1
|
Yang Y, Fan R, Li H, Chen H, Gong H, Guo G. Polysaccharides as a promising platform for the treatment of spinal cord injury: A review. Carbohydr Polym 2024; 327:121672. [PMID: 38171685 DOI: 10.1016/j.carbpol.2023.121672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
Spinal cord injury is incurable and often results in irreversible damage to motor function and autonomic sensory abilities. To enhance the effectiveness of therapeutic substances such as cells, growth factors, drugs, and nucleic acids for treating spinal cord injuries, as well as to reduce the toxic side effects of chemical reagents, polysaccharides have been gained attention due to their immunomodulatory properties and the biocompatibility and biodegradability of polysaccharide scaffolds. Polysaccharides hold potential as drug delivery systems in treating spinal cord injuries. This article aims to present an extensive evaluation of the potential applications of polysaccharide materials in scaffold construction, drug delivery, and immunomodulation over the past five years so that offering new directions and opportunities for the treatment of spinal cord injuries.
Collapse
Affiliation(s)
- Yuanli Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rangrang Fan
- Department of Neurosurgery and Institute of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hui Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haifeng Chen
- Department of Neurosurgery and Institute of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hanlin Gong
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Gang Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Chen W, Gao X, Yang W, Xiao X, Pan X, Li H. Htr2b Promotes M1 Microglia Polarization and Neuroinflammation after Spinal Cord Injury via Inhibition of Neuregulin-1/ErbB Signaling. Mol Neurobiol 2024; 61:1643-1654. [PMID: 37747614 DOI: 10.1007/s12035-023-03656-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
The secondary injury of spinal cord injury (SCI) is dominated by neuroinflammation, which was caused by microglia M1 polarization. This study aimed to investigate the role and mechanism of Htr2b on neuroinflammation of SCI. The BV2 and HMC3 microglia were treated with lipopolysaccharide (LPS) or interferon (IFN)-γ to simulate in vitro models of SCI. Sprague-Dawley rats were subjected to the T10 laminectomy to induce animal model of SCI. Htr2b mRNA expression was measured by qRT-PCR. The expression of Htr2b and Iba-1 was detected by western blot and immunofluorescence. The expression of inflammatory cytokines in vitro and in vivo was also measured. Kyoto Encyclopedia of Genes and Genomes (KEGG) was employed to analyze Htr2b-regulated signaling pathways. Rat behavior was analyzed by the Basso, Beattie, and Bresnahan (BBB) and inclined plane test. Rat dorsal horn tissues were stained by hematoxylin-eosin (H&E) and Nissl to measure neuron loss. Htr2b was highly expressed in LPS- and IFN-γ-treated microglia and SCI rats. SCI modeling promoted M1 microglia polarization and increased levels of inflammatory cytokines. Inhibition of Htr2b by Htr2b shRNA or RS-127445 reduced the expression of Htr2b, Iba-1, and iNOS and suppressed cytokine levels. KEGG showed that Htr2b inhibited ErbB signaling pathway. Inhibition of Htr2b increased protein expression of neuregulin-1 (Nrg-1) and p-ErbB4. Inhibition of the ErbB signaling pathway markedly reversed the effect of Htr2b shRNA on M1 microglia polarization and inflammatory cytokines. Htr2b promotes M1 microglia polarization and neuroinflammation after SCI by inhibiting Nrg-1/ErbB signaling pathway.
