques, the measurements of esophageal pressure and electrical activity of the diaphragm appear particularly helpful in the era of individualized ventilatory management.
Collapse
|
17
|
Bonacina D, Bronco A, Nacoti M, Ferrari F, Fazzi F, Bonanomi E, Bellani G. Pressure support ventilation, sigh adjunct to pressure support ventilation, and neurally adjusted ventilatory assist in infants after cardiac surgery: A physiologic crossover randomized study. Pediatr Pulmonol 2019; 54:1078-1086. [PMID: 31004420 DOI: 10.1002/ppul.24335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 11/10/2022]
Abstract
OBJECTIVES We sought to compare gas exchange, respiratory mechanics, and asynchronies during pressure support ventilation (PSV), sigh adjunct to PSV (PSV SIGH), and neurally adjusted ventilatory assist (NAVA) in hypoxemic infants after cardiac surgery. DESIGN Prospective, single-center, crossover, randomized physiologic study. SETTING Tertiary-care pediatric intensive care unit. PATIENTS Fourteen hypoxemic infants (median age 11.5 days [8.7-74]). INTERVENTIONS The protocol begins with a 1 hour step of PSV, followed by two consecutive steps in PSV SIGH and NAVA in random order, with a washout period of 30 minutes (PSV) between them. MAIN RESULTS Three infants presented an irregular Eadi signal because of diaphragmatic paralysis and were excluded from analysis. For the remaining 11 infants, PaO2 /FiO 2 and oxygenation index improved in PSV SIGH compared with PSV (P < 0.05) but not in NAVA compared with PSV. PSV SIGH showed increased tidal volumes and lower respiratory rate than PSV (P < 0.05), as well as a significant improvement in compliance with respiratory system indexed to body weight when compared with both PSV and NAVA (P < 0.01). No changes in mean airway pressure was registered among steps. Inspiratory time resulted prolonged for both PSV SIGH and NAVA than PSV (P < 0.05). NAVA showed the higher coefficient of variability in respiratory parameters and a significative decrease in asynchrony index when compared with both PSV and PSV SIGH (P < 0.01). CONCLUSIONS The adjunct of one SIGH per minute to PSV improved oxygenation and lung mechanics while NAVA provided the best patient-ventilator synchrony in infants after cardiac surgery.
Collapse
Affiliation(s)
- Daniele Bonacina
- Pediatric Intensive Care Unit, A.S.S.T. Papa Giovanni XXIII, Bergamo, Italy
| | - Alfio Bronco
- Department of Emergency and Intensive Care, San Gerardo Hospital, Monza, Italy
| | - Mirco Nacoti
- Pediatric Intensive Care Unit, A.S.S.T. Papa Giovanni XXIII, Bergamo, Italy
| | - Floriana Ferrari
- Pediatric Intensive Care Unit, A.S.S.T. Papa Giovanni XXIII, Bergamo, Italy
| | - Francesco Fazzi
- Pediatric Intensive Care Unit, A.S.S.T. Papa Giovanni XXIII, Bergamo, Italy
| | - Ezio Bonanomi
- Pediatric Intensive Care Unit, A.S.S.T. Papa Giovanni XXIII, Bergamo, Italy
| | - Giacomo Bellani
- Department of Emergency and Intensive Care, San Gerardo Hospital, Monza, Italy.,Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| |
Collapse
|
18
|
Does Driving Pressure Matter in Pediatric Acute Respiratory Distress Syndrome? Strain to Find the Answer. Crit Care Med 2019; 45:e1196-e1197. [PMID: 29028723 DOI: 10.1097/ccm.0000000000002618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Ray S, Brierley J, Bush A, Fraser J, Halley G, Harrop EJ, Casanueva L. Towards developing an ethical framework for decision making in long-term ventilation in children. Arch Dis Child 2018; 103:1080-1084. [PMID: 29871903 DOI: 10.1136/archdischild-2018-314997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/24/2018] [Accepted: 04/29/2018] [Indexed: 11/03/2022]
Abstract
The use of long-term ventilation (LTV) in children is growing in the UK and worldwide. This reflects the improvement in technology to provide LTV, the growing number of indications in which it can be successfully delivered and the acceptability of LTV to families and children. In this article, we discuss the various considerations to be made when deciding to initiate or continue LTV, describe the process that should be followed, as decided by a consensus of experienced physicians, and outline the options available for resolution of conflict around LTV decision making. We recognise the uncertainty and hope provided by novel and evolving therapies for potential disease modification. This raises the question of whether LTV should be offered to allow time for a therapy to be trialled, or whether the therapy is so unlikely to be effective, LTV would simply prolong suffering. We put this consensus view forward as an ethical framework for decision making in children requiring LTV.
