1
|
Tian Z, Chen K, Shofer FS, Ciesielski B, Wang H, O'Brien WT, Qin L, Zhang Y. Gene Expression Changes Precede Elevated Mechanical Sensitivity in the Mouse Intervertebral Disc Injury Model. JOR Spine 2025; 8:e70049. [PMID: 39989623 PMCID: PMC11847628 DOI: 10.1002/jsp2.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/25/2025] Open
Abstract
Background Back pain after intervertebral disc (IVD) injury is a common clinical problem. Previous work examining early molecular changes post injury mainly used a candidate marker approach. Methods In this study, gene expression in the injured and intact mouse tail IVDs was determined with a nonbiased whole transcriptome approach and related to subsequent pain behavior. Mouse tail IVD injury was induced by a needle puncture. Whole murine transcriptome was determined by RNASeq. Transcriptomes of injured IVDs were compared with those of intact controls by bioinformatic methods. Mechanical allodynia was assessed by the Von Frey method. Results Among the 17,722 murine genes with meaningful expressions, 7242 genes were differentially expressed (P.adj ⟨ 0.01). Ontology study of upregulated genes revealed that leukocyte migration was the most enriched biological process, and network analysis showed that Tnfa had the most protein-protein interactions. The most enriched downregulated pathways were related to the pattern specification process. Mechanical allodynia persisted at the 4-week end point. Conclusion The RNASeq data revealed numerous early genes that participate in inflammation and repair processes post IVD injury. Mechanical allodynia followed these gene expression changes.
Collapse
Affiliation(s)
- Zuozhen Tian
- Department of Physical Medicine & RehabilitationPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ken Chen
- Department of OrthopedicsXiangya Hospital, Central South UniversityChangshaHunanPeople's Republic of China
| | - Frances S. Shofer
- Department of Emergency MedicinePerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Brianna Ciesielski
- Neurobehavior Testing Core, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Huan Wang
- Department of Orthopedic SurgeryPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Orthopedic SurgeryTongji Hospital, Huazhong University of Science and TechnologyWuhanPeople's Republic of China
| | - W. Timothy O'Brien
- Neurobehavior Testing Core, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ling Qin
- Department of Orthopedic SurgeryPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Yejia Zhang
- Department of Physical Medicine & RehabilitationPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Section of Rehabilitation Medicine, Corporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
2
|
Chen K, Tian Z, Wang H, Qin L, Enomoto-Iwamoto M, Zhang Y. Gene Expression Profiles Perturbed by Injury to the Mouse Intervertebral Disc. Am J Phys Med Rehabil 2024; 104:45-50. [PMID: 38984547 PMCID: PMC11647451 DOI: 10.1097/phm.0000000000002541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
OBJECTIVES Back pain subsequent to intervertebral disc injury is a common clinical problem. Previous work examining early molecular changes post injury mainly used a candidate marker approach. In this study, gene expression in the injured and intact mouse tail intervertebral discs was determined with a nonbiased whole transcriptome approach. DESIGN Mouse tail intervertebral disc injury was induced by a needle puncture. Whole murine transcriptome was determined by RNASeq. Transcriptomes of injured intervertebral discs were compared with those of intact controls by bioinformatic methods. RESULTS Among the 18,078 murine genes examined, 592 genes were differentially expressed ( P.adj < 0.01). Novel genes upregulated in injured compared with intact intervertebral discs included Chl1, Lum , etc. Ontology study of upregulated genes revealed that leukocyte migration was the most enriched biological process, and network analysis showed that Tnfa had the most protein-protein interactions. Novel downregulated genes in the injured intervertebral discs included 4833412C05Rik , Myoc , etc . The most enriched downregulated pathways were related to cytoskeletal organization. CONCLUSIONS Novel genes highly regulated after disc injury were identified with an unbiased approach; they may serve as biomarkers of injury and response to treatments in future experiments. Enriched biological pathways and molecules with high numbers of connections may be targets for treatments after injury.
Collapse
Affiliation(s)
- Ken Chen
- Department of Orthopedic Surgery, University of
Pennsylvania, Philadelphia, PA, 19146
- Department of Orthopedics, Xiangya Hospital, Central South
University, Changsha, Hunan, P.R. China 410008
| | - Zuozhen Tian
- Department of Physical Medicine & Rehabilitation,
University of Pennsylvania, Philadelphia, PA, 19146
| | - Huan Wang
- Department of Orthopedic Surgery, University of
Pennsylvania, Philadelphia, PA, 19146
- Department of Orthopedics, Xiangya Hospital, Central South
University, Changsha, Hunan, P.R. China 410008
| | - Ling Qin
- Department of Orthopedic Surgery, University of
Pennsylvania, Philadelphia, PA, 19146
| | - Motomi Enomoto-Iwamoto
- Department of Orthopedics, University of Maryland School of
Medicine, Baltimore, MD 21201
| | - Yejia Zhang
- Department of Physical Medicine & Rehabilitation,
University of Pennsylvania, Philadelphia, PA, 19146
- Section of Rehabilitation Medicine, Corporal Michael J.
Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 10104
| |
Collapse
|
3
|
Lu Z, Chen P, Xu Q, Li B, Jiang S, Jiang L, Zheng X. Constitutive and conditional gene knockout mice for the study of intervertebral disc degeneration: Current status, decision considerations, and future possibilities. JOR Spine 2023; 6:e1242. [PMID: 36994464 PMCID: PMC10041386 DOI: 10.1002/jsp2.1242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
There have been an increasing number of patients with degenerative disc diseases due to the aging population. In light of this, studies on the pathogenesis of intervertebral disc degeneration have become a hot topic, and gene knockout mice have become a valuable tool in this field of research. With the development of science and technology, constitutive gene knockout mice can be constructed using homologous recombination, zinc finger nuclease, transcription activator-like effector nuclease technology and clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9) system, and conditional gene knockout mice can be constructed using the Cre/LoxP system. The gene-edited mice using these techniques have been widely used in the studies on disc degeneration. This paper reviews the development process and principles of these technologies, functions of the edited genes in disc degeneration, advantages, and disadvantages of different methods and possible targets of the specific Cre recombinase in intervertebral discs. Recommendations for the choice of suitable gene-edited model mice are presented. At the same time, possible technological improvements in the future are also discussed.
Collapse
Affiliation(s)
- Ze‐Yu Lu
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Peng‐Bo Chen
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qing‐Yin Xu
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bo Li
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Sheng‐Dan Jiang
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lei‐Sheng Jiang
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xin‐Feng Zheng
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
4
|
Dieterle MP, Husari A, Rolauffs B, Steinberg T, Tomakidi P. Integrins, cadherins and channels in cartilage mechanotransduction: perspectives for future regeneration strategies. Expert Rev Mol Med 2021; 23:e14. [PMID: 34702419 PMCID: PMC8724267 DOI: 10.1017/erm.2021.16] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
Articular cartilage consists of hyaline cartilage, is a major constituent of the human musculoskeletal system and has critical functions in frictionless joint movement and articular homoeostasis. Osteoarthritis (OA) is an inflammatory disease of articular cartilage, which promotes joint degeneration. Although it affects millions of people, there are no satisfying therapies that address this disease at the molecular level. Therefore, tissue regeneration approaches aim at modifying chondrocyte biology to mitigate the consequences of OA. This requires appropriate biochemical and biophysical stimulation of cells. Regarding the latter, mechanotransduction of chondrocytes and their precursor cells has become increasingly important over the last few decades. Mechanotransduction is the transformation of external biophysical stimuli into intracellular biochemical signals, involving sensor molecules at the cell surface and intracellular signalling molecules, so-called mechano-sensors and -transducers. These signalling events determine cell behaviour. Mechanotransducing ion channels and gap junctions additionally govern chondrocyte physiology. It is of great scientific and medical interest to induce a specific cell behaviour by controlling these mechanotransduction pathways and to translate this knowledge into regenerative clinical therapies. This review therefore focuses on the mechanotransduction properties of integrins, cadherins and ion channels in cartilaginous tissues to provide perspectives for cartilage regeneration.
Collapse
Affiliation(s)
- Martin Philipp Dieterle
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| | - Ayman Husari
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
- Department of Orthodontics, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| | - Bernd Rolauffs
- Department of Orthopedics and Trauma Surgery, G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Medical Center – Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79085Freiburg im Breisgau, Germany
| | - Thorsten Steinberg
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| | - Pascal Tomakidi
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| |
Collapse
|
5
|
Zhang Y, Tian Z, Gerard D, Yao L, Shofer FS, Cs-Szabo G, Qin L, Pacifici M, Enomoto-Iwamoto M. Elevated inflammatory gene expression in intervertebral disc tissues in mice with ADAM8 inactivated. Sci Rep 2021; 11:1804. [PMID: 33469101 PMCID: PMC7815795 DOI: 10.1038/s41598-021-81495-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/31/2020] [Indexed: 12/24/2022] Open
Abstract
We found ADAM8 enzymatic activity elevated in degenerative human intervertebral disc (IVD). Here, we examined the discs in ADAM8-inactivation mice that carry a mutation preventing self-activation of the enzyme. Surprisingly, elevated gene expression for inflammatory markers (Cxcl1, IL6) was observed in injured discs of ADAM8 mutant mice, along with elevated expression of type 2 collagen gene (Col2a1), compared with wild type controls. Injured annulus fibrosus of mutant and wild type mice contained a higher proportion of large collagen fibers compared with intact discs, as documented by microscopic examination under circular polarized light. In the intact IVDs, Adam8EQ mouse AF contained lower proportion of yellow (intermediate) fiber than WT mice. This suggests that ADAM8 may regulate inflammation and collagen fiber assembly. The seemingly contradictory findings of elevated inflammatory markers in mutant mice and excessive ADAM8 activity in human degenerative discs suggest that ADAM8 may interact with other enzymatic and pro-inflammatory processes needed for tissue maintenance and repair. As a future therapeutic intervention to retard intervertebral disc degeneration, partial inhibition of ADAM8 proteolysis may be more desirable than complete inactivation of this enzyme.
Collapse
Affiliation(s)
- Yejia Zhang
- Department of Physical Medicine & Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
- Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA.
| | - Zuozhen Tian
- Department of Physical Medicine & Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - David Gerard
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Lutian Yao
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Department of Orthopaedics/Sports Medicine and Joint Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Frances S Shofer
- Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Gabriella Cs-Szabo
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Ling Qin
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Maurizio Pacifici
- Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, USA
| | | |
Collapse
|