1
|
Zainib T, Rattani S, Asif N, Maqbool HMA. Nurses' knowledge, attitude, and perceived barriers toward protective lung strategies of pediatrics mechanically ventilated patients in a tertiary care hospital in Pakistan. Acute Crit Care 2025; 40:128-135. [PMID: 39978948 PMCID: PMC11924353 DOI: 10.4266/acc.004761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/01/2024] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Protective lung strategies (PLS) are guidelines about recent clinical advances that deliver an air volume compatible with the patient's lung capacity and are used to treat acute respiratory distress syndrome. These mechanical ventilation guidelines are not implemented within intensive care units (ICUs) despite strong evidence-based recommendations and a dedicated professional staff. Nurses' familiarity with clinical guidelines can bridge the gap between actual and recommended practice. However, several barriers undermine this process. The objectives of this study were to identify those barriers and explore the knowledge, attitudes, and behavior of ICU nurses regarding the implementation of PLS. METHODS This was a descriptive, cross-sectional study. The participants were nurses working in the six ICUs of a pediatric tertiary care hospital in Lahore, Pakistan. Using purposive sampling with random selection, the total sample size was 137 nurses. A summative rating scale was used to identify barriers to the implementation of PLS. RESULTS Overall, the nurses' barrier score was high, with a mean of 66.77±5.36. Across all the barriers subscales, attitude was a much more significant barrier (35.74±3.57) to PLS than behavior (6.53±1.96), perceived knowledge (17.42±2.54), and organizational barriers (7.08±1.39). Knowledge-related barriers were also significantly high. Conclusion: This study identified important barriers to PLS implementation by nurses, including attitudes and knowledge deficits. Understanding those barriers and planning interventions to address them could help to increase adherence to low tidal volume ventilation and improve patient outcomes. Nurses' involvement in mechanical ventilation management could help to safely deliver air volumes compatible with recommendations.
Collapse
Affiliation(s)
- Tasnim Zainib
- School of Nursing and Midwifery, The Aga Khan University, Karachi, Pakistan
- The Children's Hospital and Institute of Child Health, Lahore, Pakistan
| | - Salma Rattani
- School of Nursing and Midwifery, The Aga Khan University, Karachi, Pakistan
| | - Nimira Asif
- School of Nursing and Midwifery, The Aga Khan University, Karachi, Pakistan
| | | |
Collapse
|
2
|
Wong JJM, Dang H, Gan CS, Phan PH, Kurosawa H, Aoki K, Lee SW, Ong JSM, Fan LJ, Tai CW, Chuah SL, Lee PC, Chor YK, Ngu L, Anantasit N, Liu C, Xu W, Wati DK, Gede SIB, Jayashree M, Liauw F, Pon KM, Huang L, Chong JY, Zhu X, Hon KLE, Leung KKY, Samransamruajkit R, Cheung YB, Lee JH. Lung-Protective Ventilation for Pediatric Acute Respiratory Distress Syndrome: A Nonrandomized Controlled Trial. Crit Care Med 2024; 52:1602-1611. [PMID: 38920618 DOI: 10.1097/ccm.0000000000006357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
OBJECTIVES Despite the recommendation for lung-protective mechanical ventilation (LPMV) in pediatric acute respiratory distress syndrome (PARDS), there is a lack of robust supporting data and variable adherence in clinical practice. This study evaluates the impact of an LPMV protocol vs. standard care and adherence to LPMV elements on mortality. We hypothesized that LPMV strategies deployed as a pragmatic protocol reduces mortality in PARDS. DESIGN Multicenter prospective before-and-after comparison design study. SETTING Twenty-one PICUs. PATIENTS Patients fulfilled the Pediatric Acute Lung Injury Consensus Conference 2015 definition of PARDS and were on invasive mechanical ventilation. INTERVENTIONS The LPMV protocol included a limit on peak inspiratory pressure (PIP), delta/driving pressure (DP), tidal volume, positive end-expiratory pressure (PEEP) to F io2 combinations of the low PEEP acute respiratory distress syndrome network table, permissive hypercarbia, and conservative oxygen targets. MEASUREMENTS AND MAIN RESULTS There were 285 of 693 (41·1%) and 408 of 693 (58·9%) patients treated with and without the LPMV protocol, respectively. Median age and oxygenation index was 1.5 years (0.4-5.3 yr) and 10.9 years (7.0-18.6 yr), respectively. There was no difference in 60-day mortality between LPMV and non-LPMV protocol groups (65/285 [22.8%] vs. 115/406 [28.3%]; p = 0.104). However, total adherence score did improve in the LPMV compared to non-LPMV group (57.1 [40.0-66.7] vs. 47.6 [31.0-58.3]; p < 0·001). After adjusting for confounders, adherence to LPMV strategies (adjusted hazard ratio, 0.98; 95% CI, 0.97-0.99; p = 0.004) but not the LPMV protocol itself was associated with a reduced risk of 60-day mortality. Adherence to PIP, DP, and PEEP/F io2 combinations were associated with reduced mortality. CONCLUSIONS Adherence to LPMV elements over the first week of PARDS was associated with reduced mortality. Future work is needed to improve implementation of LPMV in order to improve adherence.
