1
|
Al Ghafari M, El Jaafari N, Mouallem M, Maassarani T, El-Sibai M, Abi-Habib R. Key genes altered in glioblastoma based on bioinformatics (Review). Oncol Lett 2025; 29:243. [PMID: 40182607 PMCID: PMC11966088 DOI: 10.3892/ol.2025.14989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/03/2025] [Indexed: 04/05/2025] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain tumor with poor prognosis. Recent advancements in bioinformatics have contributed to uncovering the genetic alterations that underlie the development and progression of GBM. Analysis of extensive genomic data led to the identification of significant pathways involved in GBM, such as the PI3K/AKT/mTOR and Ras/Raf/MEK/ERK signaling pathways, alongside key genes such as EGFR, TP53 and TERT. These findings have enhanced our understanding of GBM biology and led to the identification of new therapeutic targets. Bioinformatics has become an indispensable tool in pinpointing the genetic modifications that drive GBM, paving the way for innovative treatment strategies. This approach not only aids in comprehending the complexities of GBM but also holds promise for improving outcomes in patients suffering from this devastating disease. The ongoing integration of bioinformatics in GBM research continues to be vital for advancing therapeutic options.
Collapse
Affiliation(s)
- Marcelino Al Ghafari
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Nour El Jaafari
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Mariam Mouallem
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Tala Maassarani
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Mirvat El-Sibai
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Ralph Abi-Habib
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| |
Collapse
|
2
|
Tang X, Peng H, Xu P, Zhang L, Fu R, Tu H, Guo X, Huang K, Lu J, Chen H, Dong Z, Dai L, Luo J, Chen Q. Synthetic mRNA-based gene therapy for glioblastoma: TRAIL-mRNA synergistically enhances PTEN-mRNA-based therapy. Mol Ther Oncolytics 2022; 24:707-718. [PMID: 35317516 PMCID: PMC8913249 DOI: 10.1016/j.omto.2022.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 01/14/2023] Open
Abstract
Glioblastoma (GBM) is characterized as having high molecular heterogeneity and complexity, which can be well revealed by genomic study. A truly effective treatment for GBM should flexibly address its heterogeneities, complexity, and strong drug resistance. This study was performed to explore the effectiveness of an mRNA-based therapeutic strategy using in vitro synthesized PTEN-mRNA and TRAIL-mRNA in tumor cells derived from PTEN-deletion patients. The PTEN gene alterations were revealed by whole-exome sequencing of three paired clinical GBMs and selected as the therapy target. Patient-derived primary glioblastoma stem cells (GBM2) and a DBTRG-cell-derived xenograft were used to detect mRNA's cytotoxicity in vitro and tumor suppression in vivo. Following the successful in vitro synthesis of PTEN-mRNA and TRAIL-mRNA, the combinational treatment of PTEN-mRNA and TRAIL-mRNA significantly suppressed tumor growth compared with treatment with PBS (96.4%), PTEN-mRNA (89.7%), and TRAIL-mRNA (84.5%). The combinational application of PTEN-mRNA and TRAIL-mRNA showed synergistic inhibition of tumor growth, and the JNK pathway might be the major mechanism involved. This study provided a basis for an mRNA-based therapeutic strategy to be developed into an effective patient-tailored treatment for GBM.
Collapse
Affiliation(s)
- Xiangjun Tang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 9 Zhangzhidong Road and 238 Jiefang Road, Wuhan, Hubei 430060, P.R. China.,Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Hao Peng
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Pengfei Xu
- The 7th affiliated hospital of Sun Yat-Sen University, ShenZhen, Guandong 510275, China
| | - Li Zhang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Rui Fu
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Hanjun Tu
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xingrong Guo
- Hubei KeyLaboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Kuanming Huang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Junti Lu
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Hu Chen
- Medical Imaging Center, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Zhiqiang Dong
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Longjun Dai
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Jie Luo
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 9 Zhangzhidong Road and 238 Jiefang Road, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
3
|
“Silicon-On-Insulator”-Based Nanosensor for the Revelation of MicroRNA Markers of Autism. Genes (Basel) 2022; 13:genes13020199. [PMID: 35205244 PMCID: PMC8872218 DOI: 10.3390/genes13020199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/10/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
MicroRNAs (miRNAs), which represent short (20 to 22 nt) non-coding RNAs, were found to play a direct role in the development of autism in children. Herein, a highly sensitive “silicon-on-insulator”-based nanosensor (SOI-NS) has been developed for the revelation of autism-associated miRNAs. This SOI-NS comprises an array of nanowire sensor structures fabricated by complementary metal–oxide–semiconductor (CMOS)-compatible technology, gas-phase etching, and nanolithography. In our experiments described herein, we demonstrate the revelation of ASD-associated miRNAs in human plasma with the SOI-NS, whose sensor elements were sensitized with oligonucleotide probes. In order to determine the concentration sensitivity of the SOI-NS, experiments on the detection of synthetic DNA analogues of autism-associated miRNAs in purified buffer were performed. The lower limit of miRNA detection attained in our experiments amounted to 10−17 M.
Collapse
|
4
|
An Integrated Bioinformatics Study of a Novel Niclosamide Derivative, NSC765689, a Potential GSK3β/ β-Catenin/ STAT3/ CD44 Suppressor with Anti-Glioblastoma Properties. Int J Mol Sci 2021; 22:ijms22052464. [PMID: 33671112 PMCID: PMC7957701 DOI: 10.3390/ijms22052464] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Despite management efforts with standard surgery, radiation, and chemotherapy, glioblastoma multiform (GBM) remains resistant to treatment, which leads to tumor recurrence due to glioma stem cells (GSCs) and therapy resistance. In this study, we used random computer-based prediction and target identification to assess activities of our newly synthesized niclosamide-derived compound, NSC765689, to target GBM oncogenic signaling. Using target prediction analyses, we identified glycogen synthase kinase 3β (GSK3β), β-Catenin, signal transducer and activator of transcription 3 (STAT3), and cluster of differentiation 44 (CD44) as potential druggable candidates of NSC765689. The above-mentioned signaling pathways were also predicted to be overexpressed in GBM tumor samples compared to adjacent normal samples. In addition, using bioinformatics tools, we also identified microRNA (miR)-135b as one of the most suppressed microRNAs in GBM samples, which was reported to be upregulated through inhibition of GSK3β, and subsequently suppresses GBM tumorigenic properties and stemness. We further performed in silico molecular docking of NSC765689 with GBM oncogenes; GSK3β, β-Catenin, and STAT3, and the stem cell marker, CD44, to predict protein-ligand interactions. The results indicated that NSC765689 exhibited stronger binding affinities compared to its predecessor, LCC09, which was recently published by our laboratory, and was proven to inhibit GBM stemness and resistance. Moreover, we used available US National Cancer Institute (NCI) 60 human tumor cell lines to screen in vitro anticancer effects, including the anti-proliferative and cytotoxic activities of NSC765689 against GBM cells, and 50% cell growth inhibition (GI50) values ranged 0.23~5.13 μM. In summary, using computer-based predictions and target identification revealed that NSC765689 may be a potential pharmacological lead compound which can regulate GBM oncogene (GSK3β/β-Catenin/STAT3/CD44) signaling and upregulate the miR-135b tumor suppressor. Therefore, further in vitro and in vivo investigations will be performed to validate the efficacy of NSC765689 as a novel potential GBM therapeutic.
Collapse
|
5
|
Malsagova KA, Popov VP, Kupriyanov IN, Pleshakova TO, Galiullin RA, Kozlov AF, Shumov ID, Larionov DI, Tikhonenko FV, Kapustina SI, Ziborov VS, Petrov OF, Gadzhieva OA, Bashiryan BA, Shimansky VN, Archakov AI, Ivanov YD. Raman Spectroscopy-Based Quality Control of "Silicon-On-Insulator" Nanowire Chips for the Detection of Brain Cancer-Associated MicroRNA in Plasma. SENSORS (BASEL, SWITZERLAND) 2021; 21:1333. [PMID: 33668578 PMCID: PMC7918486 DOI: 10.3390/s21041333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/21/2022]
Abstract
Application of micro-Raman spectroscopy for the monitoring of quality of nanowire sensor chips fabrication has been demonstrated. Nanowire chips have been fabricated on the basis of «silicon-on-insulator» (SOI) structures (SOI-NW chips). The fabrication of SOI-NW chips was performed by optical litography with gas-phase etching. The so-fabricated SOI-NW chips are intended for highly sensitive detection of brain cancer biomarkers in humans. In our present study, two series of experiments have been conducted. In the first experimental series, detection of a synthetic DNA oligonucleotide (oDNA) analogue of brain cancer-associated microRNA miRNA-363 in purified buffer solution has been performed in order to demonstrate the high detection sensitivity. The second experimental series has been performed in order to reveal miRNA-363 itself in real human plasma samples. To provide detection biospecificity, the SOI-NW chip surface was modified by covalent immobilization of probe oligonucleotides (oDNA probes) complementary to the target biomolecules. Using the SOI-NW sensor chips proposed herein, the concentration detection limit of the target biomolecules at the level of 3.3 × 10-17 M has been demonstrated. Thus, the approach employing the SOI-NW chips proposed herein represents an attractive tool in biomedical practice, aimed at the early revelation of oncological diseases in humans.