Collapse
Affiliation(s)
- Samiran Ray
- Paediatric Intensive Care Unit, Great Ormond Street Hospital for Children, London, UK.,Respiratory, Critical Care and Anaesthesia, UCL GOS Institute of Child Health, London, UK.,Child Health Ethics and Law Special Interest Group, UK
| | - Joe Brierley
- Paediatric Intensive Care Unit, Great Ormond Street Hospital for Children, London, UK.,Child Health Ethics and Law Special Interest Group, UK.,Department of Bioethics, Great Ormond Street Hospital for Children, London, UK
| | - Andy Bush
- Paediatric Respiratory Medicine, Royal Brompton Hospital and Harefields NHS Trust, London, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| | - James Fraser
- Child Health Ethics and Law Special Interest Group, UK.,Paediatric Intensive Care Unit, Bristol Royal Hospital for Children, University Hospitals Bristol NHS Trust, Bristol, UK
| | - Gillian Halley
- Children's Long-term Ventilation Service, Royal Brompton Hospital and Harefields NHS Trust, London, UK
| | - Emily Jane Harrop
- Child Health Ethics and Law Special Interest Group, UK.,Department of Paediatrics, Helen and Douglas House, Oxford, UK
| | - Lidia Casanueva
- Children's Long-term Ventilation Service, Royal Brompton Hospital and Harefields NHS Trust, London, UK.,Paediatric Palliative Care, Oxford University Hospitals NHS Trust, Oxford, UK
| |
Collapse
|
20
|
Garofalo E, Bruni A, Pelaia C, Liparota L, Lombardo N, Longhini F, Navalesi P. Recognizing, quantifying and managing patient-ventilator asynchrony in invasive and noninvasive ventilation. Expert Rev Respir Med 2018; 12:557-567. [DOI: 10.1080/17476348.2018.1480941] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Eugenio Garofalo
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Andrea Bruni
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Corrado Pelaia
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Luisa Liparota
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Nicola Lombardo
- Otolaryngology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Federico Longhini
- Anesthesia and Intensive Care, Sant’Andrea Hospital, Vercelli, Italy
| | - Paolo Navalesi
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
21
|
DiBlasi RM, Crotwell DN, Poli J, Hotz J, Cogen JD, Carter E. A pilot study to assess short-term physiologic outcomes of transitioning infants with severe bronchopulmonary dysplasia from ICU to two subacute ventilators. CANADIAN JOURNAL OF RESPIRATORY THERAPY : CJRT = REVUE CANADIENNE DE LA THERAPIE RESPIRATOIRE : RCTR 2018; 54:01. [PMID: 29636639 PMCID: PMC5875982 DOI: 10.29390/cjrt-2018-001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Introduction This study was designed to evaluate short-term physiologic outcomes of transitioning neonates with bronchopulmonary dysplasia (BPD) from intensive care unit (ICU) ventilators to both the Trilogy 202 (Philips Healthcare, Andover, MA) and LTV 1200 (CareFusion, Yorba Linda, CA) subacute ventilators. Methods Six infants with BPD requiring tracheostomies for support with a neonatal-specific ICU ventilator underwent placement of esophageal balloon catheters, airway pressure transducers, flow sensors, oxygen saturation (SpO2), and end tidal carbon dioxide (PETCO2) monitors. Noninvasive gas exchange, airflow, and airway and esophageal pressures (PES) were recorded following 20 min on the ICU ventilator. The infants were placed on the Trilogy 202 and LTV 1200 ventilators in random order at identical settings as the ICU ventilator. We measured noninvasive gas exchange, pressure-rate product (respiratory rate × ΔPES), ventilator response times, and the percentage of spontaneous breaths that triggered the ventilator at 20 min in each subject while being supported