Collapse
Affiliation(s)
- Judith Ju Ming Wong
- Children's Intensive Care Unit, KK Women's and Children's Hospital, Singapore
- Duke-NUS Medical School, Singapore
| | - Hongxing Dang
- Children's Hospital of Chongqing Medical University, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Chin Seng Gan
- Department of Paediatrics, University Malaya Medical Centre, University Malaya, Kuala Lumpur, Malaysia
| | - Phuc Huu Phan
- Vietnam National Children's Hospital, Hanoi, Vietnam
| | | | - Kazunori Aoki
- Hyogo Prefectural Kobe Children's Hospital, Hyogo, Japan
| | - Siew Wah Lee
- Sultanah Aminah Hospital, Johor, Malaysia
- Hospital Tengku Ampuan Rahimah, Selangor, Malaysia
| | | | - Li Jia Fan
- Division of Paediatric Critical Care, National University Hospital, Singapore
| | - Chian Wern Tai
- Universiti Kebangsaan Malaysia Specialist Children's Hospital, Kuala Lumpur, Malaysia
| | - Soo Lin Chuah
- Department of Paediatrics, University Malaya Medical Centre, University Malaya, Kuala Lumpur, Malaysia
| | - Pei Chuen Lee
- Universiti Kebangsaan Malaysia Specialist Children's Hospital, Kuala Lumpur, Malaysia
| | | | - Louise Ngu
- Sarawak General Hospital, Sarawak, Malaysia
| | | | - Chunfeng Liu
- Shengjing Hospital of China Medical University, Liaoning, China
| | - Wei Xu
- Shengjing Hospital of China Medical University, Liaoning, China
| | - Dyah Kanya Wati
- Pediatric Emergency and Intensive Care Unit, Prof I.G.N.G Ngoerah Hospital, Bali, Indonesia
- Medical Faculty, Udayana University, Bali, Indonesia
| | - Suparyatha Ida Bagus Gede
- Pediatric Emergency and Intensive Care Unit, Prof I.G.N.G Ngoerah Hospital, Bali, Indonesia
- Medical Faculty, Udayana University, Bali, Indonesia
| | | | - Felix Liauw
- Harapan Kita National Women and Children Health Center, Jakarta, Indonesia
| | | | - Li Huang
- Guangzhou Women and Children's Medical Center, Guangdong, China
| | - Jia Yueh Chong
- Hospital Tunku Azizah Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Xuemei Zhu
- Children's Hospital of Fudan University, Shanghai, China
| | - Kam Lun Ellis Hon
- Paediatric Intensive Care Unit, Hong Kong Children's Hospital, Hong Kong Special Administrative Region, China
| | - Karen Ka Yan Leung
- Paediatric Intensive Care Unit, Hong Kong Children's Hospital, Hong Kong Special Administrative Region, China
| | - Rujipat Samransamruajkit
- Division of Pediatric Critical Care, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yin Bun Cheung
- Duke-NUS Medical School, Singapore
- Tampere Center for Child, Adolescent and Maternal Health Research, Tampere University, Tampere, Finland
| | - Jan Hau Lee
- Children's Intensive Care Unit, KK Women's and Children's Hospital, Singapore
- Duke-NUS Medical School, Singapore
| |
Collapse
|
3
|
Wang L, Li Z, Lu T, Su L, Mao C, Zhang Y, Zhang X, Jiang X, Xie H, Yu X. The potential mechanism of Choulingdan mixture in improving acute lung injury based on HPLC-Q-TOF-MS, network pharmacology and in vivo experiments. Biomed Chromatogr 2023; 37:e5709. [PMID: 37533317 DOI: 10.1002/bmc.5709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023]
Abstract
Choulingdan mixture (CLDM) is an empirical clinical prescription for the adjuvant treatment of acute lung injury (ALI). CLDM has been used for almost 30 years in the clinic. However, its mechanism for improving ALI still needs to be investigated. In this study, high-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry (HPLC-Q-TOF-MS/MS) was applied to characterize the overall chemical composition of CLDM. A total of 93 ingredients were characterized, including 25 flavonoids, 20 organic acids, 11 saponins, nine terpenoids, seven tannins and 21 other compounds. Then network pharmacology was applied to predict the potential bioactive components, target genes and signaling pathways of CLDM in improving ALI. Additionally, molecular docking was performed to demonstrate the interaction between the active ingredients and the disease targets. Finally, animal experiments further confirmed that CLDM significantly inhibits pulmonary inflammation, pulmonary edema and oxidative stress in lipopolysaccharide-induced ALI mice by inhibiting the PI3K-AKT signaling pathway. This study enhanced the amount and accuracy of compounds of CLDM and provided new insights into CLDM preventing and treating ALI.
Collapse
Affiliation(s)
- Lili Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhengyan Li
- Department of Pharmacy, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, China
| | - Tulin Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lianlin Su
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunqin Mao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yiting Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinrui Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaofeng Jiang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Xie
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoling Yu
- Department of Pharmacy, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
4
|
Bhalla A, Baudin F, Takeuchi M, Cruces P. Monitoring in Pediatric Acute Respiratory Distress Syndrome: From the Second Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med 2023; 24:S112-S123. [PMID: 36661440 PMCID: PMC9980912 DOI: 10.1097/pcc.0000000000003163] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES Monitoring is essential to assess changes in the lung condition, to identify heart-lung interactions, and to personalize and improve respiratory support and adjuvant therapies in pediatric acute respiratory distress syndrome (PARDS). The objective of this article is to report the rationale of the revised recommendations/statements on monitoring from the Second Pediatric Acute Lung Injury Consensus Conference (PALICC-2). DATA SOURCES MEDLINE (Ovid), Embase (Elsevier), and CINAHL Complete (EBSCOhost). STUDY SELECTION We included studies focused on respiratory or cardiovascular monitoring of children less than 18 years old with a diagnosis of PARDS. We excluded studies focused on neonates. DATA EXTRACTION Title/abstract review, full-text review, and data extraction using a standardized data collection form. DATA SYNTHESIS The Grading of Recommendations Assessment, Development and Evaluation approach was used to identify and summarize evidence and develop recommendations. We identified 342 studies for full-text review. Seventeen good practice statements were generated related to respiratory and cardiovascular monitoring. Four research statements were generated related to respiratory mechanics and imaging monitoring, hemodynamics monitoring, and extubation readiness monitoring. CONCLUSIONS PALICC-2 monitoring good practice and research statements were developed to improve the care of patients with PARDS and were based on new knowledge generated in recent years in patients with PARDS, specifically in topics of general monitoring, respiratory system mechanics, gas exchange, weaning considerations, lung imaging, and hemodynamic monitoring.
