1
|
Hickey JW, Agmon E, Horowitz N, Tan TK, Lamore M, Sunwoo JB, Covert MW, Nolan GP. Integrating multiplexed imaging and multiscale modeling identifies tumor phenotype conversion as a critical component of therapeutic T cell efficacy. Cell Syst 2024; 15:322-338.e5. [PMID: 38636457 PMCID: PMC11030795 DOI: 10.1016/j.cels.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/07/2023] [Accepted: 03/19/2024] [Indexed: 04/20/2024]
Abstract
Cancer progression is a complex process involving interactions that unfold across molecular, cellular, and tissue scales. These multiscale interactions have been difficult to measure and to simulate. Here, we integrated CODEX multiplexed tissue imaging with multiscale modeling software to model key action points that influence the outcome of T cell therapies with cancer. The initial phenotype of therapeutic T cells influences the ability of T cells to convert tumor cells to an inflammatory, anti-proliferative phenotype. This T cell phenotype could be preserved by structural reprogramming to facilitate continual tumor phenotype conversion and killing. One takeaway is that controlling the rate of cancer phenotype conversion is critical for control of tumor growth. The results suggest new design criteria and patient selection metrics for T cell therapies, call for a rethinking of T cell therapeutic implementation, and provide a foundation for synergistically integrating multiplexed imaging data with multiscale modeling of the cancer-immune interface. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- John W Hickey
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Eran Agmon
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Center for Cell Analysis and Modeling, University of Connecticut Health, Farmington, CT 06032, USA
| | - Nina Horowitz
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Tze-Kai Tan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew Lamore
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - John B Sunwoo
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Otolaryngology, Head and Neck Surgery, Stanford Cancer Institute Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Markus W Covert
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| | - Garry P Nolan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Hickey JW, Haist M, Horowitz N, Caraccio C, Tan Y, Rech AJ, Baertsch MA, Rovira-Clavé X, Zhu B, Vazquez G, Barlow G, Agmon E, Goltsev Y, Sunwoo JB, Covert M, Nolan GP. T cell-mediated curation and restructuring of tumor tissue coordinates an effective immune response. Cell Rep 2023; 42:113494. [PMID: 38085642 PMCID: PMC10765317 DOI: 10.1016/j.celrep.2023.113494] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 09/06/2023] [Accepted: 11/10/2023] [Indexed: 12/30/2023] Open
Abstract
Antigen-specific T cells traffic to, are influenced by, and create unique cellular microenvironments. Here we characterize these microenvironments over time with multiplexed imaging in a melanoma model of adoptive T cell therapy and human patients with melanoma treated with checkpoint inhibitor therapy. Multicellular neighborhood analysis reveals dynamic immune cell infiltration and inflamed tumor cell neighborhoods associated with CD8+ T cells. T cell-focused analysis indicates T cells are found along a continuum of neighborhoods that reflect the progressive steps coordinating the anti-tumor immune response. More effective anti-tumor immune responses are characterized by inflamed tumor-T cell neighborhoods, flanked by dense immune infiltration neighborhoods. Conversely, ineffective T cell therapies express anti-inflammatory cytokines, resulting in regulatory neighborhoods, spatially disrupting productive T cell-immune and -tumor interactions. Our study provides in situ mechanistic insights into temporal tumor microenvironment changes, cell interactions critical for response, and spatial correlates of immunotherapy outcomes, informing cellular therapy evaluation and engineering.