with each of the different subacute ventilators. Results The mean (SD) weight of the six infants was 4.983 (0.56) kg. There were no differences in heart rate (p = 0.51) or SpO2 (p = 0.97) but lower PETCO2, ΔPES, respiratory rate, pressure rate-product, response times, and greater percentage of subject initiated breaths that triggered the ventilator (p < 0.05) was observed with the Trilogy 202 than the LTV 1200. All six infants transitioned successfully from the ICU ventilator to the Trilogy 202 ventilator. Conclusion In this small group of infants with BPD, the Trilogy 202 ventilator performed better than the LTV 1200. The improved subject efforts, per cent subject triggering, and response times observed with the Trilogy are likely related to differences in triggering algorithms, location of triggering mechanisms, and gas delivery system performance within the ventilators. These pilot data may be useful for informing future clinical study design and understanding differences in the level of support provided by different subacute ventilators in infants with BPD.
Collapse
Affiliation(s)
- Robert M DiBlasi
- Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, WA, USA.,Respiratory Care Department, Seattle Children's Hospital, Seattle, WA, USA
| | - Dave N Crotwell
- Respiratory Care Department, Seattle Children's Hospital, Seattle, WA, USA
| | - Jonathan Poli
- Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, WA, USA
| | - Justin Hotz
- Respiratory Care Department, Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | - Jonathan D Cogen
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, USA
| | - Edward Carter
- Division of Pulmonary and Sleep Medicine, Banner Health, Phoenix, AZ, USA
| |
Collapse
|
22
|
Koopman AA, Blokpoel RGT, van Eykern LA, de Jongh FHC, Burgerhof JGM, Kneyber MCJ. Transcutaneous electromyographic respiratory muscle recordings to quantify patient-ventilator interaction in mechanically ventilated children. Ann Intensive Care 2018; 8:12. [PMID: 29362986 PMCID: PMC5780334 DOI: 10.1186/s13613-018-0359-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 01/16/2018] [Indexed: 11/13/2022] Open
Abstract
Background To explore the feasibility of transcutaneous electromyographic respiratory muscle recordings to automatically quantify the synchronicity of patient–ventilator interaction in the pediatric intensive care unit. Methods Prospective observational study in a tertiary paediatric intensive care unit in an university hospital. Spontaneous breathing mechanically ventilated children < 18 years of age were eligible for inclusion. Patients underwent a 5-min continuous recording of ventilator pressure waveforms and transcutaneous electromyographic signal of the diaphragm. To evaluate patient–ventilator interaction, the obtained neural inspiration and ventilator pressurization timings were used to calculate trigger and cycle-off errors of each breath. Calculated errors were displayed in the dEMG-phase scale. Results Data of 23 patients were used for analysis. Based on the dEMG-phase scale, the median rates of synchronous, dyssynchronous and asynchronous breaths as classified by the automated analysis were 12.2% (1.9–33.8), 47.5% (36.3–63.1), and 28.9% (6.6–49.0). Conclusions The dEMG-phase scale quantifying patient–ventilator breath synchronicity was demonstrated to be feasible and a reliable scale for mechanically ventilated children, reflected by high intra-class correlation coefficients. As this non-invasive tool is not restricted to a type of ventilator, it could easily be clinical implemented in the ventilated pediatric population. However; correlation studies between the EMG signal measured by surface EMG and esophageal catheters have to be performed.
