3
|
Sperotto F, Daverio M, Amigoni A, Gregori D, Dorste A, Kobayashi RL, Thiagarajan RR, Maschietto N, Alexander PM. Extracorporeal Cardiopulmonary Resuscitation Use Among Children With Cardiac Disease in the ICU: A Meta-Analysis and Meta-Regression of Data Through March 2024. Pediatr Crit Care Med 2024; 25:e410-e417. [PMID: 39177428 PMCID: PMC11449666 DOI: 10.1097/pcc.0000000000003594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
OBJECTIVE Epidemiologic data on extracorporeal cardiopulmonary resuscitation (ECPR) use in children with cardiac disease after in-hospital cardiac arrest (IHCA) are lacking. We aimed to investigate trends in ECPR use over time in critically ill children with cardiac disease. DATA SOURCES We performed a secondary analysis of a recent systematic review (PROSPERO CRD42020156247) to investigate trends in ECPR use in children with cardiac disease. PubMed, Web of Science, Embase, and Cumulative Index to Nursing and Allied Health Literature were screened (inception to September 2021). For completeness of this secondary analysis, PubMed was also rescreened (September 2021 to March 2024). STUDY SELECTION Observational studies including epidemiologic data on ECPR use in children with cardiac disease admitted to an ICU. DATA EXTRACTION Data were extracted by two independent investigators. The risk of bias was assessed using the National Heart Lung and Blood Institutes Quality Assessment Tools. Random-effects meta-analysis was used to compute a pooled proportion of subjects undergoing ECPR; meta-regression was used to assess trends in ECPR use over time. DATA SYNTHESIS Of the 2664 studies identified, 9 (17,669 patients) included data on ECPR use in children with cardiac disease. Eight were cohort studies, 1 was a case-control, 8 were retrospective, 1 was prospective, 6 were single-center, and 3 were multicenter. Seven studies were included in the meta-analysis; all were judged of good quality. By meta-analysis, we found that a pooled proportion of 21% (95% CI, 15-29%) of pediatric patients with cardiac disease experiencing IHCA were supported with ECPR. By meta-regression adjusted for category of patients (surgical vs. general cardiac), we found that the use of ECPR in critically ill children with cardiac disease significantly increased over time ( p = 0 .026). CONCLUSIONS About one-fifth of critically ill pediatric cardiac patients experiencing IHCA were supported with ECPR, and its use significantly increased over time. This may partially explain the increased trends in survival demonstrated for this population.
Collapse
Affiliation(s)
- Francesca Sperotto
- Department of Cardiology, Boston Children’s Hospital, and Department of Pediatrics, Harvard Medical School, Boston, USA
| | - Marco Daverio
- Pediatric Intensive Care Unit, Department of Women’s and Children’s Health, University of Padova, Padova, Italy
| | - Angela Amigoni
- Pediatric Intensive Care Unit, Department of Women’s and Children’s Health, University of Padova, Padova, Italy
| | - Dario Gregori
- Laboratories of Epidemiological Methods and Biostatistics, Department of Environmental Medicine and Public Health, University of Padova, Italy
| | - Anna Dorste
- Boston Children’s Hospital Library, Boston Children’s Hospital, USA
| | - Ryan L. Kobayashi
- Department of Cardiology, Boston Children’s Hospital, and Department of Pediatrics, Harvard Medical School, Boston, USA
| | - Ravi R. Thiagarajan
- Department of Cardiology, Boston Children’s Hospital, and Department of Pediatrics, Harvard Medical School, Boston, USA
| | - Nicola Maschietto
- Department of Cardiology, Boston Children’s Hospital, and Department of Pediatrics, Harvard Medical School, Boston, USA
| | - Peta M. Alexander
- Department of Cardiology, Boston Children’s Hospital, and Department of Pediatrics, Harvard Medical School, Boston, USA
| |
Collapse
|
4
|
Mensink HA, Desai A, Cvetkovic M, Davidson M, Hoskote A, O'Callaghan M, Thiruchelvam T, Roeleveld PP. The approach to extracorporeal cardiopulmonary resuscitation (ECPR) in children. A narrative review by the paediatric ECPR working group of EuroELSO. Perfusion 2024; 39:81S-94S. [PMID: 38651582 DOI: 10.1177/02676591241236139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Extracorporeal Cardiopulmonary Resuscitation (ECPR) has potential benefits compared to conventional Cardiopulmonary Resuscitation (CCPR) in children. Although no randomised trials for paediatric ECPR have been conducted, there is extensive literature on survival, neurological outcome and risk factors for survival. Based on current literature and guidelines, we suggest recommendations for deployment of paediatric ECPR emphasising the requirement for protocols, training, and timely intervention to enhance patient outcomes. Factors related to outcomes of paediatric ECPR include initial underlying rhythm, CCPR duration, quality of CCPR, medications during CCPR, cannulation site, acidosis and renal dysfunction. Based on current evidence and experience, we provide an approach to patient selection, ECMO initiation and management in ECPR regarding blood and sweep flow settings, unloading of the left ventricle, diagnostics whilst on ECMO, temperature targets, neuromonitoring as well as suggested weaning and decannulation strategies.