Collapse
Affiliation(s)
- Wenhao Chen
- Department of Orthopaedics, Qilu Hospital of Shandong University, No. 107, Wenhuaxi Road, Lixia District, 250012, Jinan, Shandong, People's Republic of China
- Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, People's Republic of China
| | - Xianlei Gao
- Department of Orthopaedics, Qilu Hospital of Shandong University, No. 107, Wenhuaxi Road, Lixia District, 250012, Jinan, Shandong, People's Republic of China
| | - Wanliang Yang
- Department of Orthopaedics, Qilu Hospital of Shandong University, No. 107, Wenhuaxi Road, Lixia District, 250012, Jinan, Shandong, People's Republic of China
- Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, People's Republic of China
| | - Xun Xiao
- Department of Orthopaedics, Qilu Hospital of Shandong University, No. 107, Wenhuaxi Road, Lixia District, 250012, Jinan, Shandong, People's Republic of China
- Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, People's Republic of China
| | - Xin Pan
- Department of Orthopaedics, Qilu Hospital of Shandong University, No. 107, Wenhuaxi Road, Lixia District, 250012, Jinan, Shandong, People's Republic of China
| | - Hao Li
- Department of Orthopaedics, Qilu Hospital of Shandong University, No. 107, Wenhuaxi Road, Lixia District, 250012, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
3
|
Sunshine MD, Bindi VE, Nguyen BL, Doerr V, Boeno FP, Chandran V, Smuder AJ, Fuller DD. Oxygen therapy attenuates neuroinflammation after spinal cord injury. J Neuroinflammation 2023; 20:303. [PMID: 38110993 PMCID: PMC10729514 DOI: 10.1186/s12974-023-02985-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
Acute hyperbaric O2 (HBO) therapy after spinal cord injury (SCI) can reduce inflammation and increase neuronal survival. To our knowledge, it is unknown if these benefits of HBO require hyperbaric vs. normobaric hyperoxia. We used a C4 lateralized contusion SCI in adult male and female rats to test the hypothesis that the combination of hyperbaria and 100% O2 (i.e. HBO) more effectively mitigates spinal inflammation and neuronal loss, and enhances respiratory recovery, as compared to normobaric 100% O2. Experimental groups included spinal intact, SCI no O2 therapy, and SCI + 100% O2 delivered at normobaric pressure (1 atmosphere, ATA), or at 2- or 3 ATA. O2 treatments lasted 1-h, commenced within 2-h of SCI, and were repeated for 10 days. The spinal inflammatory response was assessed with transcriptomics (RNAseq) and immunohistochemistry. Gene co-expression network analysis showed that the strong inflammatory response to SCI was dramatically diminished by both hyper- and normobaric O2 therapy. Similarly, both HBO and normobaric O2 treatments reduced the prevalence of immunohistological markers for astrocytes (glial fibrillary acidic protein) and microglia (ionized calcium binding adaptor molecule) in the injured spinal cord. However, HBO treatment also had unique impacts not detected in the normobaric group including upregulation of an anti-inflammatory cytokine (interleukin-4) in the plasma, and larger inspiratory tidal volumes at 10-days (whole body-plethysmography measurements). We conclude that normobaric O2 treatment can reduce the spinal inflammatory response after SCI, but pressured O2 (i.e., HBO) provides further benefit.
Collapse
Affiliation(s)
- Michael D Sunshine
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Victoria E Bindi
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Branden L Nguyen
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Vivian Doerr
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Franccesco P Boeno
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | | | - Ashley J Smuder
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA.
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
4
|
Xiu G, Li X, Li Q, Yin Y, Tang Q, Li J, Ling J, Ling B, Yang Y. Role of hyperbaric oxygen therapy in PDGF-BB-mediated astrogliosis in traumatic brain injury rats associated with ERK1/2 signaling pathway inhibition. Eur J Med Res 2023; 28:99. [PMID: 36841777 PMCID: PMC9960636 DOI: 10.1186/s40001-023-01062-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/14/2023] [Indexed: 02/27/2023] Open
Abstract
BACKGROUND Hyperbaric oxygen (HBO) plays positive roles in the therapy of traumatic brain injury (TBI); however, the mechanism underlying its effects on TBI is largely unknown. The study aims to elucidate the molecular mechanism implicated with the interaction between platelet-derived growth factor-BB (PDGF-BB) and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway, which may play critical roles during HBO treatment both in the astrocyte scratching model in vitro and rat TBI model in vivo. METHODS Changes in neurological function and wound healing were evaluated using the neurological severity scores (NSS) scale, immunohistochemistry, western blotting, and qRT-PCR, respectively. RESULTS The results showed that PDGF-BBi (PDGB interfered with small RNA) dramatically improves neuronal viability in vitro when transfected into the scratched astrocytes derived from the cerebral cortex of neonatal rats. Moreover, in vivo experiments revealed that HBO therapy substantially elevated the NSS scores and simultaneously reduced the mortality in TBI rats, as indicated by the NSS scales. Notably, HBO therapy was found to possess the ability to inhibit glial cell proliferation, promote the regeneration of neurons and synapses, and ultimately facilitate the wound healing, as revealed by immunohistochemistry and glial scar formation found in TBI rats. Importantly, HBO markedly decreased the expression levels of PDGF-BB and ERK1/2. It can clearly be seen that downregulated PDGF-BB and ERK1/2 levels were corresponding with the status of significant amelioration of the therapeutic effect of HBO. Conversely, the upregulation of PDGF-BB and ERK1/2 levels was in line with the opposite effect. CONCLUSION It has been concluded that HBO therapy may play its active role in TBI treatment dependent on astrogliosis inhibition, which may be achieved by downregulating the ERK1/2 signaling pathway mediated by PDGF-BB.