Collapse
Affiliation(s)
- John W Hickey
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maximillian Haist
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nina Horowitz
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Chiara Caraccio
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yuqi Tan
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew J Rech
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marc-Andrea Baertsch
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xavier Rovira-Clavé
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bokai Zhu
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gustavo Vazquez
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Graham Barlow
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Eran Agmon
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Center for Cell Analysis and Modeling, University of Connecticut Health, Farmington, CT 06032, USA
| | - Yury Goltsev
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John B Sunwoo
- Department of Otolaryngology, Head and Neck Surgery, Stanford Cancer Institute, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Markus Covert
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Garry P Nolan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
3
|
Hickey JW, Agmon E, Horowitz N, Lamore M, Sunwoo J, Covert M, Nolan GP. Integrating Multiplexed Imaging and Multiscale Modeling Identifies Tumor Phenotype Transformation as a Critical Component of Therapeutic T Cell Efficacy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570168. [PMID: 38106218 PMCID: PMC10723382 DOI: 10.1101/2023.12.06.570168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Cancer progression is a complex process involving interactions that unfold across molecular, cellular, and tissue scales. These multiscale interactions have been difficult to measure and to simulate. Here we integrated CODEX multiplexed tissue imaging with multiscale modeling software, to model key action points that influence the outcome of T cell therapies with cancer. The initial phenotype of therapeutic T cells influences the ability of T cells to convert tumor cells to an inflammatory, anti-proliferative phenotype. This T cell phenotype could be preserved by structural reprogramming to facilitate continual tumor phenotype conversion and killing. One takeaway is that controlling the rate of cancer phenotype conversion is critical for control of tumor growth. The results suggest new design criteria and patient selection metrics for T cell therapies, call for a rethinking of T cell therapeutic implementation, and provide a foundation for synergistically integrating multiplexed imaging data with multiscale modeling of the cancer-immune interface.
Collapse
Affiliation(s)
- John W Hickey
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Eran Agmon
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Nina Horowitz
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Matthew Lamore
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - John Sunwoo
- Department of Otolaryngology, Head and Neck Surgery, Stanford Cancer Institute, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Markus Covert
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Garry P Nolan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Takeuchi Y, Tanemura A, Tada Y, Katayama I, Kumanogoh A, Nishikawa H. Clinical response to PD-1 blockade correlates with a sub-fraction of peripheral central memory CD4+ T cells in patients with malignant melanoma. Int Immunol 2019; 30:13-22. [PMID: 29294043 DOI: 10.1093/intimm/dxx073] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer immunotherapy that blocks immune checkpoint molecules, such as PD-1/PD-L1, unleashes dysfunctional antitumor T-cell responses and has durable clinical benefits in various types of cancers. Yet its clinical efficacy is limited to a small proportion of patients, highlighting the need for identifying biomarkers that can predict the clinical response by exploring antitumor responses crucial for tumor regression. Here, we explored comprehensive immune-cell responses associated with clinical benefits using PBMCs from patients with malignant melanoma treated with anti-PD-1 monoclonal antibody. Pre- and post-treatment samples were collected from two different cohorts (discovery set and validation set) and subjected to mass cytometry assays that measured the expression levels of 35 proteins. Screening by high dimensional clustering in the discovery set identified increases in three micro-clusters of CD4+ T cells, a subset of central memory CD4+ T cells harboring the CD27+FAS-CD45RA-CCR7+ phenotype, after treatment in long-term survivors, but not in non-responders. The same increase was also observed in clinical responders in the validation set. We propose that increases in this subset of central memory CD4+ T cells in peripheral blood can be potentially used as a predictor of clinical response to PD-1 blockade therapy in patients with malignant melanoma.
Collapse
Affiliation(s)
- Yoshiko Takeuchi
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo, Japan.,Department of Respiratory Medicine and Clinical Immunology
| | - Atsushi Tanemura
- Department of Dermatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yasuko Tada
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo, Japan
| | - Ichiro Katayama
- Department of Dermatology, Osaka University Graduate School of Medicine, Suita, Japan
| | | | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo, Japan.,Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
5
|
Sakamoto N, Ishikawa T, Kokura S, Okayama T, Oka K, Ideno M, Sakai F, Kato A, Tanabe M, Enoki T, Mineno J, Naito Y, Itoh Y, Yoshikawa T. Phase I clinical trial of autologous NK cell therapy using novel expansion method in patients with advanced digestive cancer. J Transl Med 2015; 13:277. [PMID: 26303618 PMCID: PMC4548900 DOI: 10.1186/s12967-015-0632-8] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/07/2015] [Indexed: 11/10/2022] Open
Abstract