Collapse
Affiliation(s)
- Anoopindar Bhalla
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Florent Baudin
- Hospices civils de Lyon, Hôpital Femme Mère Enfant, Service de réanimation pédiatrique, Bron F-69500, France
| | - Muneyuki Takeuchi
- Department of Intensive Care Medicine, Osaka Women’s and Children’s Hospital, Osaka, Japan
| | - Pablo Cruces
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; and Pediatric Intensive Care Unit, Hospital el Carmen de Maipú, Santiago, Chile
| |
Collapse
|
5
|
McCrory MC, Woodruff AG, Saha AK, Evans JK, Halvorson EE, Bass AL. Nonadherence to appropriate tidal volume and PEEP in children with pARDS at a single center. Pediatr Pulmonol 2022; 57:2464-2473. [PMID: 35778788 PMCID: PMC9489656 DOI: 10.1002/ppul.26060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Low tidal volume and adequate positive end-expiratory pressure (PEEP) are evidence-based approaches for pediatric acute respiratory distress syndrome (pARDS), however, data are limited regarding their use since pARDS guidelines were revised in 2015. OBJECTIVE To identify prevalence of, and factors associated with, nonadherence to appropriate tidal volume and PEEP in children with pARDS. METHODS Retrospective cohort study of children 1 month to <18 years with pARDS who received invasive mechanical ventilation from 2016 to 2018 in a single pediatric intensive care unit (PICU). RESULTS At 24 h after meeting pARDS criteria, 48/86 (56%) patients received tidal volume ≤8 ml/kg of ideal body weight and 45/86 (52%) received appropriate PEEP, with 22/86 (26%) receiving both. Among patients ≥2 years of age, a lower proportion of patients with overweight/obesity (9/25, 36%) had appropriate tidal volume versus those in the normal or underweight category (16/22, 73%, p = 0.02). When FIO2 was ≥50%, PEEP was appropriate in 19/60 (32%) cases versus 26/26 (100%) with FIO2 < 50% (p < 0.0001). pARDS was documented in the progress note in 7/86 (8%) patients at 24 h. Severity of pARDS, documentation in the progress note, and other clinical factors were not significantly associated with use of appropriate tidal volume and PEEP, however pARDS was documented more commonly in patients with severe pARDS. CONCLUSIONS In a single PICU in the United States, children with pARDS did not receive appropriate tidal volume for ideal body weight nor PEEP. Targets for improving tidal volume and PEEP adherence may include overweight patients and those receiving FIO2 ≥ 50%, respectively.
Collapse
Affiliation(s)
- Michael C. McCrory
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC
- Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, NC
| | - Alan G. Woodruff
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC
- Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, NC
- Center for Redox in Biology and Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - Amit K. Saha
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Joni K. Evans
- Department of Biostatistics; Wake Forest School of Medicine, Winston-Salem, NC
| | | | - Andora L Bass
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC
- Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, NC
| |
Collapse
|
6
|
Kopstick AJ, Rufener CR, Banerji AO, Hudkins MR, Kirby AL, Markwardt S, Orwoll BE. Recognizing Pediatric ARDS: Provider Use of the PALICC Recommendations in a Tertiary Pediatric ICU. Respir Care 2022; 67:985-994. [PMID: 35728822 PMCID: PMC9994144 DOI: 10.4187/respcare.09806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND For almost 50 years, pediatricians used adult guidelines to diagnose ARDS. In 2015, specific criteria for pediatric ARDS were defined. However, it remains unclear how frequently providers recognize pediatric ARDS and whether recognition affects adherence to consensus recommendations. METHODS This was a mixed-method, retrospective study of mechanically ventilated pediatric subjects after the release of the pediatric ARDS recommendation statement. Pediatric ARDS cases were identified according to the new criteria. Provider recognition was defined by documentation in the medical record. Pediatric ARDS subjects with and without provider recognition were compared quantitatively according to clinical characteristics, adherence to lung-protective ventilation (LPV), adjunctive therapies, and outcomes. A qualitative document analysis (QDA) was performed to evaluate knowledge and beliefs surrounding the Pediatric Acute Lung Injury Consensus Conference recommendations. RESULTS Of 1,983 subject encounters, pediatric ARDS was identified in 321 (16%). Provider recognition was present in 97 (30%) cases and occurred more often in subjects who were older, had worse oxygenation deficits, or were bone marrow transplant recipients. Recognition rates increased each studied year. LPV practices did not differ based on provider recognition; however, subjects who received it were more likely to experience permissive hypoxemia and adherence to extrapulmonary recommendations. Ultimately, there was no differences in outcomes between the provider recognition and non-provider recognition groups. Three themes emerged from the QDA: (1) pediatric ARDS presents within a complex, multidimensional context, with potentially competing organ system failures; (2) similar to historical conceptualizations, pediatric ARDS was often considered a visual diagnosis, with measures of oxygenation unreferenced; and (3) emphasis was placed on non-evidence-based interventions, such as pulmonary clearance techniques, rather than on consensus recommendations. CONCLUSIONS Among mechanically ventilated children, pediatric ARDS was common but recognized in a minority of cases. Potential opportunities, such as an opt-out approach to LPV, may exist for improved dissemination and implementation of recommended best practices.