Collapse
Affiliation(s)
- Guanghui Xiu
- grid.440773.30000 0000 9342 2456Affiliated Hospital of Yunnan University, School of Medicine, Yunnan University, Kunming, 650021 Yunnan China
| | - Xiuling Li
- grid.414918.1Department of Obstetrics, The First People’s Hospital of Yunnan Province, Kunming, 650100 Yunnan China
| | - Qiang Li
- Department of Emergency Medicine, Fushun People’s Hospital, Zigong, 643200 Sichuan China
| | - Yunyu Yin
- grid.413387.a0000 0004 1758 177XDepartment of Intensive Care Unit, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637002 Sichuan China
| | - Qiqi Tang
- grid.440773.30000 0000 9342 2456Affiliated Hospital of Yunnan University, School of Medicine, Yunnan University, Kunming, 650021 Yunnan China
| | - Jintao Li
- Institute of Neuroscience, Kunming Medicine University, Kunming, 650500 Yunnan China
| | - Jiaying Ling
- grid.285847.40000 0000 9588 0960Kunming Medical University Haiyuan College, Kunming, 650106 Yunnan China
| | - Bin Ling
- Affiliated Hospital of Yunnan University, School of Medicine, Yunnan University, Kunming, 650021, Yunnan, China. .,, No. 176 Qingnian Road, Wuhua District, Kunming, 650021, Yunnan, China.
| | - Ying Yang
- Affiliated Hospital of Yunnan University, School of Medicine, Yunnan University, Kunming, 650021, Yunnan, China. .,, No. 176 Qingnian Road, Wuhua District, Kunming, 650021, Yunnan, China.
| |
Collapse
|
5
|
Ahmadi F, Zargari M, Nasiry D, Khalatbary AR. Synergistic neuroprotective effects of hyperbaric oxygen and methylprednisolone following contusive spinal cord injury in rat. J Spinal Cord Med 2022; 45:930-939. [PMID: 33830902 PMCID: PMC9661982 DOI: 10.1080/10790268.2021.1896275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVE Recent studies revealed the neuroprotective effects of hyperbaric oxygen (HBO) on spinal cord injury (SCI). Meanwhile, the use of methylprednisolone (MP) is one of the current protocols with limited effects in SCI patients. Accordingly, the aim of the present study was to investigate the effect of combined HBO and MP treatment on SCI. DESIGN The present study was conducted on five groups of rats each as follows: Sham group (underwent laminectomy alone at T9 level vertebra); SCI group (underwent moderate contusive SCI); MP group (underwent SCI and received MP); HBO group (underwent SCI and received HBO); HBO + MP group (underwent SCI and simultaneously received MP and HBO). Blood serum and Spinal cord tissue samples were taken 48 h after SCI for analysis of serum ferric reducing antioxidant power (FRAP) and tissue malodialdehyde (MDA) levels as well as immunohistochemistry of caspase-3 and tumor necrosis factor-alpha (TNF-α). Neurological function was evaluated by the Basso-Beattie-Bresnehan (BBB) locomotion scores until the end of experiments. Additionally, histopathology was assessed at the end of the study. SETTING Mazandaran University of Medical Sciences, Sari, Iran. RESULTS Combination therapy with HBO and MP in the HBO + MP group significantly decreased MDA as well as increased FRAP levels compared to other treatment groups. Meanwhile, attenuated TNF-α and Caspase-3 expression could be significantly detected in the HBO + MP group. At the end of treatment, the neurological outcome was significantly improved and the extent of injured spinal tissue was also significantly reduced in the HBO + MP compared to other treatment groups. CONCLUSION The results suggest that combined therapy with MP and HBO has synergistic effects on SCI treatment.