Background NK cells can destroy tumor cells without prior sensitization or immunization. Tumors often lose expression of MHC molecules and/or antigens. However, NK cells can lyse tumor cells in a non-MHC-restricted manner and independent of the expression of tumor-associated antigens. NK cells are therefore considered ideal for adoptive cancer immunotherapy; however the difficulty of obtaining large numbers of fully functional NK cells that are safe to administer deters its clinical use. This phase I clinical trial seeks to address this obstacle by first developing a novel system that expands large numbers of highly activated clinical grade NK cells, and second, determining if these cells are safe in a mono-treatment so they can be combined with other reagents in the next round of clinical trials. Methods Patients with unresectable, locally advanced and/or metastatic digestive cancer who did not succeed with standard therapy were enrolled. NK cells were expanded ex vivo by stimulating PBMCs with OK432, IL-2, and modified FN-CH296 induced T cells. Patients were administered autologous natural killer cell three times weekly via intravenous infusions in a dose-escalating manner (dose 0.5 × 109, 1.0 × 109, 2.0 × 109 cells/injection, three patients/one cohort). Results Total cell population had a median expansion of 586-fold (range 95–1102), with a significantly pure (90.96 %) NK cell population. Consequently, NK cells were expanded to approximately 4720-fold (range 1372–14,116) with cells being highly lytic in vitro and strongly expressing functional markers such as NKG2D and CD16. This NK cell therapy was very well tolerated with no severe adverse events. Although no clinical responses were observed, cytotoxicity of peripheral blood was elevated approximately twofolds up to 4 weeks post the last transfer. Conclusion We successfully generated large numbers of activated NK cells from small quantities of blood without prior purification of the cells. We also determined that the expanded cells were safe to administer in a monotherapy and are suitable for the next round of clinical trials where their efficacy will be tested combined with other reagents. Trial Registration: UMIN UMIN000007527 Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0632-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Naoyuki Sakamoto
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan. .,Iseikai Hyakumanben Clinic, Kyoto, Japan.
| | - Takeshi Ishikawa
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan. .,Department of Cancer ImmunoCell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.
| | - Satoshi Kokura
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan. .,Center for Education Research and Development, Kyoto Gakuen University, Kyoto, Japan.
| | - Tetsuya Okayama
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan. .,Department of Cancer ImmunoCell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.
| | - Kaname Oka
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | | | | | - Akiko Kato
- CDM Center, Takara Bio Inc, Otsu, Japan.
| | | | | | | | - Yuji Naito
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Yoshito Itoh
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Toshikazu Yoshikawa
- Department of Cancer ImmunoCell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.
| |
Collapse
|
6
|
Sim GC, Chacon J, Haymaker C, Ritthipichai K, Singh M, Hwu P, Radvanyi L. Tumor-Infiltrating Lymphocyte Therapy for Melanoma: Rationale and Issues for Further Clinical Development. BioDrugs 2014; 28:421-37. [DOI: 10.1007/s40259-014-0097-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Bozhenko VK, Shramova EI, Shishkin AM, Ivanov AV, Khokhlova EV, Lebedin YS, Shkoporov AN. Characteristics of new monomolecular chimeric T-cell receptors to carcinoembryonic antigen. Bull Exp Biol Med 2013; 156:165-71. [PMID: 24319717 DOI: 10.1007/s10517-013-2302-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We described two original genetic constructs encoding chimeric monomolecular T-cell receptors, where the effector T-cell receptor fragment was linked with the antigen-recognizing part consisting of two variable fragments of two different antibodies to carcinoembryonic antigen. Following transfection, these receptors were expressed on the cell surface and bound carcinoembryonic antigen. Human peripheral blood lymphocytes transfected with the above constructs demonstrated high cytotoxic activity against HCT116 cells expressing carcinoembryonic antigen.
Collapse
Affiliation(s)
- V K Bozhenko
- Russian Scientific Center of Roentgenoradiology, Ministry of Health of the Russian Federation; N. I. Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation; XEMA Company, Moscow, Russia.
| | | | | | | | | | | | | |
Collapse
|
8
|
Cellular immunotherapy for carcinoma using genetically modified EGFR-specific T lymphocytes. Neoplasia 2013; 15:544-53. [PMID: 23633926 DOI: 10.1593/neo.13168] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 02/05/2023]
Abstract
Epidermal growth factor receptor (EGFR) is overexpressed in a variety of human malignancies, including pancreatic cancer, breast cancer, colon cancer, and non-small cell lung cancer. Overexpression of EGFR is a predictive marker of therapeutic response and several lines of evidence suggest that EGFR is an excellent target for tumor therapy. However, the effective antitumor capacity of EGFR-specific T cells against EGFR-overexpressing tumor cells has not been fully elucidated. In our previous study, we identified an anti-EGFR single-chain variable fragment (scFv) with specific and high affinity after screening by ribosome display. In this study, the anticancer potential of anti-EGFR scFv was investigated on the basis of cell-targeted therapy. A chimeric antigen receptor (CAR) targeting EGFR was constructed and expressed on the cell membrane of T lymphocytes. These CAR-modified T cells demonstrated antitumor efficacy both in vitro and in vivo. In addition, the safety evaluation showed that CAR-modified lymphocytes have no or very minimal acute systemic toxicity. Taken together, our study provided the experimental basis for clinical application of genetically engineered lymphocytes; moreover, we also evaluate a new and interesting cell therapy protocol.