Collapse
Affiliation(s)
- Avi J Kopstick
- Division of Pediatric Critical Care Medicine, Texas Tech University Health Science Center, El Paso, Texas.
| | - Christina R Rufener
- Division of Pediatric Critical Care Medicine, University of California, San Diego, California
| | - Adrian O Banerji
- Division of General Pediatrics, Oregon Health & Science University, Portland, Oregon
| | - Matthew R Hudkins
- Division of Pediatric Critical Care Medicine, Oregon Health & Science University, Portland, Oregon
| | - Aileen L Kirby
- Division of Pediatric Critical Care Medicine, Oregon Health & Science University, Portland, Oregon
| | - Sheila Markwardt
- Biostatistics and Design Program, Oregon Health & Science University, Portland, Oregon
| | - Benjamin E Orwoll
- Division of Pediatric Critical Care Medicine, and Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
7
|
DeSanti RL, Al-Subu AM. Adaptive support ventilation in pediatric respiratory failure: Should intensivists be reliant on assistive technology? Pediatr Pulmonol 2021; 56:3087-3088. [PMID: 34314571 DOI: 10.1002/ppul.25568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/07/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Ryan L DeSanti
- Department of Pediatrics, Drexel University College of Medicine, St. Christopher's Hospital for Children, Philadelphia, Pennsylvania, USA
| | - Awni M Al-Subu
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
8
|
Wilkins D, Lane AS, Orde SR. Audit of low tidal volume ventilation in patients with hypoxic respiratory failure in a tertiary Australian intensive care unit. Anaesth Intensive Care 2021; 49:301-308. [PMID: 34324389 DOI: 10.1177/0310057x21993132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A low tidal volume ventilation (LTVV) strategy improves outcomes in patients with acute respiratory distress syndrome (ARDS). Subsequently, a LTVV strategy has become the standard of care for patients receiving mechanical ventilation. This strategy is poorly adhered to within intensive care units (ICUs). A retrospective analysis was conducted of prescribed tidal volumes in mechanically ventilated patients with hypoxic respiratory failure between April 2013 and March 2017. Data collection included the establishment of a new data-entry box for patient height in March 2016, aimed at assisting the calculation of LTVV. We reviewed 836 ICU admissions, comprising 19,884 hours of ventilation. A total of 92% of admissions lacked patient height recording. When height was recorded, 54% of hours of ventilation were LTVV adherent. Non-LTVV hours for both groups involved higher tidal volumes (38%) rather than lower tidal volumes (8%). Non-LTVV-adherent hours were significantly (P<0.001) more likely to be associated with patient mortality than LTVV-adherent hours were. For all hours of ventilation, mean tidal volume before March 2016 was significantly higher (496 (standard deviation (SD) 101) ml, compared to after March 2016 (451 (SD 107) ml, P<0.001, 95% confidence interval for true difference in means 42 to 48 ml). However, this trend gradually reversed over time. There was a clinician preference for multiples of 50 ml. There was poor adherence to LTVV strategy in patients with hypoxic respiratory failure, which was associated with an increase in patient mortality. An electronic medical record intervention was successful in producing change, but this was not sustainable over time. Clinician ventilation prescribing habits were based on numerical simplicity rather than evidence-based practice.
Collapse
Affiliation(s)
- David Wilkins
- Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Andrew S Lane
- Sydney Medical School, The University of Sydney, Sydney, Australia.,Intensive Care Unit, Nepean Hospital, Penrith, Australia
| | - Sam R Orde
- Intensive Care Unit, Nepean Hospital, Penrith, Australia
| |
Collapse
|
9
|
Zou J, Gu L. Effects of comprehensive care on complications, oxygenation indexes and guardian's psychological mood of children with neonatal respiratory distress syndrome. Am J Transl Res 2021; 13:5147-5155. [PMID: 34150103 PMCID: PMC8205692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To observe the effects of comprehensive care on complications, oxygenation indexes of children with neonatal respiratory distress syndrome (NRDS), as well as their guardian's psychological mood. METHODS Totally 205 cases of children with NRDS admitted to our hospital from February 2018 to December 2019 were recruited and divided into two groups according to different nursing interventions. Cases receiving comprehensive care were included in the research group (RG, n=108), and cases receiving routine care were included in the control group (CG, n=97). The curative effect, improvement of clinical symptoms, complications during nursing process, improvement of oxygenation indexes, degree of lung injury, improvement of physiological health were observed and compared, as well as the improvement of parents' psychological mood and their satisfaction with this nursing intervention. RESULTS After care, RG had significantly better improvement of clinical indexes than that in CG, with notably lower PaCO2 and higher PaO2 and SaO2. Besides, children in RG showed remarkably lower Murray score and APACHE-II score, and the patients of children in RG also had lower SAS and SDS scores. The overall response rate (ORR) of children in RG was evidently higher than that in CG, the incidence of total complications in RG was evidently lower than that in CG, and the nursing satisfaction of parents in RG was evidently higher than that in CG. CONCLUSION Comprehensive care is effective for children with NRDS, which can improve oxygenation indexes and lung injury, reduce the incidence of complications, and improve the psychological mood of parents.