Collapse
Affiliation(s)
- H A Mensink
- Paediatric Intensive Care, Leiden University Medical Centre, Leiden, The Netherlands
| | - A Desai
- Paediatric Intensive Care, Royal Brompton Hospital, London, UK
| | - M Cvetkovic
- Paediatric Cardiac Intensive Care, Great Ormond Street Hospital for Children, London, UK
| | - M Davidson
- Critical Care Medicine, Royal Hospital for Children, Glasgow, UK
| | - A Hoskote
- Paediatric Cardiac Intensive Care, Great Ormond Street Hospital for Children, London, UK
| | - M O'Callaghan
- Paediatric Cardiac Intensive Care, Great Ormond Street Hospital for Children, London, UK
| | - T Thiruchelvam
- Paediatric Cardiac Intensive Care, Great Ormond Street Hospital for Children, London, UK
| | - P P Roeleveld
- Paediatric Intensive Care, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
6
|
Joye R, Cousin VL, Wacker J, Hoskote A, Gebistorf F, Tonna JE, Rycus PT, Thiagarajan RR, Polito A. Death by Neurologic Criteria in Children Undergoing Extracorporeal Cardiopulmonary Resuscitation: Retrospective Extracorporeal Life Support Organization Registry Study, 2017-2021. Pediatr Crit Care Med 2024; 25:e149-e157. [PMID: 37982691 PMCID: PMC10903996 DOI: 10.1097/pcc.0000000000003406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
OBJECTIVES To determine factors associated with brain death in children treated with extracorporeal cardiopulmonary resuscitation (E-cardiopulmonary resuscitation). DESIGN Retrospective database study. SETTINGS Data reported to the Extracorporeal Life Support Organization (ELSO), 2017-2021. PATIENTS Children supported with venoarterial extracorporeal membrane oxygenation (ECMO) for E-cardiopulmonary resuscitation. INTERVENTION None. MEASUREMENTS AND MAIN RESULTS Data from the ELSO Registry included patient characteristics, blood gas values, support therapies, and complications. The primary outcome was brain death (i.e., death by neurologic criteria [DNC]). There were 2,209 children (≥ 29 d to < 18 yr of age) included. The reason for ECMO discontinuation was DNC in 138 patients (6%), and other criteria for death occurred in 886 patients (40%). Recovery occurred in 1,109 patients (50%), and the remaining 76 patients (4%) underwent transplantation. Fine and Gray proportional subdistribution hazards' regression analyses were used to examine the association between variables of interest and DNC. Age greater than 1 year ( p < 0.001), arterial blood carbon dioxide tension (Pa co2 ) greater than 82 mm Hg ( p = 0.022), baseline lactate greater than 15 mmol/L ( p = 0.034), and lactate 24 hours after cannulation greater than 3.8 mmol/L ( p < 0.001) were independently associated with greater hazard of subsequent DNC. In contrast, the presence of cardiac disease was associated with a lower hazard of subsequent DNC (subdistribution hazard ratio 0.57 [95% CI, 0.39-0.83] p = 0.004). CONCLUSIONS In children undergoing E-cardiopulmonary resuscitation, older age, pre-event hypercarbia, higher before and during ECMO lactate levels are associated with DNC. Given the association of DNC with hypercarbia following cardiac arrest, the role of Pa co2 management in E-cardiopulmonary resuscitation warrants further studies.