Collapse
|
9
|
Kalinski P, Muthuswamy R, Urban J. Dendritic cells in cancer immunotherapy: vaccines and combination immunotherapies. Expert Rev Vaccines 2013; 12:285-95. [PMID: 23496668 DOI: 10.1586/erv.13.22] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dendritic cells (DCs) are specialized immunostimulatory cells involved in the induction and regulation of immune responses. The feasibility of large-scale ex vivo generation of DCs from patients' monocytes allows for therapeutic application of ex vivo-cultured DCs to bypass the dysfunction of endogenous DCs, restore immune surveillance, induce cancer regression or stabilization or delay or prevent its recurrence. While the most common paradigm of the therapeutic application of DCs reflects their use as cancer 'vaccines', additional and potentially more effective possibilities include the use of patients' autologous DCs as parts of more comprehensive therapies involving in vivo or ex vivo induction of tumor-reactive T cells and the measures to counteract systemic and local immunosuppression in tumor-bearing hosts. Ex vivo-cultured DCs can be instructed to acquire distinct functions relevant for the induction of effective cancer immunity (DC polarization), such as the induction of different effector functions or different homing properties of tumor-specific T cells (delivery of 'signal 3' and 'signal 4'). These considerations highlight the importance of the application of optimized conditions for the ex vivo culture of DCs and the potential combination of DC therapies with additional immune interventions to facilitate the entry of DC-induced T cells to tumor tissues and their local antitumor functions.
Collapse
Affiliation(s)
- Pawel Kalinski
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | | |
Collapse
|
10
|
Lim SA, Kim TJ, Lee JE, Sonn CH, Kim K, Kim J, Choi JG, Choi IK, Yun CO, Kim JH, Yee C, Kumar V, Lee KM. Ex vivo expansion of highly cytotoxic human NK cells by cocultivation with irradiated tumor cells for adoptive immunotherapy. Cancer Res 2013; 73:2598-607. [PMID: 23580577 DOI: 10.1158/0008-5472.can-12-2893] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adoptive natural killer (NK) cell therapy may offer an effective treatment regimen for cancer patients whose disease is refractory to conventional therapy. NK cells can kill a wide range of tumor cells by patterned recognition of target ligands. We hypothesized that tumor targets sensitive to NK lysis would drive vigorous expansion of NK cells from human peripheral blood mononuclear cells (PBMC). Here, we provide the basis for developing a novel ex vivo expansion process. By screening class I-negative or -mismatched tumor cell lines we identified a Jurkat T-lymphoblast subline termed KL-1, which was highly effective in specifically expanding NK cells. KL-1 addition to PBMC cultures achieved approximately 100-fold expansion of NK cells with nearly 90% purity, accompanied by reciprocal inhibition of T-cell growth. Marked elevations in expression of activation receptors, natural cytotoxicity receptors (NKp30, NKp44), and adhesion molecules (CD11a, ICAM-1) were associated with high tumor-lytic capacity, in both in vitro and in vivo models. KL-1-mediated expansion of NK cells was contact dependent and required interactions with CD16, the Fcγ receptor on NK cells, with ligands that are expressed on B cells. Indeed, B-cell depletion during culture abrogated selective NK cell expansion, while addition of EBV-transformed B cells further augmented NK expansion to approximately 740-fold. Together, our studies define a novel method for efficient activation of human NK cells that employs KL-1-lysed tumor cells and cocultured B cells, which drive a robust expansion of potent antitumor effector cells that will be useful for clinical evaluation.