Collapse
Affiliation(s)
- Fahimeh Ahmadi
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehryar Zargari
- Department of biochemistry and genetic/Molecular and cell biology research center, Faculty of Medicine, Mazandaran University of medical sciences, Sari, Iran
| | - Davood Nasiry
- Department of Biology and Anatomical Science, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Reza Khalatbary
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran,Correspondence to: Ali Reza Khalatbary, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
6
|
Deng C, Deng L, Lv J, Sun L. Therapeutic effects and long-term outcomes of HMGB1-targeted therapy in rats and mice with traumatic spinal cord injury: A systematic review and meta-analysis. Front Neurosci 2022; 16:968791. [PMID: 36161176 PMCID: PMC9489835 DOI: 10.3389/fnins.2022.968791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/18/2022] [Indexed: 12/09/2022] Open
Abstract
BackgroundTo date, the clinical need for therapeutic methods to prevent traumatic spinal cord injury (TSCI) progression and improve functional recovery has not been met. High mobility group box-1 (HMGB1) is released by necrotic neurons or secreted by glial cells after TSCI and plays an important role in pathophysiology.ObjectiveThe purpose of this study was to evaluate the effects of HMGB1-targeted therapy on locomotor function recovery, inflammation reduction, edema attenuation, and apoptosis reduction in rat and mouse models of TSCI.MethodsWe reviewed the literature on HMGB1-targeted therapy in the treatment and prognosis of TSCI. Twelve articles were identified and analyzed from four online databases (PubMed, Web of Science, Cochrane Library and Embase) based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and strict inclusion criteria.ResultsThe methodological quality of the 12 articles was poor. The results of the meta-analysis showed that compared with the SCI group, the treatment group had significantly increased locomotor function scores after SCI [n = 159, standardized mean difference (SMD) = 2.31, 95% confidence interval (CI) (1.52, 3.10), P < 0.00001], and the change in locomotor function scores was significantly increased in both the drug and anti-HMGB1 Ab groups (P < 0.000001 and P < 0.000001). A subgroup analysis showed significant differences (P > 0.05) between the drug group [(SMD) = 1.95, 95% CI (0.95, 2.94), P = 0.0001] and the anti-HMGB1 Ab group [(SMD) = 2.89, 95% CI (1.66, 4.13), P < 0.00001]. Compared with the SCI group, HMGB1 expression was significantly diminished [n = 76, SMD = −2.31, 95% CI (−3.71, −0.91), P = 0.001], TNF-α levels were significantly reduced [n = 76, SMD = −2.52, 95% CI (−3.77, −1.27), P < 0.0001], water content was significantly reduced [n = 44, SMD = −3.94, 95% CI (−6.28, −1.61), P = 0.0009], and the number of apoptotic cells was significantly diminished [n = 36, SMD = −3.31, 95% CI (−6.40, −0.22), P = 0.04] in the spinal cord of the treatment group.ConclusionHMGB1-targeted therapy improves locomotor function, reduces inflammation, attenuates edema, and reduces apoptosis in rats and mice with TSCI. Intrathecal injection of anti-HMGB1 Ab 0-3 h after SCI may be the most efficacious treatment.Systematic review registrationPROSPERO, identifier: CRD42022326114.
Collapse
|
7
|
Zhou Y, Guo S, Botchway BOA, Zhang Y, Jin T, Liu X. Muscone Can Improve Spinal Cord Injury by Activating the Angiogenin/Plexin-B2 Axis. Mol Neurobiol 2022; 59:5891-5901. [PMID: 35809154 DOI: 10.1007/s12035-022-02948-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/23/2022] [Indexed: 12/01/2022]
Abstract
Spinal cord injury (SCI) is a devastating neurological disorder that usually damages sensorimotor and autonomic functions. Signaling pathways can play a key role in the repair process of SCI. The plexin-B2 acts as a receptor for angiogenin and mediates ribosomal RNA transcription, influencing cell survival and proliferation. Protein kinase B serine/threonine kinase interacts with angiogenin to form a positive feedback effect. Brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor can induce angiogenin nuclear translocation. Moreover, the BDNF can promote the secretion of angiogenin. Interestingly, all of them can activate the angiogenin/plexin-B2 axis. Muscone has anti-inflammatory and proliferative features as it can inhibit nuclear transcription factor kappa-B (NF-κB) and activate the angiogenin/plexin-B2 axis, thus being significant agent in the SCI repair process. Herein, we review the potential mechanism of angiogenin/plexin-B2 axis activation and the role of muscone in SCI treatment. Muscone may attenuate inflammatory responses and promote neuronal regeneration after SCI.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Histology and Embryology, School of Medicine, Medical College, Shaoxing University, Zhejiang Province, Shaoxing, 312000, China
| | - Shitian Guo
- School of Clinical Medicine, Hangzhou Normal University, Hangzhou, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Zhang
- Department of Histology and Embryology, School of Medicine, Medical College, Shaoxing University, Zhejiang Province, Shaoxing, 312000, China
| | - Tian Jin
- Department of Histology and Embryology, School of Medicine, Medical College, Shaoxing University, Zhejiang Province, Shaoxing, 312000, China
| | - Xuehong Liu
- Department of Histology and Embryology, School of Medicine, Medical College, Shaoxing University, Zhejiang Province, Shaoxing, 312000, China.