Collapse
Affiliation(s)
- Kristina A. Malsagova
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (T.O.P.); (R.A.G.); (A.F.K.); (I.D.S.); (D.I.L.); (S.I.K.); (V.S.Z.); (A.I.A.); (Y.D.I.)
| | - Vladimir P. Popov
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.P.P.); (F.V.T.)
| | - Igor N. Kupriyanov
- Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Tatyana O. Pleshakova
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (T.O.P.); (R.A.G.); (A.F.K.); (I.D.S.); (D.I.L.); (S.I.K.); (V.S.Z.); (A.I.A.); (Y.D.I.)
| | - Rafael A. Galiullin
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (T.O.P.); (R.A.G.); (A.F.K.); (I.D.S.); (D.I.L.); (S.I.K.); (V.S.Z.); (A.I.A.); (Y.D.I.)
| | - Andrey F. Kozlov
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (T.O.P.); (R.A.G.); (A.F.K.); (I.D.S.); (D.I.L.); (S.I.K.); (V.S.Z.); (A.I.A.); (Y.D.I.)
| | - Ivan D. Shumov
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (T.O.P.); (R.A.G.); (A.F.K.); (I.D.S.); (D.I.L.); (S.I.K.); (V.S.Z.); (A.I.A.); (Y.D.I.)
| | - Dmitry I. Larionov
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (T.O.P.); (R.A.G.); (A.F.K.); (I.D.S.); (D.I.L.); (S.I.K.); (V.S.Z.); (A.I.A.); (Y.D.I.)
| | - Fedor V. Tikhonenko
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.P.P.); (F.V.T.)
| | - Svetlana I. Kapustina
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (T.O.P.); (R.A.G.); (A.F.K.); (I.D.S.); (D.I.L.); (S.I.K.); (V.S.Z.); (A.I.A.); (Y.D.I.)
| | - Vadim S. Ziborov
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (T.O.P.); (R.A.G.); (A.F.K.); (I.D.S.); (D.I.L.); (S.I.K.); (V.S.Z.); (A.I.A.); (Y.D.I.)
- Joint Institute for High Temperatures of Russian Academy of Sciences, 125412 Moscow, Russia;
| | - Oleg F. Petrov
- Joint Institute for High Temperatures of Russian Academy of Sciences, 125412 Moscow, Russia;
| | - Olga A. Gadzhieva
- Federal State Autonomous Institution “N. N. Burdenko National Medical Research Center of Neurosurgery” of the Ministry of Health of the Russian Federation, 125047 Moscow, Russia; (O.A.G.); (B.A.B.); (V.N.S.)
| | - Boris A. Bashiryan
- Federal State Autonomous Institution “N. N. Burdenko National Medical Research Center of Neurosurgery” of the Ministry of Health of the Russian Federation, 125047 Moscow, Russia; (O.A.G.); (B.A.B.); (V.N.S.)
| | - Vadim N. Shimansky
- Federal State Autonomous Institution “N. N. Burdenko National Medical Research Center of Neurosurgery” of the Ministry of Health of the Russian Federation, 125047 Moscow, Russia; (O.A.G.); (B.A.B.); (V.N.S.)
| | - Alexander I. Archakov
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (T.O.P.); (R.A.G.); (A.F.K.); (I.D.S.); (D.I.L.); (S.I.K.); (V.S.Z.); (A.I.A.); (Y.D.I.)
| | - Yuri D. Ivanov
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (T.O.P.); (R.A.G.); (A.F.K.); (I.D.S.); (D.I.L.); (S.I.K.); (V.S.Z.); (A.I.A.); (Y.D.I.)
| |
Collapse
|
6
|
Malsagova KA, Pleshakova TO, Popov VP, Kupriyanov IN, Galiullin RA, Kozlov AF, Shumov ID, Kaysheva AL, Tikhonenko FV, Archakov AI, Ivanov YD. Optical Monitoring of the Production Quality of Si-Nanoribbon Chips Intended for the Detection of ASD-Associated Oligonucleotides. MICROMACHINES 2021; 12:mi12020147. [PMID: 33546438 PMCID: PMC7913754 DOI: 10.3390/mi12020147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Gas-phase etching and optical lithography were employed for the fabrication of a silicon nanoribbon chip (Si-NR chip). The quality of the so-fabricated silicon nanoribbons (Si-NRs) was monitored by optical Raman scattering spectroscopy. It was demonstrated that the structures of the Si-NRs were virtually defect-free, meaning they could be used for highly sensitive detection of biological macromolecules. The Si-NR chips were then used for the highly sensitive nanoelectronics detection of DNA oligonucleotides (oDNAs), which represent synthetic analogs of 106a-5p microRNA (miR-106a-5p), associated with the development of autism spectrum disorders in children. The specificity of the analysis was attained by the sensitization of the Si-NR chip sur-face by covalent immobilization of oDNA probes, whose nucleotide sequence was complementary to the known sequence of miR-106a-5p. The use of the Si-NR chip was demonstrated to al-low for the rapid label-free real-time detection of oDNA at ultra-low (~10−17 M) concentrations.
Collapse
Affiliation(s)
- Kristina A. Malsagova
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (T.O.P.); (R.A.G.); (A.F.K.); (I.D.S.); (A.L.K.); (A.I.A.); (Y.D.I.)
- Correspondence: ; Tel.: +7-499-246-3761
| | - Tatyana O. Pleshakova
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (T.O.P.); (R.A.G.); (A.F.K.); (I.D.S.); (A.L.K.); (A.I.A.); (Y.D.I.)
| | - Vladimir P. Popov
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, Laboratory of Silicon Material Science, 630090 Novosibirsk, Russia; (V.P.P.); (F.V.T.)
| | - Igor N. Kupriyanov
- Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, Laboratory of Experimental Mineralogy and Crystallogenesis, 630090 Novosibirsk, Russia;
| | - Rafael A. Galiullin
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (T.O.P.); (R.A.G.); (A.F.K.); (I.D.S.); (A.L.K.); (A.I.A.); (Y.D.I.)
| | - Andrey F. Kozlov
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (T.O.P.); (R.A.G.); (A.F.K.); (I.D.S.); (A.L.K.); (A.I.A.); (Y.D.I.)
| | - Ivan D. Shumov
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (T.O.P.); (R.A.G.); (A.F.K.); (I.D.S.); (A.L.K.); (A.I.A.); (Y.D.I.)
| | - Anna L. Kaysheva
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (T.O.P.); (R.A.G.); (A.F.K.); (I.D.S.); (A.L.K.); (A.I.A.); (Y.D.I.)
| | - Fedor V. Tikhonenko
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, Laboratory of Silicon Material Science, 630090 Novosibirsk, Russia; (V.P.P.); (F.V.T.)
| | - Alexander I. Archakov
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (T.O.P.); (R.A.G.); (A.F.K.); (I.D.S.); (A.L.K.); (A.I.A.); (Y.D.I.)
| | - Yuri D. Ivanov
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (T.O.P.); (R.A.G.); (A.F.K.); (I.D.S.); (A.L.K.); (A.I.A.); (Y.D.I.)
| |
Collapse
|
7
|
Abstract
Herein, we report the development of a highly sensitive nanotechnology-based system—silicon-on-insulator nanowire biosensor for the revelation of microRNAs (miRNAs), associated with the development of glioma in the human. In this system, a sensor chip, bearing an array of silicon nanowire structures, is employed. The sensor chip is fabricated using a top-down technology. In our experiments reported herein, we demonstrated the detection of DNA oligonucleotide (oDNA), which represents a synthetic analogue of microRNA-363 associated with the development of glioma. To provide biospecific detection of the target oligonucleotides, the surface of the nanowire structures is modified with oligonucleotide probes; the latter are complementary to the target ones. The concentration limit of the target oligonucleotide detection, attained using our nanowire biosensor, is at the level of DL~10−17 M. The revelation of the elevated level of glioma-associated miRNA in plasma is also demonstrated.