Collapse
Affiliation(s)
- Seon Ah Lim
- Global Research Laboratory, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Butler KS, Lovato DM, Adolphi NL, Belfon R, Fegan DL, Monson TC, Hathaway HJ, Huber DL, Tessier TE, Bryant HC, Flynn ER, Larson RS. Development of antibody-tagged nanoparticles for detection of transplant rejection using biomagnetic sensors. Cell Transplant 2012; 22:1943-54. [PMID: 23069078 DOI: 10.3727/096368912x657963] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Organ transplantation is a life-saving procedure and the preferred method of treatment for a growing number of disease states. The advent of new immunosuppressants and improved care has led to great advances in both patient and graft survival. However, acute T-cell-mediated graft rejection occurs in a significant quantity of recipients and remains a life-threatening condition. Acute rejection is associated with decrease in long-term graft survival, demonstrating a need to carefully monitor transplant patients. Current diagnostic criteria for transplant rejection rely on invasive tissue biopsies or relatively nonspecific clinical features. A noninvasive way is needed to detect, localize, and monitor transplant rejection. Capitalizing on advances in targeted contrast agents and magnetic-based detection technology, we developed anti-CD3 antibody-tagged nanoparticles. T cells were found to bind preferentially to antibody-tagged nanoparticles, as identified through light microscopy, transmission electron microscopy, and confocal microscopy. Using mouse skin graft models, we were also able to demonstrate in vivo vascular delivery of T-cell targeted nanoparticles. We conclude that targeting lymphocytes with magnetic nanoparticles is conducive to developing a novel, noninvasive strategy for identifying transplant rejection.
Collapse
Affiliation(s)
- Kimberly S Butler
- Department of Pathology, University of New Mexico, and Cancer Research and Treatment Center, Albuquerque, NM, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kaluza KM, Kottke T, Diaz RM, Rommelfanger D, Thompson J, Vile R. Adoptive transfer of cytotoxic T lymphocytes targeting two different antigens limits antigen loss and tumor escape. Hum Gene Ther 2012; 23:1054-64. [PMID: 22734672 DOI: 10.1089/hum.2012.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
An antitumor T-cell response can lead to tumor control without clearing all tumor cells. As long as residual tumor cells remain, there is a constant risk of escape from that T-cell response. We previously showed that adoptive transfer of anti-ova OT-I T cells into B16ova-bearing mice led to tumor regression followed by escape of tumors that had lost the ova gene, rendering the OT-I T cells ineffective. In this study, we hypothesized that simultaneous transfer of cytotoxic T lymphocytes targeted against two independent antigens would reduce selection for single-antigen-loss cells, thereby limiting tumor escape. Using OT-I and Pmel T cells to treat B16ova tumors, we found that early cotransfer could prevent tumor emergence in most mice, whereas neither T-cell specificity alone was able to do so. When combined with total body irradiation for the treatment of larger 7-day tumors, cotransfer was also better at limiting tumor recurrence, and the tumors that did escape combination therapy continued to express both target antigens. As adoptively transferred T cells also persisted in vivo, even in mice with recurrent tumors, we hypothesized that restimulation of these antitumor T cells would prolong survival of mice with recurrent tumors. Consistent with this hypothesis, administration of a low-dose regimen of cyclophosphamide following tumor escape slowed tumor growth in mice that had previously received T-cell therapy, but not in control-treated mice, an effect that was associated with increased activation of T cells in vitro by low- but not high-dose cyclophosphamide.