Collapse
Affiliation(s)
- Alette A Koopman
- Division of Paediatric Intensive Care, Department of Paediatrics, Beatrix Children's Hospital, University Medical Center Groningen, The University of Groningen, Internal Postal Code CA 62, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Robert G T Blokpoel
- Division of Paediatric Intensive Care, Department of Paediatrics, Beatrix Children's Hospital, University Medical Center Groningen, The University of Groningen, Internal Postal Code CA 62, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands.
| | | | - Frans H C de Jongh
- Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Johannes G M Burgerhof
- Department of Epidemiology, University Medical Center Groningen, The University of Groningen, Groningen, The Netherlands
| | - Martin C J Kneyber
- Division of Paediatric Intensive Care, Department of Paediatrics, Beatrix Children's Hospital, University Medical Center Groningen, The University of Groningen, Internal Postal Code CA 62, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands.,Division of Paediatric Intensive Care, Department of Paediatrics, VU University Medical Center, Amsterdam, The Netherlands.,Critical Care, Anesthesia, Peri-operative Medicine and Emergency Medicine (CAPE), The University of Groningen, Groningen, The Netherlands
| |
Collapse
|
23
|
Loo N, Chiew Y, Tan C, Arunachalam G, Ralib A, Mat-Nor MB. A MACHINE LEARNING MODEL FOR REAL-TIME ASYNCHRONOUS BREATHING MONITORING. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.ifacol.2018.11.610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Mortamet G, Larouche A, Ducharme-Crevier L, Fléchelles O, Constantin G, Essouri S, Pellerin-Leblanc AA, Beck J, Sinderby C, Jouvet P, Emeriaud G. Patient-ventilator asynchrony during conventional mechanical ventilation in children. Ann Intensive Care 2017; 7:122. [PMID: 29264742 PMCID: PMC5738329 DOI: 10.1186/s13613-017-0344-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 12/13/2017] [Indexed: 11/22/2022] Open
Abstract
Background We aimed (1) to describe the characteristics of patient–ventilator asynchrony in a population of critically ill children, (2) to describe the risk factors associated with patient–ventilator asynchrony, and (3) to evaluate the association between patient–ventilator asynchrony and ventilator-free days at day 28. Methods In this single-center prospective study, consecutive children admitted to the PICU and mechanically ventilated for at least 24 h were included. Patient–ventilator asynchrony was analyzed by comparing the ventilator pressure curve and the electrical activity of the diaphragm (Edi) signal with (1) a manual analysis and (2) using a standardized fully automated method. Results Fifty-two patients (median age 6 months) were included in the analysis. Eighteen patients had a very low ventilatory drive (i.e., peak Edi < 2 µV on average), which prevented the calculation of patient–ventilator asynchrony. Children spent 27% (interquartile 22–39%) of the time in conflict with the ventilator. Cycling-off errors and trigger delays contributed to most of this asynchronous time. The automatic algorithm provided a NeuroSync index of 45%, confirming the high prevalence of asynchrony. No association between the severity of asynchrony and ventilator-free days at day 28 or any other clinical secondary outcomes was observed, but the proportion of children with good synchrony was very low. Conclusion Patient–ventilator interaction is poor in children supported by conventional ventilation, with a high frequency of depressed ventilatory drive and a large proportion of time spent in asynchrony. The clinical benefit of strategies to improve patient–ventilator interactions should be evaluated in pediatric critical care.