Collapse
|
8
|
Sette P, Amankulor N, Li A, Marzulli M, Leronni D, Zhang M, Goins WF, Kaur B, Bolyard C, Cripe TP, Yu J, Chiocca EA, Glorioso JC, Grandi P. GBM-Targeted oHSV Armed with Matrix Metalloproteinase 9 Enhances Anti-tumor Activity and Animal Survival. Mol Ther Oncolytics 2019; 15:214-222. [PMID: 31890868 PMCID: PMC6926261 DOI: 10.1016/j.omto.2019.10.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/19/2019] [Indexed: 12/12/2022] Open
Abstract
The use of mutant strains of oncolytic herpes simplex virus (oHSV) in early-phase human clinical trials for the treatment of glioblastoma multiforme (GBM) has proven safe, but limited efficacy suggests that more potent vector designs are required for effective GBM therapy. Inadequate vector performance may derive from poor intratumoral vector replication and limited spread to uninfected cells. Vector replication may be impaired by mutagenesis strategies to achieve vector safety, and intratumoral virus spread may be hampered by vector entrapment in the tumor-specific extracellular matrix (ECM) that in GBM is composed primarily of type IV collagen. In this report, we armed our previously described epidermal growth factor receptor (EGFR)vIII-targeted, neuronal microRNA-sensitive oHSV with a matrix metalloproteinase (MMP9) to improve intratumoral vector distribution. We show that vector-expressed MMP9 enhanced therapeutic efficacy and long-term animal survival in a GBM xenograft model.
Collapse
Affiliation(s)
- Paola Sette
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Nduka Amankulor
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Aofei Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marco Marzulli
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Daniela Leronni
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Mingdi Zhang
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - William F. Goins
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Balveen Kaur
- Department of Neurological Surgery, Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Chelsea Bolyard
- Department of Neurological Surgery, Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Timothy P. Cripe
- Division of Hematology/Oncology/Blood and Marrow Transplant, Nationwide Children’s Hospital, Columbus, OH, USA
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Jianhua Yu
- Hematologic Malignancies & Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, USA
- Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
- Division of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - E. Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s/Faulkner Hospital and Harvey Cushing Neuro-oncology Laboratories, Harvard Medicine School, Boston, MA, USA
- Center for Neuro-oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Joseph C. Glorioso
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Paola Grandi
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Carpenter CD, Alnahhas I, Gonzalez J, Giglio P, Puduvalli VK. Changing paradigms for targeted therapies against diffuse infiltrative gliomas: tackling a moving target. Expert Rev Neurother 2019; 19:663-677. [PMID: 31106606 DOI: 10.1080/14737175.2019.1621169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Introduction: Gliomas are highly heterogeneous primary brain tumors which result in a disproportionately high degree of morbidity and mortality despite their locoregional occurrence. Advances in the understanding of the biological makeup of these malignancies have yielded a number of potential tumor-driving pathways which have been identified as rational targets for therapy. However, early trials of agents that target these pathways have uniformly failed to yield improvement in outcomes in patients with malignant gliomas. Areas covered: This review provides an overview of the most common biological features of gliomas and the strategies to target the same; in addition, the current status of immunotherapy and biological therapies are outlined and the future directions to tackle the challenges of therapy for gliomas are examined. Expert opinion: The limitations of current treatments are attributed to the inability of most of these agents to cross the blood-brain barrier and to the intrinsic heterogeneity of the tumors that result in treatment resistance. The recent emergence of immune-mediated and biological therapies and of agents that target metabolic pathways in gliomas have provided strategies that may overcome tumor heterogeneity and ongoing trials of such agents are anticipated to yield improved outcomes.
Collapse
Affiliation(s)
- Candice D Carpenter
- a Department of Neurosurgery , The Ohio State University Wexner Medical Center , Columbus , OH , USA
| | - Iyad Alnahhas
- b Division of Neurooncology , The Ohio State University Wexner Medical Center , Columbus , OH , USA
| | - Javier Gonzalez
- a Department of Neurosurgery , The Ohio State University Wexner Medical Center , Columbus , OH , USA.,b Division of Neurooncology , The Ohio State University Wexner Medical Center , Columbus , OH , USA
| | - Pierre Giglio
- a Department of Neurosurgery , The Ohio State University Wexner Medical Center , Columbus , OH , USA.,b Division of Neurooncology , The Ohio State University Wexner Medical Center , Columbus , OH , USA
| | - Vinay K Puduvalli
- a Department of Neurosurgery , The Ohio State University Wexner Medical Center , Columbus , OH , USA.,b Division of Neurooncology , The Ohio State University Wexner Medical Center , Columbus , OH , USA
| |
Collapse
|
10
|
Chen T, Song X, Gong T, Fu Y, Yang L, Zhang Z, Gong T. nRGD modified lycobetaine and octreotide combination delivery system to overcome multiple barriers and enhance anti-glioma efficacy. Colloids Surf B Biointerfaces 2017; 156:330-339. [PMID: 28544965 DOI: 10.1016/j.colsurfb.2017.05.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/02/2017] [Accepted: 05/13/2017] [Indexed: 12/17/2022]
Abstract
For glioma as one of the most common and lethal primary brain tumors, the presence of BBB, BBTB, vasculogenic mimicry (VM) channels and tumor-associated macrophages (TAMs) are key biological barriers. Here, a novel drug delivery system which could efficiently deliver drugs to glioma by overcoming multi-barriers and increase antitumor efficacy through multi-therapeutic mechanisms was well developed. In this study, a multi-target peptide nRGD was used to transport across the BBB, mediate tumor penetration and target TAMs. Lycobetaine (LBT) was adopted to kill glioma cells and octreotide (OCT) was co-delivered to inhibit VM channels and prevent angiogenesis. LBT-OCT liposomes (LPs) showed controlled release profile in vitro, increased uptake efficiency, improved inhibitory effect against glioma cells and VM formation, and enhanced BBB-crossing capability. The median survival time of glioma-bearing mice administered with LBT-OCT LPs-nRGD was significantly longer than LBT-OCT LPs (P<0.01). Besides, nRGD achieved a stronger inhibitory effect against tumor associated macrophages (TAMs) compared to LPs-iRGD treatment groups in vivo. Thus, LPs-nRGD represented a promising versatile delivery platform for combination drug therapy in glioma treatment.
Collapse
Affiliation(s)
- Tijia Chen
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Xu Song
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Ting Gong
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Yao Fu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Liuqing Yang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Tao Gong
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
11
|
Lulli V, Buccarelli M, Martini M, Signore M, Biffoni M, Giannetti S, Morgante L, Marziali G, Ilari R, Pagliuca A, Larocca LM, De Maria R, Pallini R, Ricci-Vitiani L. miR-135b suppresses tumorigenesis in glioblastoma stem-like cells impairing proliferation, migration and self-renewal. Oncotarget 2016; 6:37241-56. [PMID: 26437223 PMCID: PMC4741927 DOI: 10.18632/oncotarget.5925] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 09/17/2015] [Indexed: 01/16/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and fatal malignant adult primary brain tumor. Currently, the overall prognosis for GBM patients remains poor despite advances in neurosurgery and adjuvant treatments. MicroRNAs (miRNAs) contribute to the pathogenesis of various types of tumor, including GBM. In this study we analyzed the expression of a panel of miRNAs, which are known to be differentially expressed by the brain and GBM tumor, in a collection of patient-derived GBM stem-like cells (GSCs). Notably, the average expression level of miR-135b, was the most downregulated compared to its normal counterpart, suggesting a potential role as anti-oncogene. Restoration of miR-135b in GSCs significantly decreased proliferation, migration and clonogenic abilities. More importantly, miR-135b restoration was able to significantly reduce brain infiltration in mouse models of GBM obtained by intracerebral injection of GSC lines. We identified ADAM12 and confirmed SMAD5 and GSK3β as miR-135b targets and potential mediators of its effects. The whole transcriptome analysis ascertained that the expression of miR-135b downmodulated additional genes driving key pathways in GBM survival and infiltration capabilities. Our results identify a critical role of miR-135b in the regulation of GBM development, suggesting that miR-135b might act as a tumor-suppressor factor and thus providing a potential candidate for the treatment of GBM patients.