Collapse
Affiliation(s)
- Jing Zou
- Department of Neonatology, Changzhou Second People's Hospital Changzhou 213164, Jiangsu Province, China
| | - Liyan Gu
- Department of Neonatology, Changzhou Second People's Hospital Changzhou 213164, Jiangsu Province, China
| |
Collapse
|
10
|
Wong JJM, Lee SW, Lee JH. The authors reply. Pediatr Crit Care Med 2020; 21:855-856. [PMID: 32890097 DOI: 10.1097/pcc.0000000000002446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Judith Ju Ming Wong
- Children's Intensive Care Unit, KK Women's and Children's Hospital, Singapore
| | - Siew Wah Lee
- Pediatric Intensive Care Unit, Hospital Kuala Lumpur, Malaysia
| | - Jan Hau Lee
- Children's Intensive Care Unit, KK Women's and Children's Hospital, Singapore
| |
Collapse
|
11
|
Lung-Protective Mechanical Ventilation Strategies in Pediatric Acute Respiratory Distress Syndrome. Pediatr Crit Care Med 2020; 21:720-728. [PMID: 32205663 DOI: 10.1097/pcc.0000000000002324] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Reduced morbidity and mortality associated with lung-protective mechanical ventilation is not proven in pediatric acute respiratory distress syndrome. This study aims to determine if a lung-protective mechanical ventilation protocol in pediatric acute respiratory distress syndrome is associated with improved clinical outcomes. DESIGN This pilot study over April 2016 to September 2019 adopts a before-and-after comparison design of a lung-protective mechanical ventilation protocol. All admissions to the PICU were screened daily for fulfillment of the Pediatric Acute Lung Injury Consensus Conference criteria and included. SETTING Multidisciplinary PICU. PATIENTS Patients with pediatric acute respiratory distress syndrome. INTERVENTIONS Lung-protective mechanical ventilation protocol with elements on peak pressures, tidal volumes, end-expiratory pressure to FIO2 combinations, permissive hypercapnia, and permissive hypoxemia. MEASUREMENTS AND MAIN RESULTS Ventilator and blood gas data were collected for the first 7 days of pediatric acute respiratory distress syndrome and compared between the protocol (n = 63) and nonprotocol groups (n = 69). After implementation of the protocol, median tidal volume (6.4 mL/kg [5.4-7.8 mL/kg] vs 6.0 mL/kg [4.8-7.3 mL/kg]; p = 0.005), PaO2 (78.1 mm Hg [67.0-94.6 mm Hg] vs 74.5 mm Hg [59.2-91.1 mm Hg]; p = 0.001), and oxygen saturation (97% [95-99%] vs 96% [94-98%]; p = 0.007) were lower, and end-expiratory pressure (8 cm H2O [7-9 cm H2O] vs 8 cm H2O [8-10 cm H2O]; p = 0.002] and PaCO2 (44.9 mm Hg [38.8-53.1 mm Hg] vs 46.4 mm Hg [39.4-56.7 mm Hg]; p = 0.033) were higher, in keeping with lung protective measures. There was no difference in mortality (10/63 [15.9%] vs 18/69 [26.1%]; p = 0.152), ventilator-free days (16.0 [2.0-23.0] vs 19.0 [0.0-23.0]; p = 0.697), and PICU-free days (13.0 [0.0-21.0] vs 16.0 [0.0-22.0]; p = 0.233) between the protocol and nonprotocol groups. After adjusting for severity of illness, organ dysfunction and oxygenation index, the lung-protective mechanical ventilation protocol was associated with decreased mortality (adjusted hazard ratio, 0.37; 95% CI, 0.16-0.88). CONCLUSIONS In pediatric acute respiratory distress syndrome, a lung-protective mechanical ventilation protocol improved adherence to lung-protective mechanical ventilation strategies and potentially mortality.
Collapse
|
12
|
Stansell C, Cherry B. A Systematic Approach to Ventilator Management for the Pediatric Patient During Air Medical Transport. Air Med J 2020; 39:27-34. [PMID: 32044066 DOI: 10.1016/j.amj.2019.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/13/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE A checklist was developed to improve the ventilator management of pediatric patients for air medical transport with the aim of reducing the percentage of patients outside recommended parameters (no bag valve mask use, peripheral capillary oxygen saturation level > 90%, and end-tidal carbon dioxide level > 35 and < 50 mm Hg) from 41.3% to 20% within 7 months. METHODS The checklist was developed based on recommended guidelines. After checklist orientation, its effectiveness was analyzed via chart review for inclusion criteria (> 5 kg and < 18 years) from July 2018 to January 2019. Parameters identified in the aim statement were used to evaluate effectiveness. After transport, a Likert survey concerning the value of the checklist was distributed. RESULTS Significant improvements in pediatric ventilator management were noted when teams used the checklist. The rate outside of aim parameters was reduced significantly from 41.3% (n = 92, June 2012-May 2018 preintervention) to 10% (n = 20, July 2018-January 2019 postintervention) after the improvement action was implemented (χ2 = 7.01, P = .008). The 5-point Likert survey results (n = 38, 4.68 ± .57) supported teams' improved comfort after checklist implementation. CONCLUSION The checklist improved ventilator management proficiency of pediatric patients and the comfort level of air medical teams providing care.