Collapse
Affiliation(s)
- Guillaume Mortamet
- Pediatric Intensive Care Unit, CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montreal, QC, Canada.,INSERM U 955, Equipe 13, Créteil, France.,CHU Sainte-Justine Research Center, Université de Montréal, Montreal, Canada
| | - Alexandrine Larouche
- Pediatric Intensive Care Unit, CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montreal, QC, Canada.,CHU Sainte-Justine Research Center, Université de Montréal, Montreal, Canada
| | - Laurence Ducharme-Crevier
- Pediatric Intensive Care Unit, CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montreal, QC, Canada.,CHU Sainte-Justine Research Center, Université de Montréal, Montreal, Canada
| | - Olivier Fléchelles
- Pediatric Intensive Care Unit, CHU Fort-de-France, Fort-de-France, France
| | - Gabrielle Constantin
- Pediatric Intensive Care Unit, CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montreal, QC, Canada.,CHU Sainte-Justine Research Center, Université de Montréal, Montreal, Canada
| | - Sandrine Essouri
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, Canada.,Department of Pediatrics, CHU Sainte-Justine, Montreal, QC, Canada
| | | | - Jennifer Beck
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.,Department of Pediatrics, University of Toronto, Toronto, Canada.,Institute for Biomedical Engineering and Science Technology (iBEST), Ryerson University and St-Michael's Hospital, Toronto, Canada
| | - Christer Sinderby
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.,Institute for Biomedical Engineering and Science Technology (iBEST), Ryerson University and St-Michael's Hospital, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada
| | - Philippe Jouvet
- Pediatric Intensive Care Unit, CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montreal, QC, Canada.,CHU Sainte-Justine Research Center, Université de Montréal, Montreal, Canada
| | - Guillaume Emeriaud
- Pediatric Intensive Care Unit, CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montreal, QC, Canada. .,CHU Sainte-Justine Research Center, Université de Montréal, Montreal, Canada.
| |
Collapse
|
25
|
Recommendations for mechanical ventilation of critically ill children from the Paediatric Mechanical Ventilation Consensus Conference (PEMVECC). Intensive Care Med 2017; 43:1764-1780. [PMID: 28936698 PMCID: PMC5717127 DOI: 10.1007/s00134-017-4920-z] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/22/2017] [Indexed: 12/15/2022]
Abstract
Purpose Much of the common practice in paediatric mechanical ventilation is based on personal experiences and what paediatric critical care practitioners have adopted from adult and neonatal experience. This presents a barrier to planning and interpretation of clinical trials on the use of specific and targeted interventions. We aim to establish a European consensus guideline on mechanical ventilation of critically children. Methods The European Society for Paediatric and Neonatal Intensive Care initiated a consensus conference of international European experts in paediatric mechanical ventilation to provide recommendations using the Research and Development/University of California, Los Angeles, appropriateness method. An electronic literature search in PubMed and EMBASE was performed using a combination of medical subject heading terms and text words related to mechanical ventilation and disease-specific terms. Results The Paediatric Mechanical Ventilation Consensus Conference (PEMVECC) consisted of a panel of 15 experts who developed and voted on 152 recommendations related to the following topics: (1) general recommendations, (2) monitoring, (3) targets of oxygenation and ventilation, (4) supportive measures, (5) weaning and extubation readiness, (6) normal lungs, (7) obstructive diseases, (8) restrictive diseases, (9) mixed diseases, (10) chronically ventilated patients, (11) cardiac patients and (12) lung hypoplasia syndromes. There were 142 (93.4%) recommendations with “strong agreement”. The final iteration of the recommendations had none with equipoise or disagreement. Conclusions These recommendations should help to harmonise the approach to paediatric mechanical ventilation and can be proposed as a standard-of-care applicable in daily clinical practice and clinical research. Electronic supplementary material The online version of this article (doi:10.1007/s00134-017-4920-z) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Patient-Ventilator Asynchrony During Assisted Ventilation in Children: The Time to Rethink Our Knowledge. Pediatr Crit Care Med 2016; 17:811. [PMID: 27500623 DOI: 10.1097/pcc.0000000000000793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
The authors reply. Pediatr Crit Care Med 2016; 17:811-2. [PMID: 27500624 DOI: 10.1097/pcc.0000000000000869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|