| |
Collapse
|
8
|
Progression in translational research on spinal cord injury based on microenvironment imbalance. Bone Res 2022; 10:35. [PMID: 35396505 PMCID: PMC8993811 DOI: 10.1038/s41413-022-00199-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 11/14/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injury (SCI) leads to loss of motor and sensory function below the injury level and imposes a considerable burden on patients, families, and society. Repair of the injured spinal cord has been recognized as a global medical challenge for many years. Significant progress has been made in research on the pathological mechanism of spinal cord injury. In particular, with the development of gene regulation, cell sequencing, and cell tracing technologies, in-depth explorations of the SCI microenvironment have become more feasible. However, translational studies related to repair of the injured spinal cord have not yielded significant results. This review summarizes the latest research progress on two aspects of SCI pathology: intraneuronal microenvironment imbalance and regenerative microenvironment imbalance. We also review repair strategies for the injured spinal cord based on microenvironment imbalance, including medications, cell transplantation, exosomes, tissue engineering, cell reprogramming, and rehabilitation. The current state of translational research on SCI and future directions are also discussed. The development of a combined, precise, and multitemporal strategy for repairing the injured spinal cord is a potential future direction.
Collapse
|
9
|
Turner S, Sunshine MD, Chandran V, Smuder AJ, Fuller DD. Hyperbaric oxygen therapy after mid-cervical spinal contusion injury. J Neurotrauma 2022; 39:715-723. [PMID: 35152735 PMCID: PMC9081027 DOI: 10.1089/neu.2021.0412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hyperbaric oxygen (HBO) therapy is frequently used to treat peripheral wounds or decompression sickness. Evidence suggests that HBO therapy can provide neuroprotection and has an anti-inflammatory impact after neurological injury, including spinal cord injury (SCI). Our primary purpose was to conduct a genome-wide screening of mRNA expression changes in the injured spinal cord after HBO therapy. An mRNA gene array was used to evaluate samples taken from the contused region of the spinal cord following a lateralized mid-cervical contusion injury in adult female rats. HBO therapy consisted of daily, 1-h sessions (3.0 ATA, 100% O2) initiated on the day of SCI and continued for 10 days. Gene set enrichment analyses indicated that HBO upregulated genes in pathways associated with electron transport, mitochondrial function, and oxidative phosphorylation, and downregulated genes in pathways associated with inflammation (including cytokines and nuclear factor kappa B [NF-κB]) and apoptotic signaling. In a separate cohort, spinal cord histology was performed to verify whether the HBO treatment impacted neuronal cell counts or inflammatory markers. Compared with untreated rats, there were increased NeuN positive cells in the spinal cord of HBO-treated rats (p = 0.004). We conclude that HBO therapy, initiated shortly after SCI and continued for 10 days, can alter the molecular signature of the lesioned spinal cord in a manner consistent with a neuroprotective impact.