Collapse
Affiliation(s)
- Raphael Joye
- Pediatric Cardiology Unit, Department of Woman, Child, and Adolescent Medicine, Geneva University Hospital, Geneva, Switzerland
| | - Vladimir L Cousin
- Pediatric Intensive Care Unit, Department of Woman, Child, and Adolescent Medicine, Geneva University Hospital, Geneva, Switzerland
| | - Julie Wacker
- Pediatric Cardiology Unit, Department of Woman, Child, and Adolescent Medicine, Geneva University Hospital, Geneva, Switzerland
| | - Aparna Hoskote
- Cardiac Intensive Care Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Fabienne Gebistorf
- Pediatric Intensive Care Unit, Department of Woman, Child, and Adolescent Medicine, Geneva University Hospital, Geneva, Switzerland
| | - Joseph E Tonna
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah Health, Salt Lake City, UT
- Department of Emergency Medicine, University of Utah Health, Salt Lake City, UT
| | - Peter T Rycus
- Extracorporeal Life Support Organization, Ann Arbor, MI
| | - Ravi R Thiagarajan
- Division of Cardiac Critical Care, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Angelo Polito
- Pediatric Intensive Care Unit, Department of Woman, Child, and Adolescent Medicine, Geneva University Hospital, Geneva, Switzerland
| |
Collapse
|
7
|
Federman M, Sutton RM, Reeder RW, Ahmed T, Bell MJ, Berg RA, Bishop R, Bochkoris M, Burns C, Carcillo JA, Carpenter TC, Dean JM, Diddle JW, Fernandez R, Fink EL, Franzon D, Frazier AH, Friess SH, Graham K, Hall M, Hehir DA, Horvat CM, Huard LL, Kirkpatrick T, Maa T, Maitoza LA, Manga A, McQuillen PS, Meert KL, Morgan RW, Mourani PM, Nadkarni VM, Notterman D, Palmer CA, Pollack MM, Sapru A, Schneiter C, Sharron MP, Srivastava N, Tilford B, Viteri S, Wessel D, Wolfe HA, Yates AR, Zuppa AF, Naim MY. Survival With Favorable Neurologic Outcome and Quality of Cardiopulmonary Resuscitation Following In-Hospital Cardiac Arrest in Children With Cardiac Disease Compared With Noncardiac Disease. Pediatr Crit Care Med 2024; 25:4-14. [PMID: 37678381 PMCID: PMC10843749 DOI: 10.1097/pcc.0000000000003368] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
OBJECTIVES To assess associations between outcome and cardiopulmonary resuscitation (CPR) quality for in-hospital cardiac arrest (IHCA) in children with medical cardiac, surgical cardiac, or noncardiac disease. DESIGN Secondary analysis of a multicenter cluster randomized trial, the ICU-RESUScitation Project (NCT02837497, 2016-2021). SETTING Eighteen PICUs. PATIENTS Children less than or equal to 18 years old and greater than or equal to 37 weeks postconceptual age receiving chest compressions (CC) of any duration during the study. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Of 1,100 children with IHCA, there were 273 medical cardiac (25%), 383 surgical cardiac (35%), and 444 noncardiac (40%) cases. Favorable neurologic outcome was defined as no more than moderate disability or no worsening from baseline Pediatric Cerebral Performance Category at discharge. The medical cardiac group had lower odds of survival with favorable neurologic outcomes compared with the noncardiac group (48% vs 55%; adjusted odds ratio [aOR] [95% CI], aOR 0.59 [95% CI, 0.39-0.87], p = 0.008) and surgical cardiac group (48% vs 58%; aOR 0.64 [95% CI, 0.45-0.9], p = 0.01). We failed to identify a difference in favorable outcomes between surgical cardiac and noncardiac groups. We also failed to identify differences in CC rate, CC fraction, ventilation rate, intra-arrest average target diastolic or systolic blood pressure between medical cardiac versus noncardiac, and surgical cardiac versus noncardiac groups. The surgical cardiac group had lower odds of achieving target CC depth compared to the noncardiac group (OR 0.15 [95% CI, 0.02-0.52], p = 0.001). We failed to identify a difference in the percentage of patients achieving target CC depth when comparing medical cardiac versus noncardiac groups. CONCLUSIONS In pediatric IHCA, medical cardiac patients had lower odds of survival with favorable neurologic outcomes compared with noncardiac and surgical cardiac patients. We failed to find differences in CPR quality between medical cardiac and noncardiac patients, but there were lower odds of achieving target CC depth in surgical cardiac compared to noncardiac patients.