Collapse
Affiliation(s)
- Valentina Lulli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Mariachiara Buccarelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Maurizio Martini
- Institute of Anatomic Pathology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Michele Signore
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Mauro Biffoni
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Stefano Giannetti
- Institute of Human Anatomy, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Liliana Morgante
- Institute of Human Anatomy, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanna Marziali
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Ramona Ilari
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alfredo Pagliuca
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Luigi Maria Larocca
- Institute of Anatomic Pathology, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Roberto Pallini
- Institute of Neurosurgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lucia Ricci-Vitiani
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
12
|
Quantification of cellular and nuclear uptake rates of polymeric gene delivery nanoparticles and DNA plasmids via flow cytometry. Acta Biomater 2016; 37:120-30. [PMID: 27019146 DOI: 10.1016/j.actbio.2016.03.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/17/2016] [Accepted: 03/24/2016] [Indexed: 12/16/2022]
Abstract
UNLABELLED Non-viral, biomaterial-mediated gene delivery has the potential to treat many diseases, but is limited by low efficacy. Elucidating the bottlenecks of plasmid mass transfer can enable an improved understanding of biomaterial structure-function relationships, leading to next-generation rationally designed non-viral gene delivery vectors. As proof of principle, we transfected human primary glioblastoma cells using a poly(beta-amino ester) complexed with eGFP plasmid DNA. The polyplexes transfected 70.6±0.6% of the cells with 101±3% viability. The amount of DNA within the cytoplasm, nuclear envelope, and nuclei was assessed at multiple time points using fluorescent dye conjugated plasmid up to 24h post-transfection using a quantitative multi-well plate-based flow cytometry assay. Conversion to plasmid counts and degradation kinetics were accounted for via quantitative PCR (plasmid degradation rate constants were determined to be 0.62h(-1) and 0.084h(-1) for fast and slow phases respectively). Quantitative cellular uptake, nuclear association, and nuclear uptake rate constants were determined by using a four-compartment first order mass-action model. The rate limiting step for these poly(beta-amino ester)/DNA polyplex nanoparticles was determined to be cellular uptake (7.5×10(-4)h(-1)) and only 0.1% of the added dose was taken up by the human brain cancer cells, whereas 12% of internalized DNA successfully entered the nucleus (the rate of nuclear internalization of nuclear associated plasmid was 1.1h(-1)). We describe an efficient new method for assessing cellular and nuclear uptake rates of non-viral gene delivery nanoparticles using flow cytometry to improve understanding and design of polymeric gene delivery nanoparticles. STATEMENT OF SIGNIFICANCE In this work, a quantitative high throughput flow cytometry-based assay and computational modeling approach was developed for assessing cellular and nuclear uptake rates of non-viral gene delivery nanoparticles. This method is significant as it can be used to elucidate structure-function relationships of gene delivery nanoparticles and improve their efficiency. This method was applied to a particular type of biodegradable polymer, a poly(beta-amino ester), that transfected human brain cancer cells with high efficacy and without cytotoxicity. A four-compartment first order mass-action kinetics model was found to model the experimental transport data well without requiring external fitting parameters. Quantitative rate constants were identified for the intracellular transport, including DNA degradation rate from polyplexes, cellular uptake rate, and nuclear uptake rate, with cellular uptake identified as the rate-limiting step.
Collapse
|
13
|
Shah S. The nanomaterial toolkit for neuroengineering. NANO CONVERGENCE 2016; 3:25. [PMID: 28191435 PMCID: PMC5271150 DOI: 10.1186/s40580-016-0086-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 09/29/2016] [Indexed: 05/03/2023]
Abstract
There is a growing interest in developing effective tools to better probe the central nervous system (CNS), to understand how it works and to treat neural diseases, injuries and cancer. The intrinsic complexity of the CNS has made this a challenging task for decades. Yet, with the extraordinary recent advances in nanotechnology and nanoscience, there is a general consensus on the immense value and potential of nanoscale tools for engineering neural systems. In this review, an overview of specialized nanomaterials which have proven to be the most effective tools in neuroscience is provided. After a brief background on the prominent challenges in the field, a variety of organic and inorganic-based nanomaterials are described, with particular emphasis on the distinctive properties that make them versatile and highly suitable in the context of the CNS. Building on this robust nano-inspired foundation, the rational design and application of nanomaterials can enable the generation of new methodologies to greatly advance the neuroscience frontier.
Collapse
Affiliation(s)
- Shreyas Shah
- Physiological Communications Research Group, Nokia Bell Labs, 600 Mountain Avenue, Murray Hill, NJ 07974 USA
| |
Collapse
|
14
|
Meisen WH, Wohleb ES, Jaime-Ramirez AC, Bolyard C, Yoo JY, Russell L, Hardcastle J, Dubin S, Muili K, Yu J, Caligiuri M, Godbout J, Kaur B. The Impact of Macrophage- and Microglia-Secreted TNFα on Oncolytic HSV-1 Therapy in the Glioblastoma Tumor Microenvironment. Clin Cancer Res 2015; 21:3274-85. [PMID: 25829396 DOI: 10.1158/1078-0432.ccr-14-3118] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/24/2015] [Indexed: 12/15/2022]
Abstract
PURPOSE Oncolytic herpes simplex viruses (oHSV) represent a promising therapy for glioblastoma (GBM), but their clinical success has been limited. Early innate immune responses to viral infection reduce oHSV replication, tumor destruction, and efficacy. Here, we characterized the antiviral effects of macrophages and microglia on viral therapy for GBM. EXPERIMENTAL DESIGN Quantitative flow cytometry of mice with intracranial gliomas (±oHSV) was used to examine macrophage/microglia infiltration and activation. In vitro coculture assays of infected glioma cells with microglia/macrophages were used to test their impact on oHSV replication. Macrophages from TNFα-knockout mice and blocking antibodies were used to evaluate the biologic effects of TNFα on virus replication. TNFα blocking antibodies were used to evaluate the impact of TNFα on oHSV therapy in vivo. RESULTS Flow-cytometry analysis revealed a 7.9-fold increase in macrophage infiltration after virus treatment. Tumor-infiltrating macrophages/microglia were polarized toward a M1, proinflammatory phenotype, and they expressed high levels of CD86, MHCII, and Ly6C. Macrophages/microglia produced significant amounts of TNFα in response to infected glioma cells in vitro and in vivo. Using TNFα-blocking antibodies and macrophages derived from TNFα-knockout mice, we discovered TNFα-induced apoptosis in infected tumor cells and inhibited virus replication. Finally, we demonstrated the transient blockade of TNFα from the tumor microenvironment with TNFα-blocking antibodies significantly enhanced virus replication and survival in GBM intracranial tumors. CONCLUSIONS The results of these studies suggest that FDA approved TNFα inhibitors may significantly improve the efficacy of oncolytic virus therapy.
Collapse
Affiliation(s)
- W Hans Meisen
- Department of Neurological Surgery, James Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, Ohio
| | - Eric S Wohleb
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Alena Cristina Jaime-Ramirez
- Department of Neurological Surgery, James Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, Ohio
| | - Chelsea Bolyard
- Department of Neurological Surgery, James Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, Ohio
| | - Ji Young Yoo
- Department of Neurological Surgery, James Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, Ohio
| | - Luke Russell
- Department of Neurological Surgery, James Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, Ohio
| | | | - Samuel Dubin
- Department of Neurological Surgery, James Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, Ohio
| | - Kamaldeen Muili
- Department of Neurological Surgery, James Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, Ohio
| | - Jianhua Yu
- Division of Hematology, James Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, Ohio
| | - Michael Caligiuri
- Division of Hematology, James Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, Ohio
| | - Jonathan Godbout
- Department of Neuroscience, James Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, Ohio
| | - Balveen Kaur
- Department of Neurological Surgery, James Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, Ohio.
| |
Collapse
|
15
|
Zhang W, Shen C, Li C, Yang G, Liu H, Chen X, Zhu D, Zou H, Zhen Y, Zhang D, Zhao S. miR-577 inhibits glioblastoma tumor growth via the Wnt signaling pathway. Mol Carcinog 2015; 55:575-85. [PMID: 25764520 DOI: 10.1002/mc.22304] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/21/2015] [Accepted: 01/28/2015] [Indexed: 02/05/2023]
Abstract
microRNAs (miRNAs) are commonly altered in glioblastoma. Publicly available algorithms suggest the Wnt pathway is a potential target of miR-577 and the Wnt pathway is commonly altered in glioblastoma. Glioblastoma has not been previously evaluated for miR-577 expression. Glioblastoma tumors and cell lines were evaluated for their expression of miR-577. Cell lines were transfected with miR-577, miR-577-mutant, or control mimics to evaluate the effect of miR-577 expression on cell proliferation in vitro and in an animal model. Wnt pathway markers were also evaluated for their association with miR-577 expression. miR-577 expression was decreased in 33 of 40 (82.5%) glioblastoma tumors and 5 of 6 glioblastoma cell lines. miR-577 expression correlated negatively with cell growth and cell viability. miR-577 down-regulation was associated with increased expression of the Wnt signaling pathway genes lipoprotein receptor-related protein (LRP) 6 (LRP6) and β-catenin. Western blot analysis confirmed decreased expression of the Wnt signaling pathway genes Axin2, c-myc, and cyclin D1 in miR-577 transfected cells. miR-577 expression is down-regulated in glioblastoma. miR-577 directly targets Wnt signaling pathway components LRP6 and β-catenin. miR-577 suppresses glioblastoma multiforme (GBM) growth by regulating the Wnt signaling pathway.