Collapse
Affiliation(s)
- Sara Turner
- University of Florida, Physical Therapy, Gainesville, Florida, United States
| | - Michael D. Sunshine
- University of Florida, 3463, Physical Therapy, 1149 South Newell Drive, L1-168, Gainesville, Florida, United States, 32601
- University of Florida
| | | | - Ashley J Smuder
- University of Florida, Applied Physiology and Kinesiology, Gainesville, Florida, United States
| | - David D Fuller
- University of Florida, Physical Therapy, 100 S. Newell Dr., PO Box 100154, Gainesville, Florida, United States, 32610
| |
Collapse
|
10
|
Zeman RJ, Wen X, Ouyang N, Brown AM, Etlinger JD. Role of the Polyol Pathway in Locomotor Recovery and Wallerian Degeneration after Spinal Cord Contusion Injury. Neurotrauma Rep 2021; 2:411-423. [PMID: 34738094 PMCID: PMC8563458 DOI: 10.1089/neur.2021.0018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Spinal cord contusion injury leads to Wallerian degeneration of axonal tracts, resulting in irreversible paralysis. Contusion injury causes perfusion loss by thrombosis and vasospasm, resulting in spinal cord ischemia. In several tissues, including heart and brain, ischemia activates polyol pathway enzymes—aldose reductase (AR) and sorbitol dehydrogenase (SDH)—that convert glucose to sorbitol and fructose in reactions, causing oxidative stress and tissue loss. We sought to determine whether activation of this pathway, which has been termed glucotoxicity, contributes to tissue loss after spinal cord contusion injury. We tested individual treatments with AR inhibitors (sorbinil or ARI-809), SDH inhibitor (CP-470711), superoxide dismutase mimetic (tempol), or combined sorbinil and tempol. Each treatment significantly increased locomotor recovery and reduced loss of spinal cord tissue in a standard model of spinal cord contusion in rats. Tissue levels of sorbitol and axonal AR (AKR1B10) expression were increased after contusion injury, consistent with activation of the polyol pathway. Sorbinil treatment inhibited the above changes and also decreased axonal swelling and loss, characteristic of Wallerian degeneration. Treatment with tempol induced recovery of locomotor function that was similar in magnitude, but non-additive to sorbinil, suggesting a shared mechanism of action by reactive oxygen species (ROS). Exogenous induction of hyperglycemia further increased injury-induced axonal swelling, consistent with glucotoxicity. Unexpectedly, contusion increased spinal cord levels of glucose, the primary polyol pathway substrate. These results support roles for spinal glucose elevation and tissue glucotoxicity by the polyol pathway after spinal cord contusion injury that results in ROS-mediated axonal degeneration.
Collapse
Affiliation(s)
- Richard J Zeman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, USA.,MotoGen Inc., Mount Kisco, New York, USA
| | - Xialing Wen
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, USA
| | - Nengtai Ouyang
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, USA
| | - Abraham M Brown
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, USA
| | - Joseph D Etlinger
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, USA.,MotoGen Inc., Mount Kisco, New York, USA
| |
Collapse
|
11
|
Lindenmann J, Smolle C, Kamolz LP, Smolle-Juettner FM, Graier WF. Survey of Molecular Mechanisms of Hyperbaric Oxygen in Tissue Repair. Int J Mol Sci 2021; 22:11754. [PMID: 34769182 PMCID: PMC8584249 DOI: 10.3390/ijms222111754] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 01/08/2023] Open
Abstract
For more than six decades, hyperbaric oxygen (HBO) has been used for a variety of indications involving tissue repair. These indications comprise a wide range of diseases ranging from intoxications to ischemia-reperfusion injury, crush syndrome, central nervous injury, radiation-induced tissue damage, burn injury and chronic wounds. In a systematic review, the molecular mechanisms triggered by HBO described within the last two decades were compiled. They cover a wide range of pathways, including transcription, cell-to-cell contacts, structure, adhesion and transmigration, vascular signaling and response to oxidative stress, apoptosis, autophagy and cell death, as well as inflammatory processes. By analyzing 71 predominantly experimental publications, we established an overview of the current concepts regarding the molecular mechanisms underlying the effects of HBO. We considered both the abovementioned pathways and their role in various applications and indications.
Collapse
Affiliation(s)
- Joerg Lindenmann
- Division of Thoracic and Hyperbaric Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 29/3, 8036 Graz, Austria;
| | - Christian Smolle
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 29/2, 8036 Graz, Austria; (C.S.); (L.-P.K.)
| | - Lars-Peter Kamolz
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 29/2, 8036 Graz, Austria; (C.S.); (L.-P.K.)