Collapse
Affiliation(s)
- Chris Stansell
- Med-Trans Corporation: AeroCare 5, Odessa, TX; Texas Tech University Health Sciences Center: School of Nursing, Lubbock, TX.
| | - Barbara Cherry
- Texas Tech University Health Sciences Center: School of Nursing, Lubbock, TX
| |
Collapse
|
13
|
Koopman AA, de Jager P, Blokpoel RGT, Kneyber MCJ. Ventilator-induced lung injury in children: a reality? ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:506. [PMID: 31728359 DOI: 10.21037/atm.2019.09.13] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mechanical ventilation (MV) is inextricably linked to the care of critically ill patients admitted to the paediatric intensive care unit (PICU). Even today, little evidence supports best MV practices for life-threatening acute respiratory failure in children. However, careful attention must be paid because this life-saving technique induces pulmonary inflammation that aggravates pre-existing lung injury, a concept that is known as ventilator-induced lung injury (VILI). The delivery of too large tidal volumes (Vt) (i.e., volutrauma) and repetitive opening and closure of alveoli (i.e., atelectrauma) are two key mechanisms underlying VILI. Despite the knowledge of these mechanisms, the clinical relevance of VILI in critically ill children is poorly understood as almost all of our knowledge has been obtained from studies in adults or experimental studies mimicking the adult critical care situation. This leaves the question if VILI is relevant in the paediatric context. In fact, limited paediatric experimental data showed that the use of large, supraphysiologic Vt resulted in less inflammation and injury in paediatric animal models compared to adult models. Furthermore, the association between large Vt and adverse outcome has not been confirmed and the issue of setting positive end-expiratory pressure (PEEP) to prevent atelectrauma has hardly been studied in paediatric clinical studies. Hence, even today, the question whether or not there VILI is relevant in pediatric critical remains to be answered. Consequently, how MV is used remains thus based on institutional preferences, personal beliefs and clinical data extrapolated from adults. This signifies the need for clinical and experimental studies in order to better understand the use and effects of MV in paediatric patients with or without lung injury.
Collapse
Affiliation(s)
- Alette A Koopman
- Division of Paediatric Critical Care Medicine, Department of Paediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Pauline de Jager
- Division of Paediatric Critical Care Medicine, Department of Paediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Robert G T Blokpoel
- Division of Paediatric Critical Care Medicine, Department of Paediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Martin C J Kneyber
- Division of Paediatric Critical Care Medicine, Department of Paediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Critical Care, Anaesthesiology, Peri-Operative & Emergency Medicine (CAPE), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
14
|
Jansson MM, Syrjälä HP, Ala-Kokko TI. Implementation of strategies to liberate patients from mechanical ventilation in a tertiary-level medical center. Am J Infect Control 2019; 47:1065-1070. [PMID: 30987795 DOI: 10.1016/j.ajic.2019.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Considerable discrepancies have been observed in the implementation of strategies to liberate patients from mechanical ventilation. The aim of this study was to describe critical care nurses' knowledge of and self-reported and documented adherence to lung-protective ventilation, daily sedation interruption, and daily assessment of readiness to extubate and evaluate how these practices differ between patients with and without ventilator-associated pneumonia and between survivors and nonsurvivors. METHODS The survey was conducted in a tertiary-level hospital in Finland from October 2014 to June 2015. Actual adherence was evaluated based on documentation of performed practices. RESULTS A total of 86 critical care nurses responded to the survey, and 85 patients were followed. The levels of knowledge of and self-reported adherence to low tidal ventilation were 84.5% and 90.2%, respectively, and the median tidal volume was at a target level in 74.4% of patients. Regarding daily sedation interruption, the level of knowledge was 85.7%, the level of self-reported adherence was 77.3%, and documented adherence was 33.3%. The levels of knowledge and self-reported adherence regarding spontaneous breathing trials were 61.9% and 71.6%, respectively. Adherence to lung-protective ventilation, daily sedation interruption, and daily assessment of readiness to extubate did not differ between patients with (n = 20) and without (n = 65) ventilator-associated pneumonia and between survivors (n = 55) and nonsurvivors (n = 30). CONCLUSIONS Lung-protective ventilation, including low-tidal ventilation and avoidance of high inspiratory plateau pressures, was well implemented and adhered to. The levels of knowledge and self-reported adherence versus documented adherence regarding daily sedation interruption and spontaneous breathing trial demonstrated insufficient implementation of local guidelines. There was no effect on the outcome.
Collapse
|
15
|
Keller JM. Mechanical Ventilation Training During Graduate Medical Education: Perspectives and Review of the Literature. J Grad Med Educ 2019; 11:389-401. [PMID: 31440332 PMCID: PMC6699526 DOI: 10.4300/jgme-d-18-00828.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/04/2019] [Accepted: 04/15/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Management of mechanical ventilation (MV) is an important and complex aspect of caring for critically ill patients. Management strategies and technical operation of the ventilator are key skills for physicians in training, as lack of expertise can lead to substantial patient harm. OBJECTIVE We performed a narrative review of the literature describing MV education in graduate medical education (GME) and identified best practices for training and assessment methods. METHODS We searched MEDLINE, PubMed, and Google Scholar for English-language, peer-reviewed articles describing MV education and assessment. We included articles from 2000 through July 2018 pertaining to MV education or training in GME. RESULTS Fifteen articles met inclusion criteria. Studies related to MV training in anesthesiology, emergency medicine, general surgery, and internal medicine residency programs, as well as subspecialty training in critical care medicine, pediatric critical care medicine, and pulmonary and critical care medicine. Nearly half of trainees assessed were dissatisfied with their MV education. Six studies evaluated educational interventions, all employing simulation as an educational strategy, although there was considerable heterogeneity in content. Most outcomes were assessed with multiple-choice knowledge testing; only 2 studies evaluated the care of actual patients after an educational intervention. CONCLUSIONS There is a paucity of information describing MV education in GME. The available literature demonstrates that trainees are generally dissatisfied with MV training. Best practices include establishing MV-specific learning objectives and incorporating simulation. Next research steps include developing competency standards and validity evidence for assessment tools that can be utilized across MV educational curricula.