Collapse
Affiliation(s)
- Weiguang Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,Institute of Brain Science, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Chen Shen
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,Institute of Brain Science, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Chenguang Li
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,Institute of Brain Science, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,Institute of Brain Science, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Huailei Liu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,Institute of Brain Science, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xin Chen
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,Institute of Brain Science, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Dan Zhu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Huichao Zou
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,Institute of Brain Science, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yunbo Zhen
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,Institute of Brain Science, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Daming Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,Institute of Brain Science, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Shiguang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,Institute of Brain Science, Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
16
|
Georges J, Zehri A, Carlson E, Nichols J, Mooney MA, Martirosyan NL, Ghaffari L, Kalani MYS, Eschbacher J, Feuerstein B, Anderson T, Preul MC, Van Keuren-Jensen K, Nakaji P. Label-free microscopic assessment of glioblastoma biopsy specimens prior to biobanking [corrected]. Neurosurg Focus 2014; 36:E8. [PMID: 24484261 DOI: 10.3171/2013.11.focus13478] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Glioblastoma is the most common primary brain tumor with a median 12- to 15-month patient survival. Improving patient survival involves better understanding the biological mechanisms of glioblastoma tumorigenesis and seeking targeted molecular therapies. Central to furthering these advances is the collection and storage of surgical biopsies (biobanking) for research. This paper addresses an imaging modality, confocal reflectance microscopy (CRM), for safely screening glioblastoma biopsy samples prior to biobanking to increase the quality of tissue provided for research and clinical trials. These data indicate that CRM can immediately identify cellularity of tissue biopsies from animal models of glioblastoma. When screening fresh human biopsy samples, CRM can differentiate a cellular glioblastoma biopsy from a necrotic biopsy without altering DNA, RNA, or protein expression of sampled tissue. These data illustrate CRM's potential for rapidly and safely screening clinical biopsy samples prior to biobanking, which demonstrates its potential as an effective screening technique that can improve the quality of tissue biobanked for patients with glioblastoma.
Collapse
|
17
|
The expression of SALL4 in patients with gliomas: high level of SALL4 expression is correlated with poor outcome. J Neurooncol 2014; 121:261-8. [DOI: 10.1007/s11060-014-1646-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 10/23/2014] [Indexed: 01/26/2023]
|
18
|
Martinez-Quintanilla J, He D, Wakimoto H, Alemany R, Shah K. Encapsulated stem cells loaded with hyaluronidase-expressing oncolytic virus for brain tumor therapy. Mol Ther 2014; 23:108-18. [PMID: 25352242 DOI: 10.1038/mt.2014.204] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 10/17/2014] [Indexed: 02/08/2023] Open
Abstract
Despite the proven safety of oncolytic viruses (OV) in clinical trials for glioblastoma (GBM), their efficacy has been hindered by suboptimal spreading within the tumor. We show that hyaluronan or hyaluronic acid (HA), an important component of extracellular matrix (ECM), is highly expressed in a majority of tumor xenografts established from patient-derived GBM lines that present both invasive and nodular phenotypes. Intratumoral injection of a conditionally replicating adenovirus expressing soluble hyaluronidase (ICOVIR17) into nodular GBM, mediated HA degradation and enhanced viral spread, resulting in a significant antitumor effect and mice survival. In an effort to translate OV-based therapeutics into clinical settings, we encapsulated human adipose-derived mesenchymal stem cells (MSC) loaded with ICOVIR17 in biocompatible synthetic extracellular matrix (sECM) and tested their efficacy in a clinically relevant mouse model of GBM resection. Compared with direct injection of ICOVIR17, sECM-MSC loaded with ICOVIR17 resulted in a significant decrease in tumor regrowth and increased mice survival. This is the first report of its kind revealing the expression of HA in GBM and the role of OV-mediated HA targeting in clinically relevant mouse model of GBM resection and thus has clinical implications.
Collapse
Affiliation(s)
- Jordi Martinez-Quintanilla
- 1] Molecular Neurotherapy and Imaging Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA [2] Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Derek He
- 1] Molecular Neurotherapy and Imaging Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA [2] Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hiroaki Wakimoto
- 1] Molecular Neurotherapy and Imaging Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA [2] Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA [3] Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ramon Alemany
- Laboratori de Recerca Traslacional IDIBELL-Institut Català d'Oncologia, L'Hospitalet de Llobregat, Catalonia, Spain
| | - Khalid Shah
- 1] Molecular Neurotherapy and Imaging Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA [2] Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA [3] Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA [4] Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
19
|
Fan C, Wang D, Zhang Q, Zhou J. Migration capacity of human umbilical cord mesenchymal stem cells towards glioma in vivo. Neural Regen Res 2014; 8:2093-102. [PMID: 25206518 PMCID: PMC4146061 DOI: 10.3969/j.issn.1673-5374.2013.22.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/30/2013] [Indexed: 01/01/2023] Open
Abstract
High-grade glioma is the most common malignant primary brain tumor in adults. The poor prognosis of glioma, combined with a resistance to currently available treatments, necessitates the ment of more effective tumor-selective therapies. Stem cell-based therapies are emerging as novel cell-based delivery vehicle for therapeutic agents. In the present study, we successfully isolated human umbilical cord mesenchymal stem cells by explant culture. The human umbilical cord senchymal stem cells were adherent to plastic surfaces, expressed specific surface phenotypes of mesenchymal stem cells as demonstrated by flow cytometry, and possessed multi-differentiation potentials in permissive induction media in vitro. Furthermore, human umbilical cord mesenchymal stem cells demonstrated excellent glioma-specific targeting capacity in established rat glioma models after intratumoral injection or contralateral ventricular administration in vivo. The excellent glioma-specific targeting ability and extensive intratumoral distribution of human umbilical cord mesenchymal stem cells indicate that they may serve as a novel cellular vehicle for delivering therapeutic molecules in glioma therapy.
Collapse
Affiliation(s)
- Cungang Fan
- Department of Neurosurgery, Peking University People's Hospital, Beijing 100044, China
| | - Dongliang Wang
- Department of Neurosurgery, Peking University People's Hospital, Beijing 100044, China
| | - Qingjun Zhang
- Department of Neurosurgery, Peking University People's Hospital, Beijing 100044, China
| | - Jingru Zhou
- Department of Neurosurgery, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
20
|
Price RL, Chiocca EA. Evolution of malignant glioma treatment: from chemotherapy to vaccines to viruses. Neurosurgery 2014; 61 Suppl 1:74-83. [PMID: 25032534 PMCID: PMC4104417 DOI: 10.1227/neu.0000000000000390] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Richard Lee Price
- Dardinger Neuro-oncology Center, Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Ennio Antonio Chiocca
- Harvey Cushing Neuro-oncology Laboratories, Harvard Institutes of Medicine, Department of Neurosurgery and Institute for the Neurosciences at the Brigham, Brigham and Women’s/Faulkner Hospital and Center for Neuro-oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Baker GJ, Chockley P, Yadav VN, Doherty R, Ritt M, Sivaramakrishnan S, Castro MG, Lowenstein PR. Natural killer cells eradicate galectin-1-deficient glioma in the absence of adaptive immunity. Cancer Res 2014; 74:5079-90. [PMID: 25038230 DOI: 10.1158/0008-5472.can-14-1203] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Natural killer (NK) cells safeguard against early tumor formation by destroying transformed target cells in a process referred to as NK immune surveillance. However, the immune escape mechanisms used by malignant brain tumors to subvert this innate type of immune surveillance remain unclear. Here we show that malignant glioma cells suppress NK immune surveillance by overexpressing the β-galactoside-binding lectin galectin-1. Conversely, galectin-1-deficient glioma cells could be eradicated by host NK cells before the initiation of an antitumor T-cell response. In vitro experiments demonstrated that galectin-1-deficient GL26-Cit glioma cells are ∼3-fold more sensitive to NK-mediated tumor lysis than galectin-1-expressing cells. Our findings suggest that galectin-1 suppression in human glioma could improve patient survival by restoring NK immune surveillance that can eradicate glioma cells. Cancer Res; 74(18); 5079-90. ©2014 AACR.