| | - Freyja Maria Smolle-Juettner
- Division of Thoracic and Hyperbaric Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 29/3, 8036 Graz, Austria;
| | - Wolfgang F. Graier
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria;
| |
Collapse
|
12
|
Zhao X, Zhao X, Wang Z. Synergistic neuroprotective effects of hyperbaric oxygen and N-acetylcysteine against traumatic spinal cord injury in rat. J Chem Neuroanat 2021; 118:102037. [PMID: 34601074 DOI: 10.1016/j.jchemneu.2021.102037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND The mitochondrial dysfunction and following oxidative stress, as well as the spread of inflammation plays major roles in the failure to regenerate following severe spinal cord injury (SCI). In this regard, we investigated the neuroprotective effects of hyperbaric oxygen (HBO), as an anti-apoptotic and anti-inflammatory agent, and N-acetylcysteine (NAC), as a mitochondrial enhancer, in SCI. MATERIAL AND METHODS Seventy-five female adult Wistar rats divided into five groups (n = 15): laminectomy alone (Sham) group, SCI group, HBO group (underwent SCI and received HBO), NAC group (underwent SCI and received NAC), and HBO+NAC group (underwent SCI and simultaneously received NAC and HBO). At the end of study, spinal cord tissue samples were taken for evaluation of biochemical profiles including malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD) and glutathione (GSH) levels, immunohistochemistry for caspase-3 as well as gene expressions of interleukin (IL)-10, tumor necrosis factor alpha (TNF-α), and IL-1β. Stereological assessments were performed to determine the total volumes, central cavity volumes and as well as numerical density of the neural and glial cells in traumatic area. Moreover, neurological functions were evaluated by the Basso-Beattie-Bresnehan (BBB) and electromyography (EMG). RESULTS Our results showed that the stereological parameters, biochemical profiles (except MDA) and neurological function were significantly higher in each HBO, NAC and HBO+NAC groups compared to the SCI group, and were highest in HBO+NAC ones. The transcript for IL-10 gene was significantly upregulated in all treatment regimens compared to SCI group, and was highest in HBO+NAC ones. While expression of TNF-α and IL-1β, latency, as well as density of apoptosis cells in caspase-3 evaluation significantly more decreased in HBO+NAC group compared to other groups. CONCLUSION Overall, using combined therapy with HBO and NAC has synergistic neuroprotective effects in SCI treatment.
Collapse
Affiliation(s)
- Xiaocheng Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xiaopeng Zhao
- Department of Neurosurgery, Xilinguole Meng Mongolian General Hospital, Xilinguole 026000, China
| | - Zengguang Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
13
|
Abstract
Hyperbaric oxygen therapy, intermittent breathing of 100% oxygen at a pressure upper than sea level, has been shown to be some of the neuroprotective effects and used therapeutically in a wide range of neurological disorders. This review summarizes current knowledge about the neuroprotective effects of hyperbaric oxygen therapy with their molecular mechanisms in different models of neurological disorders.
Collapse
Affiliation(s)
- Fahimeh Ahmadi
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Reza Khalatbary
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
14
|
Li T, Wang Y, Feng C, Li Q, Ran Q, Chen B, Yu Y, Jiang L, Fan X. Hyperbaric oxygen therapy for spinal cord injury: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e23536. [PMID: 33285769 PMCID: PMC7717804 DOI: 10.1097/md.0000000000023536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/06/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Hyperbaric oxygen (HBO) therapy can prevent further spinal cord injury (SCI) caused by spinal cord ischemia-reperfusion injury to the maximum extent, which has been reported increasingly in recent years. However its security and effectiveness still lack of high-quality medical evidence. In this study, we will perform a systematic review of previously published randomized controlled trials (RCTs) to evaluate the efficacy and safety of HBO therapy for SCI. METHODS All potential RCTs on HBO therapy for SCI will be searched from the following electronic databases: PubMed, Embase, Cochrane Library, Web of Science, China National Knowledge Infrastructure, Chinese Science and Technology Periodical Database, Wanfang database and Chinese Biomedical Literature Database. We will search all electronic databases from their initiation to the September 30, 2020 in spite of language and publication date. Two contributors will independently select studies from all searched literatures, extract data from included trials, and evaluate study quality for all eligible RCTs using Cochrane risk of bias tool, respectively. Any confusion will be resolved by consulting contributor and a consensus will be reached. We will utilize RevMan 5.3 software to pool the data and to conduct the data analysis. RESULTS The quality of the assessments will be assessed through Grading of Recommendations Assessment, Development, and Evaluation. Data will be disseminated through publications in peer-reviewed journals. CONCLUSION This study will provide evidence to evaluate the efficacy and safety of HBO therapy for SCI at evidence-based medicine level. TRIAL REGISTRATION NUMBER INPLASY 2020100084.