Collapse
|
16
|
What Is Weighing Us Down From Elucidating Ideal Ventilation Strategies in Pediatric Acute Respiratory Distress Syndrome? Pediatr Crit Care Med 2019; 20:303-305. [PMID: 30830026 DOI: 10.1097/pcc.0000000000001857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Association Between Tidal Volumes Adjusted for Ideal Body Weight and Outcomes in Pediatric Acute Respiratory Distress Syndrome. Pediatr Crit Care Med 2019; 20:e145-e153. [PMID: 30640889 PMCID: PMC6399049 DOI: 10.1097/pcc.0000000000001846] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES The impact of tidal volume on outcomes in mechanically ventilated children with pediatric acute respiratory distress syndrome remains unclear. To date, observational investigations have failed to calculate tidal volume based on standardized corrections of weight. We investigated the impact of tidal volume on mortality and probability of extubation in pediatric acute respiratory distress syndrome using ideal body weight-adjusted tidal volume. DESIGN Retrospective analysis of an ongoing prospective cohort of pediatric acute respiratory distress syndrome patients. Tidal volume was calculated based on actual body weight and two different formulations of ideal body weight. SETTING PICU at a large, tertiary care children's hospital. PATIENTS Pediatric acute respiratory distress syndrome patients on conventional ventilation with a documented height or length. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS There were 483 patients with a measured height or length at pediatric acute respiratory distress syndrome onset included in the final analysis, with 73 nonsurvivors (15%). At 24 hours, there remained 400 patients on conventional ventilation. When calculating tidal volume based on ideal body weight by either method, volumes were larger both at onset and at 24 hours compared with tidal volume based on actual body weight (all p < 0.001), and the proportion of patients being ventilated with tidal volumes greater than 10 mL/kg based on ideal body weight was larger both at onset (12.4% and 15.5%) and 24 hours (10.3% and 11.5%) compared with actual body weight at onset (3.5%) and 24 hours (4.0%) (all p < 0.001). Tidal volume, based on both actual body weight and ideal body weight, was not associated with either increased mortality or decreased probability of extubation after adjusting for oxygenation index in the whole cohort, whereas associations between higher tidal volume and poor outcomes were seen in subgroup analyses in overweight children and in severe pediatric acute respiratory distress syndrome. CONCLUSIONS Our retrospective analysis of a cohort of pediatric acute respiratory distress syndrome patients did not find a consistent association between tidal volume adjusted for ideal body weight and outcomes, although an association may exist in certain subgroups. Although it remains to be shown in a prospective trial whether high volumes or pressures are injurious in pediatric acute respiratory distress syndrome, tidal volume is likely an imprecise parameter for titrating lung-protective ventilation.
Collapse
|
18
|
Abstract
OBJECTIVES To examine issues regarding the granularity (size/scale) and potential acceptability of recommendations in a ventilator management protocol for children with pediatric acute respiratory distress syndrome. DESIGN Survey/questionnaire. SETTING The eight PICUs in the Collaborative Pediatric Critical Care Research Network. PARTICIPANTS One hundred twenty-two physicians (attendings and fellows). INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS We used an online questionnaire to examine attitudes and assessed recommendations with 50 clinical scenarios. Overall 80% of scenario recommendations were accepted. Acceptance did not vary by provider characteristics but did vary by ventilator mode (high-frequency oscillatory ventilation 83%, pressure-regulated volume control 82%, pressure control 75%; p = 0.002) and variable adjusted (ranging from 88% for peak inspiratory pressure and 86% for FIO2 changes to 69% for positive end-expiratory pressure changes). Acceptance did not vary based on child size/age. There was a preference for smaller positive end-expiratory pressure changes but no clear granularity preference for other variables. CONCLUSIONS Although overall acceptance rate for scenarios was good, there was little consensus regarding the size/scale of ventilator setting changes for children with pediatric acute respiratory distress syndrome. An acceptable protocol could support robust evaluation of ventilator management strategies. Further studies are needed to determine if adherence to an explicit protocol leads to better outcomes.