Collapse
Affiliation(s)
- Gregory J Baker
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan. Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Peter Chockley
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan. Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Viveka Nand Yadav
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan. Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Robert Doherty
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan. Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Michael Ritt
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Sivaraj Sivaramakrishnan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan. Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan. Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan. Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan.
| |
Collapse
|
22
|
Watts C, Price SJ, Santarius T. Current concepts in the surgical management of glioma patients. Clin Oncol (R Coll Radiol) 2014; 26:385-94. [PMID: 24882149 DOI: 10.1016/j.clon.2014.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 04/01/2014] [Indexed: 12/16/2022]
Abstract
The scientific basis for the surgical management of patients with glioma is rapidly evolving. The infiltrative nature of these cancers precludes a surgical cure, but despite this, cytoreductive surgery remains central to high-quality patient care. In addition to tissue sampling for accurate histopathological diagnosis and molecular genetic characterisation, clinical benefit from decompression of space-occupying lesions and microsurgical cytoreduction has been reported in patients with different grades of glioma. By integrating advanced surgical techniques with molecular genetic characterisation of the disease and targeted radiotherapy and chemotherapy, it is possible to construct a programme of personalised surgical therapy throughout the patient journey. The goal of therapeutic packages tailored to each patient is to optimise patient safety and clinical outcome and must be delivered in a multidisciplinary setting. Here we review the current concepts that underlie surgical subspecialisation in the management of patients with glioma.
Collapse
Affiliation(s)
- C Watts
- University of Cambridge, Department of Clinical Neurosciences, Division of Neurosurgery, Addenbrooke's Hospital, Cambridge, UK; Department of Clinical Neurosciences, Cambridge Centre for Brain Repair, University of Cambridge, Cambridge, UK.
| | - S J Price
- University of Cambridge, Department of Clinical Neurosciences, Division of Neurosurgery, Addenbrooke's Hospital, Cambridge, UK
| | - T Santarius
- University of Cambridge, Department of Clinical Neurosciences, Division of Neurosurgery, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
23
|
Duebgen M, Martinez-Quintanilla J, Tamura K, Hingtgen S, Redjal N, Wakimoto H, Shah K. Stem cells loaded with multimechanistic oncolytic herpes simplex virus variants for brain tumor therapy. J Natl Cancer Inst 2014; 106:dju090. [PMID: 24838834 DOI: 10.1093/jnci/dju090] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The current treatment regimen for malignant glioblastoma multiforme (GBM) is tumor resection followed by chemotherapy and radiation therapy. Despite the proven safety of oncolytic herpes simplex virus (oHSV) in clinical trials for GBMs, its efficacy is suboptimal mainly because of insufficient viral spread after tumor resection. METHODS Human mesenchymal stem cells (MSC) were loaded with oHSV (MSC-oHSV), and their fate was explored by real-time imaging in vitro and in vivo. Using novel diagnostic and armed oHSV mutants and real-time multimodality imaging, the efficacy of MSC-oHSV and its proapoptotic variant, oHSV-TRAIL encapsulated in biocompatible synthetic extracellular matrix (sECM), was tested in different mouse GBM models, which more accurately reflect the current clinical settings of malignant, resistant, and resected tumors. All statistical tests were two-sided. RESULTS MSC-oHSVs effectively produce oHSV progeny, which results in killing of GBMs in vitro and in vivo mediated by a dynamic process of oHSV infection and tumor destruction. sECM-encapsulated MSC-oHSVs result in statistically significant increased anti-GBM efficacy compared with direct injection of purified oHSV in a preclinical model of GBM resection, resulting in prolonged median survival in mice (P < .001 with Gehan-Breslow-Wilcoxin test). To supersede resistant tumors, MSC loaded with oHSV-TRAIL effectively induce apoptosis-mediated killing and prolonged median survival in mice bearing oHSV- and TRAIL-resistant GBM in vitro (P < .001 with χ(2) contingency test). CONCLUSIONS Human MSC loaded with different oHSV variants provide a platform to translate oncolytic virus therapies to clinics in a broad spectrum of GBMs after resection and could also have direct implications in different cancer types.
Collapse
Affiliation(s)
- Matthias Duebgen
- Affiliations of authors: Molecular Neurotherapy and Imaging Laboratory (MD, JM-Q, SH, NR, HW, KS), Department of Radiology (MD, JM-Q, KT, SH, NR, HW, KS), Department of Neurosurgery (NR, HW), and Department of Neurology (KS), Massachusetts General Hospital, Harvard Medical School, Boston, MA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA (KS)
| | - Jordi Martinez-Quintanilla
- Affiliations of authors: Molecular Neurotherapy and Imaging Laboratory (MD, JM-Q, SH, NR, HW, KS), Department of Radiology (MD, JM-Q, KT, SH, NR, HW, KS), Department of Neurosurgery (NR, HW), and Department of Neurology (KS), Massachusetts General Hospital, Harvard Medical School, Boston, MA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA (KS)
| | - Kaoru Tamura
- Affiliations of authors: Molecular Neurotherapy and Imaging Laboratory (MD, JM-Q, SH, NR, HW, KS), Department of Radiology (MD, JM-Q, KT, SH, NR, HW, KS), Department of Neurosurgery (NR, HW), and Department of Neurology (KS), Massachusetts General Hospital, Harvard Medical School, Boston, MA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA (KS)
| | - Shawn Hingtgen
- Affiliations of authors: Molecular Neurotherapy and Imaging Laboratory (MD, JM-Q, SH, NR, HW, KS), Department of Radiology (MD, JM-Q, KT, SH, NR, HW, KS), Department of Neurosurgery (NR, HW), and Department of Neurology (KS), Massachusetts General Hospital, Harvard Medical School, Boston, MA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA (KS)
| | - Navid Redjal
- Affiliations of authors: Molecular Neurotherapy and Imaging Laboratory (MD, JM-Q, SH, NR, HW, KS), Department of Radiology (MD, JM-Q, KT, SH, NR, HW, KS), Department of Neurosurgery (NR, HW), and Department of Neurology (KS), Massachusetts General Hospital, Harvard Medical School, Boston, MA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA (KS)
| | - Hiroaki Wakimoto
- Affiliations of authors: Molecular Neurotherapy and Imaging Laboratory (MD, JM-Q, SH, NR, HW, KS), Department of Radiology (MD, JM-Q, KT, SH, NR, HW, KS), Department of Neurosurgery (NR, HW), and Department of Neurology (KS), Massachusetts General Hospital, Harvard Medical School, Boston, MA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA (KS)
| | - Khalid Shah
- Affiliations of authors: Molecular Neurotherapy and Imaging Laboratory (MD, JM-Q, SH, NR, HW, KS), Department of Radiology (MD, JM-Q, KT, SH, NR, HW, KS), Department of Neurosurgery (NR, HW), and Department of Neurology (KS), Massachusetts General Hospital, Harvard Medical School, Boston, MA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA (KS).
| |
Collapse
|
24
|
Wilson TA, Karajannis MA, Harter DH. Glioblastoma multiforme: State of the art and future therapeutics. Surg Neurol Int 2014; 5:64. [PMID: 24991467 PMCID: PMC4078454 DOI: 10.4103/2152-7806.132138] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 03/13/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most common and lethal primary malignancy of the central nervous system (CNS). Despite the proven benefit of surgical resection and aggressive treatment with chemo- and radiotherapy, the prognosis remains very poor. Recent advances of our understanding of the biology and pathophysiology of GBM have allowed the development of a wide array of novel therapeutic approaches, which have been developed. These novel approaches include molecularly targeted therapies, immunotherapies, and gene therapy. METHODS We offer a brief review of the current standard of care, and a survey of novel therapeutic approaches for treatment of GBM. RESULTS Despite promising results in preclinical trials, many of these therapies have demonstrated limited therapeutic efficacy in human clinical trials. Thus, although survival of patients with GBM continues to slowly improve, treatment of GBM remains extremely challenging. CONCLUSION Continued research and development of targeted therapies, based on a detailed understanding of molecular pathogenesis can reasonably be expected to yield improved outcomes for patients with GBM.