Collapse
Affiliation(s)
- Myke Federman
- Department of Pediatrics, Mattel Children’s Hospital, University of California Los Angeles, Los Angeles, CA, USA
| | - Robert M Sutton
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Ron W Reeder
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Tageldin Ahmed
- Department of Pediatrics, Children’s Hospital of Michigan, Central Michigan University, Detroit, MI, USA
| | - Michael J Bell
- Department of Pediatrics, Children’s National Hospital, George Washington University School of Medicine, Washington, DC, USA
| | - Robert A Berg
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert Bishop
- Department of Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO, USA
| | - Matthew Bochkoris
- Department of Critical Care Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Candice Burns
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI, USA
| | - Joseph A Carcillo
- Department of Critical Care Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Todd C Carpenter
- Department of Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO, USA
| | - J Michael Dean
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - J Wesley Diddle
- Department of Pediatrics, Children’s National Hospital, George Washington University School of Medicine, Washington, DC, USA
| | - Richard Fernandez
- Department of Pediatrics, Nationwide Children’s Hospital, The Ohio State University, Columbus, OH, USA
| | - Ericka L Fink
- Department of Critical Care Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Deborah Franzon
- Department of Pediatrics, Benioff Children’s Hospital, University of California, San Francisco, San Francisco, CA, USA
| | - Aisha H Frazier
- Nemours Cardiac Center, Nemours Children’s Hospital, Delaware, Wilmington, DE, USA
- Department of Pediatrics, Sidney Kimmel Medical College, Thomas Jefferson University, St. Louis, MO, USA
| | - Stuart H Friess
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Kathryn Graham
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark Hall
- Department of Pediatrics, Nationwide Children’s Hospital, The Ohio State University, Columbus, OH, USA
| | - David A Hehir
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher M Horvat
- Department of Critical Care Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Leanna L Huard
- Department of Pediatrics, Mattel Children’s Hospital, University of California Los Angeles, Los Angeles, CA, USA
| | - Theresa Kirkpatrick
- Department of Pediatrics, Mattel Children’s Hospital, University of California Los Angeles, Los Angeles, CA, USA
| | - Tensing Maa
- Department of Pediatrics, Nationwide Children’s Hospital, The Ohio State University, Columbus, OH, USA
| | - Laura A Maitoza
- Department of Pediatrics, Mattel Children’s Hospital, University of California Los Angeles, Los Angeles, CA, USA
| | - Arushi Manga
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Patrick S McQuillen
- Department of Pediatrics, Benioff Children’s Hospital, University of California, San Francisco, San Francisco, CA, USA
| | - Kathleen L Meert
- Department of Pediatrics, Children’s Hospital of Michigan, Central Michigan University, Detroit, MI, USA
| | - Ryan W Morgan
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter M Mourani
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children’s Hospital, Little Rock, AR, USA
| | - Vinay M Nadkarni
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel Notterman
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Chella A Palmer
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Murray M Pollack
- Department of Pediatrics, Children’s National Hospital, George Washington University School of Medicine, Washington, DC, USA
| | - Anil Sapru
- Department of Pediatrics, Mattel Children’s Hospital, University of California Los Angeles, Los Angeles, CA, USA
| | - Carleen Schneiter
- Department of Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO, USA
| | - Matthew P Sharron
- Department of Pediatrics, Children’s National Hospital, George Washington University School of Medicine, Washington, DC, USA
| | - Neeraj Srivastava
- Department of Pediatrics, Mattel Children’s Hospital, University of California Los Angeles, Los Angeles, CA, USA
| | - Bradley Tilford
- Department of Pediatrics, Children’s Hospital of Michigan, Central Michigan University, Detroit, MI, USA
| | - Shirley Viteri
- Department of Pediatrics, Nemours Children’s Hospital, Delaware and Thomas Jefferson University, Wilmington, DE, USA
| | - David Wessel
- Department of Pediatrics, Children’s National Hospital, George Washington University School of Medicine, Washington, DC, USA
| | - Heather A Wolfe
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew R Yates
- Department of Pediatrics, Nationwide Children’s Hospital, The Ohio State University, Columbus, OH, USA
| | - Athena F Zuppa
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Maryam Y Naim
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|