Collapse
|
15
|
Gal-3 is a potential biomarker for spinal cord injury and Gal-3 deficiency attenuates neuroinflammation through ROS/TXNIP/NLRP3 signaling pathway. Biosci Rep 2020; 39:221325. [PMID: 31763668 PMCID: PMC6923351 DOI: 10.1042/bsr20192368] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/04/2019] [Accepted: 11/22/2019] [Indexed: 12/16/2022] Open
Abstract
Spinal cord injury (SCI) often occurs in young and middle-aged population. The present study aimed to clarify the function of Galectin-3 (Gal-3) in neuroinflammation of SCI. Sprague-Dawley (SD) rat models with SCI were established in vivo. PC12 cell model in vitro was induced by lipopolysaccharide (LPS). Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Gene chip were used to analyze the expression levels of genes in the signaling pathway. Histological assessment, ELISA and Western blotting were conducted to evaluate the effects of Gal-3 upon the SCI model. In the in vivo SD rat model, Gal-3 expression level was up-regulated. The inhibition of Gal-3 attenuated the neuroinflammation in SCI model. The inhibition of Gal-3 could also mitigate the neuroinflammation and reactive oxygen species (ROS) in in vitro model. ROS reduced the effect of Gal-3 on oxidative stress in in vitro model. Down-regulating the content of TXNIP decreased the effect of Gal-3 on neuroinflammation in in vitro model. Suppressing the level of NLRP3 could weaken the effect of Gal-3 on neuroinflammation in in vitro model. Our data highlight that the Gal-3 plays a vital role in regulating the severity of neuroinflammation of SCI by enhancing the activation of ROS/TXNIP/NLRP3 signaling pathway. In addition, inflammasome/IL-1β production probably acts as the therapeutic target in SCI.
Collapse
|
16
|
Cozene B, Sadanandan N, Gonzales-Portillo B, Saft M, Cho J, Park YJ, Borlongan CV. An Extra Breath of Fresh Air: Hyperbaric Oxygenation as a Stroke Therapeutic. Biomolecules 2020; 10:E1279. [PMID: 32899709 PMCID: PMC7563917 DOI: 10.3390/biom10091279] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
Stroke serves as a life-threatening disease and continues to face many challenges in the development of safe and effective therapeutic options. The use of hyperbaric oxygen therapy (HBOT) demonstrates pre-clinical effectiveness for the treatment of acute ischemic stroke and reports reductions in oxidative stress, inflammation, and neural apoptosis. These pathophysiological benefits contribute to improved functional recovery. Current pre-clinical and clinical studies are testing the applications of HBOT for stroke neuroprotection, including its use as a preconditioning regimen. Mild oxidative stress may be able to prime the brain to tolerate full extensive oxidative stress that occurs during a stroke, and HBOT preconditioning has displayed efficacy in establishing such ischemic tolerance. In this review, evidence on the use of HBOT following an ischemic stroke is examined, and the potential for HBOT preconditioning as a neuroprotective strategy. Additionally, HBOT as a stem cell preconditioning is also discussed as a promising strategy, thus maximizing the use of HBOT for ischemic stroke.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Cesar V. Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.C.); (N.S.); (B.G.-P.); (M.S.); (J.C.); (Y.J.P.)
| |
Collapse
|
17
|
Yuan Y, Zhou Y, Li Y, Hill C, Ewing RM, Jones MG, Davies DE, Jiang Z, Wang Y. Deconvolution of RNA-Seq Analysis of Hyperbaric Oxygen-Treated Mice Lungs Reveals Mesenchymal Cell Subtype Changes. Int J Mol Sci 2020; 21:E1371. [PMID: 32085618 PMCID: PMC7039706 DOI: 10.3390/ijms21041371] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/08/2020] [Accepted: 02/16/2020] [Indexed: 02/06/2023] Open
Abstract
Hyperbaric oxygen (HBO) is widely applied to treat several hypoxia-related diseases. Previous studies have focused on the immediate effect of HBO-exposure induced oxidative stress on the lungs, but knowledge regarding the chronic effects from repetitive HBO exposure is limited, especially at the gene expression level. We found that repetitive HBO exposure did not alter the morphology of murine lungs. However, by deconvolution of RNA-seq from those mice lungs using CIBERSORTx and the expression profile matrices of 8 mesenchymal cell subtypes obtained from bleomycin-treated mouse lungs, we identify several mesenchymal cell subtype changes. These include increases in Col13a1 matrix fibroblasts, mesenchymal progenitors and mesothelial cell populations and decreases in lipofibroblasts, endothelial and Pdgfrb high cell populations. Our data suggest that repetitive HBO exposure may affect biological processes in the lungs such as response to wounding, extracellular matrix, vasculature development and immune response.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, Jiangsu, China
| | - Yilu Zhou
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Yali Li
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, Jiangsu, China
| | - Charlotte Hill
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Rob M Ewing
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Mark G Jones
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, SO16 6YD, UK
| | - Donna E Davies
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, SO16 6YD, UK
| | - Zhenglin Jiang
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, Jiangsu, China
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, SO16 6YD, UK
| |
Collapse
|