Collapse
|
19
|
Variability in Usual Care Mechanical Ventilation for Pediatric Acute Respiratory Distress Syndrome: Time for a Decision Support Protocol? Pediatr Crit Care Med 2017; 18:e521-e529. [PMID: 28930815 PMCID: PMC5679099 DOI: 10.1097/pcc.0000000000001319] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Although pediatric intensivists philosophically embrace lung protective ventilation for acute lung injury and acute respiratory distress syndrome, we hypothesized that ventilator management varies. We assessed ventilator management by evaluating changes to ventilator settings in response to blood gases, pulse oximetry, or end-tidal CO2. We also assessed the potential impact that a pediatric mechanical ventilation protocol adapted from National Heart Lung and Blood Institute acute respiratory distress syndrome network protocols could have on reducing variability by comparing actual changes in ventilator settings to those recommended by the protocol. DESIGN Prospective observational study. SETTING Eight tertiary care U.S. PICUs, October 2011 to April 2012. PATIENTS One hundred twenty patients (age range 17 d to 18 yr) with acute lung injury/acute respiratory distress syndrome. MEASUREMENTS AND MAIN RESULTS Two thousand hundred arterial and capillary blood gases, 3,964 oxygen saturation by pulse oximetry, and 2,757 end-tidal CO2 values were associated with 3,983 ventilator settings. Ventilation mode at study onset was pressure control 60%, volume control 19%, pressure-regulated volume control 18%, and high-frequency oscillatory ventilation 3%. Clinicians changed FIO2 by ±5 or ±10% increments every 8 hours. Positive end-expiratory pressure was limited at ~10 cm H2O as oxygenation worsened, lower than would have been recommended by the protocol. In the first 72 hours of mechanical ventilation, maximum tidal volume/kg using predicted versus actual body weight was 10.3 (8.5-12.9) (median [interquartile range]) versus 9.2 mL/kg (7.6-12.0) (p < 0.001). Intensivists made changes similar to protocol recommendations 29% of the time, opposite to the protocol's recommendation 12% of the time and no changes 56% of the time. CONCLUSIONS Ventilator management varies substantially in children with acute respiratory distress syndrome. Opportunities exist to minimize variability and potentially injurious ventilator settings by using a pediatric mechanical ventilation protocol offering adequately explicit instructions for given clinical situations. An accepted protocol could also reduce confounding by mechanical ventilation management in a clinical trial.
Collapse
|
20
|
Risk Stratification in Pediatric Acute Respiratory Distress Syndrome: A Multicenter Observational Study. Crit Care Med 2017; 45:1820-1828. [PMID: 28749854 DOI: 10.1097/ccm.0000000000002623] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVES The Pediatric Acute Lung Injury Consensus Conference developed a pediatric specific definition for acute respiratory distress syndrome (PARDS). In this definition, severity of lung disease is stratified into mild, moderate, and severe groups. We aim to describe the epidemiology of patients with PARDS across Asia and evaluate whether the Pediatric Acute Lung Injury Consensus Conference risk stratification accurately predicts outcome in PARDS. DESIGN A multicenter, retrospective, descriptive cohort study. SETTING Ten multidisciplinary PICUs in Asia. PATIENTS All mechanically ventilated children meeting the Pediatric Acute Lung Injury Consensus Conference criteria for PARDS between 2009 and 2015. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Data on epidemiology, ventilation, adjunct therapies, and clinical outcomes were collected. Patients were followed for 100 days post diagnosis of PARDS. A total of 373 patients were included. There were 89 (23.9%), 149 (39.9%), and 135 (36.2%) patients with mild, moderate, and severe PARDS, respectively. The most common risk factor for PARDS was pneumonia/lower respiratory tract infection (309 [82.8%]). Higher category of severity of PARDS was associated with lower ventilator-free days (22 [17-25], 16 [0-23], 6 [0-19]; p < 0.001 for mild, moderate, and severe, respectively) and PICU free days (19 [11-24], 15 [0-22], 5 [0-20]; p < 0.001 for mild, moderate, and severe, respectively). Overall PICU mortality for PARDS was 113 of 373 (30.3%), and 100-day mortality was 126 of 317 (39.7%). After adjusting for site, presence of comorbidities and severity of illness in the multivariate Cox proportional hazard regression model, patients with moderate (hazard ratio, 1.88 [95% CI, 1.03-3.45]; p = 0.039) and severe PARDS (hazard ratio, 3.18 [95% CI, 1.68, 6.02]; p < 0.001) had higher risk of mortality compared with those with mild PARDS. CONCLUSIONS Mortality from PARDS is high in Asia. The Pediatric Acute Lung Injury Consensus Conference definition of PARDS is a useful tool for risk stratification.
Collapse
|
21
|
Consensus Report by the Pediatric Acute Lung Injury and Sepsis Investigators and Pediatric Blood and Marrow Transplantation Consortium Joint Working Committees on Supportive Care Guidelines for Management of Veno-Occlusive Disease in Children and Adolescents, Part 3: Focus on Cardiorespiratory Dysfunction, Infections, Liver Dysfunction, and Delirium. Biol Blood Marrow Transplant 2017; 24:207-218. [PMID: 28870776 DOI: 10.1016/j.bbmt.2017.08.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/29/2017] [Indexed: 12/19/2022]
Abstract
Some patients with veno-occlusive disease (VOD) have multiorgan dysfunction, and multiple teams are involved in their daily care in the pediatric intensive care unit. Cardiorespiratory dysfunction is critical in these patients, requiring immediate action. The decision of whether to use a noninvasive or an invasive ventilation strategy may be difficult in the setting of mucositis or other comorbidities in patients with VOD. Similarly, monitoring of organ functions may be very challenging in these patients, who may have fulminant hepatic failure with or without hepatic encephalopathy complicated by delirium and/or infections. In this final guideline of our series on supportive care in patients with VOD, we address some of these questions and provide evidence-based recommendations on behalf of the Pediatric Acute Lung Injury and Sepsis Investigators and Pediatric Blood and Marrow Transplantation Consortium Joint Working Committees.
Collapse
|
22
|
Mechanical Ventilation for Pediatric Acute Respiratory Distress Syndrome: Few Known Knowns, Many Unknown Unknowns. Pediatr Crit Care Med 2016; 17:1000-1001. [PMID: 27705985 DOI: 10.1097/pcc.0000000000000923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|