Collapse
Affiliation(s)
- Taylor A Wilson
- Department of Neurosurgery, Division of Oncology, New York University School of Medicine, NY, USA
| | - Matthias A Karajannis
- Department of Pediatrics, Division of Oncology, New York University School of Medicine, NY, USA
| | - David H Harter
- Department of Neurosurgery, Division of Oncology, New York University School of Medicine, NY, USA
| |
Collapse
|
25
|
Development of preclinical models for immunogene therapy of brain cancer: it's not monkey business! Mol Ther 2014; 22:247-249. [PMID: 24487565 DOI: 10.1038/mt.2013.298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
26
|
Poenar DP, Iliescu C, Boulaire J, Yu H. Label-free virus identification and characterization using electrochemical impedance spectroscopy. Electrophoresis 2013; 35:433-40. [DOI: 10.1002/elps.201300368] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 10/01/2013] [Accepted: 10/01/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Daniel P. Poenar
- Novitas, Nanoelectronics Centre of Excellence; School of Electrical and Electronical Engineering; Nanyang Technological University (NTU); Singapore
| | - Ciprian Iliescu
- Institute of Bioengineering and Nanotechnology (IBN); Singapore
| | - Jérôme Boulaire
- Institute of Bioengineering and Nanotechnology (IBN); Singapore
| | - Hanry Yu
- Institute of Bioengineering and Nanotechnology (IBN); Singapore
- Department of Physiology; Yong Loo Lin School of Medicine; Singapore
- Singapore-MIT Alliance for Research and Technology; Singapore
- Mechanobiology Institute; National University of Singapore; Singapore
- Department of Biological Engineering; Massachusetts Institute of Technology; Cambridge MA USA
| |
Collapse
|
27
|
Okemoto K, Kasai K, Wagner B, Haseley A, Meisen H, Bolyard C, Mo X, Wehr A, Lehman A, Fernandez S, Kaur B, Chiocca EA. DNA demethylating agents synergize with oncolytic HSV1 against malignant gliomas. Clin Cancer Res 2013; 19:5952-9. [PMID: 24056786 DOI: 10.1158/1078-0432.ccr-12-3588] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Oncolytic viruses (OV) based on herpes simplex virus type 1 (HSV1) are being used in clinical trials for a variety of cancers. The OV, rQNestin34.5, uses a nestin promoter/enhancer to selectively drive robust viral replication in malignant glioma cells. We have discovered that this promoter becomes extensively methylated in infected glioma cells, reducing OV efficacy. EXPERIMENTAL DESIGN We used demethylating drugs [5-azacytidine (5-Aza)], decitabine, or valproic acid (VPA) in both in vitro and in vivo malignant glioma models to determine if they improved the efficacy of rQNestin34.5 therapy. RESULTS The use of demethylating agents, such as 5-Aza, improved OV replication and tumor cell lysis in vitro and, in fact, synergized pharmacologically on Chou-Talalay analysis. In vivo, the combination of the demethylating agents, 5-Aza or decitabine, with rQNestin34.5 significantly prolonged the survivorship of athymic mice harboring intracranial human glioma xenografts over single agent alone. CONCLUSION These results, thus, provide further justification for the exploration of demethylating agents when combined with the OV, rQNestin34.5, in preclinical therapeutics and, possibly, clinical trials for malignant glioma.
Collapse
Affiliation(s)
- Kazuo Okemoto
- Authors' Affiliations: Dardinger Center for Neuro-oncology and Neurosciences, Department of Neurological Surgery, James Cancer Hospital/Solove Research Institute/Comprehensive Cancer Center and Wexner Medical Center; Center for Biostatistics, The Ohio State University, Columbus, Ohio; and Department of Neurosurgery Institute for the Neurosciences at the Brigham, Brigham and Women's/Faulkner Hospital and Center for Neuro-oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chan WM, Rahman MM, McFadden G. Oncolytic myxoma virus: the path to clinic. Vaccine 2013; 31:4252-8. [PMID: 23726825 PMCID: PMC3755036 DOI: 10.1016/j.vaccine.2013.05.056] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 05/13/2013] [Indexed: 12/12/2022]
Abstract
Many common neoplasms are still noncurative with current standards of cancer therapy. More therapeutic modalities need to be developed to significantly prolong the lives of patients and eventually cure a wider spectrum of cancers. Oncolytic virotherapy is one of the promising new additions to clinical cancer therapeutics. Successful oncolytic virotherapy in the clinic will be those strategies that best combine tumor cell oncolysis with enhanced immune responses against tumor antigens. The current candidate oncolytic viruses all share the common property that they are relatively nonpathogenic to humans, yet they have the ability to replicate selectively in human cancer cells and induce cancer regression by direct oncolysis and/or induction of improved anti-tumor immune responses. Many candidate oncolytic viruses are in various stages of clinical and preclinical development. One such preclinical candidate is myxoma virus (MYXV), a member of the Poxviridae family that, in its natural setting, exhibits a very restricted host range and is only pathogenic to European rabbits. Despite its narrow host range in nature, MYXV has been shown to productively infect various classes of human cancer cells. Several preclinical in vivo modeling studies have demonstrated that MYXV is an attractive and safe candidate oncolytic virus, and hence, MYXV is currently being developed as a potential therapeutic for several cancers, such as pancreatic cancer, glioblastoma, ovarian cancer, melanoma, and hematologic malignancies. This review highlights the preclinical cancer models that have shown the most promise for translation of MYXV into human clinical trials.
Collapse
Affiliation(s)
- Winnie M. Chan
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Masmudur M. Rahman
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Grant McFadden
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
29
|
Toxicology and Biodistribution Studies for MGH2.1, an Oncolytic Virus that Expresses Two Prodrug-activating Genes, in Combination with Prodrugs. MOLECULAR THERAPY. NUCLEIC ACIDS 2013; 2:e113. [PMID: 23922029 PMCID: PMC3759737 DOI: 10.1038/mtna.2013.38] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 06/01/2013] [Indexed: 01/06/2023]
Abstract
MGH2.1 is a herpes simplex virus type 1 (HSV1) oncolytic virus that expresses two prodrug-activating transgenes: the cyclophosphamide (CPA)-activating cytochrome P4502B1 (CYP2B1) and the CPT11-activating secreted human intestinal carboxylesterase (shiCE). Toxicology and biodistribution of MGH2.1 in the presence/absence of prodrugs was evaluated in mice. MGH2.1 ± prodrugs was cytotoxic to human glioma cells, but not to normal cells. Pharmacokinetically, intracranial MGH2.1 did not significantly alter the metabolism of intraperitoneally (i.p.) administered prodrugs in mouse plasma, brain, or liver. MGH2.1 did not induce an acute inflammatory reaction. MGH2.1 DNA was detected in brains of mice inoculated with 108 pfus for up to 60 days. However, only one animal showed evidence of viral gene expression at this time. Expression of virally encoded genes was restricted to brain. Intracranial inoculation of MGH2.1 did not induce lethality at 108 pfus in the absence of prodrugs and at 106 pfus in the presence of prodrugs. This study provides safety and toxicology data justifying a possible clinical trial of intratumoral injection of MGH2.1 with peripheral administration of CPA and/or CPT11 prodrugs in humans with malignant gliomas.