Collapse
Affiliation(s)
- Karen M Kaluza
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
13
|
Stromnes IM, Fowler C, Casamina CC, Georgopolos CM, McAfee MS, Schmitt TM, Tan X, Kim TD, Choi I, Blattman JN, Greenberg PD. Abrogation of SRC homology region 2 domain-containing phosphatase 1 in tumor-specific T cells improves efficacy of adoptive immunotherapy by enhancing the effector function and accumulation of short-lived effector T cells in vivo. THE JOURNAL OF IMMUNOLOGY 2012; 189:1812-25. [PMID: 22798667 DOI: 10.4049/jimmunol.1200552] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
T cell expression of inhibitory proteins can be a critical component for the regulation of immunopathology owing to self-reactivity or potentially exuberant responses to pathogens, but it may also limit T cell responses to some malignancies, particularly if the tumor Ag being targeted is a self-protein. We found that the abrogation of Src homology region 2 domain-containing phosphatase-1 (SHP-1) in tumor-reactive CD8(+) T cells improves the therapeutic outcome of adoptive immunotherapy in a mouse model of disseminated leukemia, with benefit observed in therapy employing transfer of CD8(+) T cells alone or in the context of also providing supplemental IL-2. SHP-1(-/-) and SHP-1(+/+) effector T cells were expanded in vitro for immunotherapy. Following transfer in vivo, the SHP-1(-/-) effector T cells exhibited enhanced short-term accumulation, followed by greater contraction, and they ultimately formed similar numbers of long-lived, functional memory cells. The increased therapeutic effectiveness of SHP-1(-/-) effector cells was also observed in recipients that expressed the tumor Ag as a self-antigen in the liver, without evidence of inducing autoimmune toxicity. SHP-1(-/-) effector CD8(+) T cells expressed higher levels of eomesodermin, which correlated with enhanced lysis of tumor cells. Furthermore, reduction of SHP-1 expression in tumor-reactive effector T cells by retroviral transduction with vectors that express SHP-1-specific small interfering RNA, a translatable strategy, also exhibited enhanced antitumor activity in vivo. These studies suggest that abrogating SHP-1 in effector T cells may improve the efficacy of tumor elimination by T cell therapy without affecting the ability of the effector cells to persist and provide a long-term response.
Collapse
Affiliation(s)
- Ingunn M Stromnes
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Agonistic antibody to CD40 boosts the antitumor activity of adoptively transferred T cells in vivo. J Immunother 2012; 35:276-82. [PMID: 22421945 DOI: 10.1097/cji.0b013e31824e7f43] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CD40, a member of the tumor necrosis factor receptor superfamily, is broadly expressed on antigen-presenting cells and other cells, including fibroblasts and endothelial cells. Binding of CD40 and its natural ligand CD40L (CD154) triggers cytokine secretion, and increased expression of costimulatory molecules is required for T-cell activation and proliferation. However, to our knowledge, the use of agonistic antibodies to CD40 to boost adoptively transferred T cells in vivo has not been investigated. The purpose of this study was to determine whether anti-CD40 monoclonal antibody (mAb) in combination with interleukin (IL)-2 could improve the efficacy of in vitro-activated T cells to enhance antitumor activity. Mice bearing B16 melanoma tumors expressing the gp100 tumor antigen were treated with cultured, activated T cells transgenic for a T-cell receptor specifically recognizing gp100, with or without anti-CD40 mAb. In this model, the combination of anti-CD40 mAb with IL-2 led to expansion of adoptively transferred T cells and induced a more robust antitumor response. Furthermore, the expression of CD40 on bone marrow-derived cells and the presence of CD80/CD86 in the host were required for the expansion of adoptively transferred T cells. The use of neutralizing mAb to IL-12 provided direct evidence that enhanced IL-12 secretion induced by anti-CD40 mAb was crucial for the expansion of adoptively transferred T cells. Collectively, these findings provide a rationale to evaluate the potential application of anti-CD40 mAb in adoptive T-cell therapy for cancer.
Collapse
|
15
|
Restifo NP, Dudley ME, Rosenberg SA. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 2012; 12:269-81. [PMID: 22437939 PMCID: PMC6292222 DOI: 10.1038/nri3191] [Citation(s) in RCA: 1260] [Impact Index Per Article: 96.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunotherapy based on the adoptive transfer of naturally occurring or gene-engineered T cells can mediate tumour regression in patients with metastatic cancer. Here, we discuss progress in the use of adoptively transferred T cells, focusing on how they can mediate tumour cell eradication. Recent advances include more accurate targeting of antigens expressed by tumours and the associated vasculature, and the successful use of gene engineering to re-target T cells before their transfer into the patient. We also describe how new research has helped to identify the particular T cell subsets that can most effectively promote tumour eradication.
Collapse
Affiliation(s)
- Nicholas P Restifo
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
16
|
Robins H, Desmarais C, Matthis J, Livingston R, Andriesen J, Reijonen H, Carlson C, Nepom G, Yee C, Cerosaletti K. Ultra-sensitive detection of rare T cell clones. J Immunol Methods 2011; 375:14-9. [PMID: 21945395 DOI: 10.1016/j.jim.2011.09.001] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/06/2011] [Accepted: 09/01/2011] [Indexed: 12/21/2022]
Abstract
Advances in high-throughput sequencing have enabled technologies that probe the adaptive immune system with unprecedented depth. We have developed a multiplex PCR method to sequence tens of millions of T cell receptors (TCRs) from a single sample in a few days. A method is presented to test the precision, accuracy, and sensitivity of this assay. T cell clones, each with one fixed productive TCR rearrangement, are doped into complex blood cell samples. TCRs from a total of eleven samples are sequenced, with the doped T cell clones ranging from 10% of the total sample to 0.001% (one cell in 100,000). The assay is able to detect even the rarest clones. The precision of the assay is demonstrated across five orders of magnitude. The accuracy for each clone is within an overall factor of three across the 100,000 fold dynamic range. Additionally, the assay is shown to be highly repeatable.