Collapse
|
30
|
Cancer targeting gene-viro-therapy for pancreatic cancer using oncolytic adenovirus ZD55-IL-24 in immune-competent mice. Mol Biol Rep 2013; 40:5397-405. [PMID: 23666064 DOI: 10.1007/s11033-013-2638-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 05/02/2013] [Indexed: 12/11/2022]
Abstract
Cancer targeting gene-viro-therapy (CTGVT) may prove to be an effective treatment for pancreatic cancer (PC). This study was intended to explore the anti-tumor effect of ZD55-IL-24 (oncolytic adenovirus ZD55 harboring IL-24) on PC in immune-competent mice. The expression of gene harbored by oncolytic adenovirus ZD55 in PC cells was detected by reporter-gene assays. The in vitro anti PC ability of ZD55-IL-24 was tested by MTT, crystal violet staining and apoptosis assays. The in vivo anti PC effect of ZD55-IL-24 was further observed in an immune-competent mice model by detecting anti-tumor immunity and induction of apoptosis. The expression of gene harbored by ZD55 in PC cells was significantly higher than that harbored by the replicated-deficient adenovirus, and the amount of gene expression was time-dependent and dose-dependent. Both ZD55-IL-24 and ZD55 inhibited PC cells growth, but the anti-tumor effect of ZD55-IL-24 was significantly stronger than that of ZD55, and the ability of ZD55-IL-24 in inducing PC apoptosis was significantly stronger than that of ZD55. The tumor-forming rate of group ZD55-IL-24 was the lowest, and the tumor-growing rate was also significantly lower than that of group ZD55 in immune-competent PC models. Moreover, ZD55-IL-24 mediated more anti-cancer immunity effects by induction of stronger T-lymphocytes response to PC cells, higher levels of γ-IFN and IL-6 cytokines. ZD55-IL-24-mediated CTGVT could inhibit PC growth not only by inducing oncolysis and apoptosis but enhancing the anti-cancer immune effects by inducing T cell response to PC and up-regulating γ-IFN and IL-6 cytokine in immune-competent mice. This may serve as a candidate therapeutic approach for the treatment of PC.
Collapse
|
31
|
Zemp FJ, Lun X, McKenzie BA, Zhou H, Maxwell L, Sun B, Kelly JJP, Stechishin O, Luchman A, Weiss S, Cairncross JG, Hamilton MG, Rabinovich BA, Rahman MM, Mohamed MR, Smallwood S, Senger DL, Bell J, McFadden G, Forsyth PA. Treating brain tumor-initiating cells using a combination of myxoma virus and rapamycin. Neuro Oncol 2013; 15:904-20. [PMID: 23585629 DOI: 10.1093/neuonc/not035] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Intratumoral heterogeneity in glioblastoma multiforme (GBM) poses a significant barrier to therapy in certain subpopulation such as the tumor-initiating cell population, being shown to be refractory to conventional therapies. Oncolytic virotherapy has the potential to target multiple compartments within the tumor and thus circumvent some of the barriers facing conventional therapies. In this study, we investigate the oncolytic potential of myxoma virus (MYXV) alone and in combination with rapamycin in vitro and in vivo using human brain tumor-initiating cells (BTICs). METHODS We cultured fresh GBM specimens as neurospheres and assayed their growth characteristics in vivo. We then tested the susceptibility of BTICs to MYXV infection with or without rapamycin in vitro and assessed viral biodistribution/survival in vivo in orthotopic xenografts. RESULTS The cultured neurospheres were found to retain stem cell markers in vivo, and they closely resembled human infiltrative GBM. In this study we determined that (i) all patient-derived BTICs tested, including those resistant to temozolomide, were susceptible to MYXV replication and killing in vitro; (ii) MYXV replicated within BTICs in vivo, and intratumoral administration of MYXV significantly prolonged survival of BTIC-bearing mice; (iii) combination therapy with MYXV and rapamycin improved antitumor activity, even in mice bearing "advanced" BTIC tumors; (iv) MYXV treatment decreased expression of stem cell markers in vitro and in vivo. CONCLUSIONS Our study suggests that MYXV in combination with rapamycin infects and kills both the BTICs and the differentiated compartments of GBM and may be an effective treatment even in TMZ-resistant patients.
Collapse
Affiliation(s)
- Franz J Zemp
- Department of Oncology, University of Calgary, Tom Baker Cancer Centre, Southern Alberta Cancer Research Institute, Calgary, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Current status of gene therapy for brain tumors. Transl Res 2013; 161:339-54. [PMID: 23246627 PMCID: PMC3733107 DOI: 10.1016/j.trsl.2012.11.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/14/2012] [Accepted: 11/16/2012] [Indexed: 01/06/2023]
Abstract
Glioblastoma (GBM) is the most common and deadliest primary brain tumor in adults, with current treatments having limited impact on disease progression. Therefore the development of alternative treatment options is greatly needed. Gene therapy is a treatment strategy that relies on the delivery of genetic material, usually transgenes or viruses, into cells for therapeutic purposes, and has been applied to GBM with increasing promise. We have included selectively replication-competent oncolytic viruses within this strategy, although the virus acts directly as a complex biologic anti-tumor agent rather than as a classic gene delivery vehicle. GBM is a good candidate for gene therapy because tumors remain locally within the brain and only rarely metastasize to other tissues; the majority of cells in the brain are post-mitotic, which allows for specific targeting of dividing tumor cells; and tumors can often be accessed neurosurgically for administration of therapy. Delivery vehicles used for brain tumors include nonreplicating viral vectors, normal adult stem/progenitor cells, and oncolytic viruses. The therapeutic transgenes or viruses are typically cytotoxic or express prodrug activating suicide genes to kill glioma cells, immunostimulatory to induce or amplify anti-tumor immune responses, and/or modify the tumor microenvironment such as blocking angiogenesis. This review describes current preclinical and clinical gene therapy strategies for the treatment of glioma.
Collapse
|
33
|
Viel T, Monfared P, Schelhaas S, Fricke IB, Kuhlmann MT, Fraefel C, Jacobs AH. Optimizing glioblastoma temozolomide chemotherapy employing lentiviral-based anti-MGMT shRNA technology. Mol Ther 2013; 21:570-9. [PMID: 23319055 DOI: 10.1038/mt.2012.278] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Despite treatments combining surgery, radiation-, and chemotherapy, patients affected by glioblastoma (GBM) have a limited prognosis. Addition of temozolomide (TMZ) to radiation therapy is the standard therapy in clinical application, but effectiveness of TMZ is limited by the tumor's overexpression of the DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT). The goal of this study was to use the highly specific and efficient RNA interference (RNAi) pathway to modulate MGMT expression to increase TMZ efficiency in chemotherapy resistant GBM. Using lentiviral-based anti-MGMT small hairpin RNA (shRNA) technology we observed a specific inhibition of the MGMT expression in GBM cell lines as well as in subcutaneous tumors. Tumor growth inhibition was observed following TMZ treatment of xenografts with low MGMT expression in contrast to xenografts with high MGMT expression. Bioluminescence imaging (BLI) measurements indicated that luciferase and shRNA-expressing lentiviruses were able to efficiently transduce the GBM xenografts in vivo. Treatment combining injection of a lentivirus expressing an anti-MGMT shRNA and TMZ induced a reduction of the size of the tumors, in contrast with treatment combining the lentivirus expressing the control shRNA and TMZ. Our data suggest that anti-MGMT shRNA therapy could be used in combination with TMZ chemotherapy in order to improve the treatment of resistant GBM.
Collapse
Affiliation(s)
- Thomas Viel
- Westfälische Wilhelms-Universität, Münster, Muenster, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
PEG-co-PCL nanoparticles modified with MMP-2/9 activatable low molecular weight protamine for enhanced targeted glioblastoma therapy. Biomaterials 2013; 34:196-208. [DOI: 10.1016/j.biomaterials.2012.09.044] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 09/20/2012] [Indexed: 12/25/2022]
|
35
|
A systematic review of microRNA in glioblastoma multiforme: micro-modulators in the mesenchymal mode of migration and invasion. Mol Neurobiol 2012; 47:131-44. [PMID: 23054677 PMCID: PMC3538124 DOI: 10.1007/s12035-012-8349-7] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 09/05/2012] [Indexed: 12/21/2022]
Abstract
Glioblastoma multiforme (GBM) is an incurable form of brain cancer with a very poor prognosis. Because of its highly invasive nature, it is impossible to remove all tumor cells during surgical resection, making relapse inevitable. Further research into the regulatory mechanism underpinning GBM pathogenesis is therefore warranted, and over the past decade, there has been an increased focus on the functional role of microRNA (miRNA). This systematic review aims to present a comprehensive overview of all the available literature on the expression profiles and function of miRNA in GBM. Here, we have reviewed 163 papers and identified 253 upregulated, 95 downregulated, and 17 disputed miRNAs with respect to expression levels; 85 % of these miRNAs have not yet been functionally characterized. A focus in this study has been 26 interesting miRNAs involved in the mesenchymal mode of migration and invasion, demonstrating the importance of miRNAs in the context of the cellular niche. Both oncogenic and tumor-suppressive miRNAs were found to affect target genes involved in cell migration, cytoskeletal rearrangement, invasiveness, and angiogenesis. Clearly, the distinct functional properties of these miRNAs need further investigation and might hold a great potential in future molecular therapies targeting GBM.
Collapse
|