Collapse
Affiliation(s)
- Harlan Robins
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wu YD, Zhou GX. Recent advances in immunotherapy for human pancreatic cancer. Shijie Huaren Xiaohua Zazhi 2011; 19:2091-2096. [DOI: 10.11569/wcjd.v19.i20.2091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the common highly malignant digestive system tumors. It is associated with a high mortality rate because of early metastasis, low resection rate and poor chemoradiotherapy response. Advances in immunology, such as tumor antigen, immunological surveillance, immunological evasion, immunological tolerance, T cell signal transduction, regulation of cytokines and regulatory DCs, down-regulation of co-stimulatory molecules, and tumor microenvironment, have enriched our knowledge and promoted the development of immunotherapy for pancreatic cancer. In this paper, we will review the recent advances in immunotherapy for pancreatic cancer.
Collapse
|
18
|
Butler MO, Friedlander P, Milstein MI, Mooney MM, Metzler G, Murray AP, Tanaka M, Berezovskaya A, Imataki O, Drury L, Brennan L, Flavin M, Neuberg D, Stevenson K, Lawrence D, Hodi FS, Velazquez EF, Jaklitsch MT, Russell SE, Mihm M, Nadler LM, Hirano N. Establishment of antitumor memory in humans using in vitro-educated CD8+ T cells. Sci Transl Med 2011; 3:80ra34. [PMID: 21525398 PMCID: PMC3861895 DOI: 10.1126/scitranslmed.3002207] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although advanced-stage melanoma patients have a median survival of less than a year, adoptive T cell therapy can induce durable clinical responses in some patients. Successful adoptive T cell therapy to treat cancer requires engraftment of antitumor T lymphocytes that not only retain specificity and function in vivo but also display an intrinsic capacity to survive. To date, adoptively transferred antitumor CD8(+) T lymphocytes (CTLs) have had limited life spans unless the host has been manipulated. To generate CTLs that have an intrinsic capacity to persist in vivo, we developed a human artificial antigen-presenting cell system that can educate antitumor CTLs to acquire both a central memory and an effector memory phenotype as well as the capacity to survive in culture for prolonged periods of time. We examined whether antitumor CTLs generated using this system could function and persist in patients. We showed that MART1-specific CTLs, educated and expanded using our artificial antigen-presenting cell system, could survive for prolonged periods in advanced-stage melanoma patients without previous conditioning or cytokine treatment. Moreover, these CTLs trafficked to the tumor, mediated biological and clinical responses, and established antitumor immunologic memory. Therefore, this approach may broaden the availability of adoptive cell therapy to patients both alone and in combination with other therapeutic modalities.
Collapse
Affiliation(s)
- Marcus O Butler
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Copier J, Bodman-Smith M, Dalgleish A. Current status and future applications of cellular therapies for cancer. Immunotherapy 2011; 3:507-16. [DOI: 10.2217/imt.11.18] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Therapies based on the use of autologous immune cells are among the best candidates for cancer immunotherapy. Dendritic cell vaccines have demonstrated very encouraging responses for some solid tumors, while in melanoma autologous T-cell therapies have exceeded 70% objective response rates in selected Phase I trials. However, it is clear that a number of barriers exist to the effective, practical application of these therapies. The aim of this article is to consider modifications to such strategies over the last 3 years and the resultant clinical research in autologous dendritic cell vaccines, T-cell therapy and γδ T-cell therapy for cancer.
Collapse
Affiliation(s)
- John Copier
- Department of Oncology, Division of Clinical Sciences, St George’s University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Mark Bodman-Smith
- Department of Oncology, Division of Clinical Sciences, St George’s University of London, Cranmer Terrace, London, SW17 0RE, UK
| | | |
Collapse
|