1
|
Sacca V, Maleki N, Reddy S, Hodges S, Kong J. Assessing the Modulatory Effects of tDCS and Acupuncture on Cerebral Blood Flow in Chronic Low Back Pain Using Arterial Spin Labeling Perfusion Imaging. Brain Sci 2025; 15:261. [PMID: 40149782 PMCID: PMC11940449 DOI: 10.3390/brainsci15030261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/31/2025] [Accepted: 02/08/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Both transcranial direct current stimulation (tDCS) and acupuncture are promising methods for managing chronic low back pain (cLBP), however, their underlying mechanisms remain unclear. METHODS To explore the neural mechanisms of tDCS and acupuncture on cLBP, we examined how real and sham tDCS applied to the bilateral motor cortex (M1), combined with real or sham acupuncture, influenced cerebral blood flow (CBF) using pulsed continuous arterial spin labeling (pCASL) imaging. tDCS was administered over six sessions, combined with real or sham acupuncture, over one month. RESULTS Following real tDCS, we observed increased CBF in the bilateral occipital cortex, precuneus, left hippocampus, and parahippocampal gyrus/posterior cingulate cortex. After sham tDCS, CBF decreased in regions including the bilateral superior parietal lobule, precuneus, bilateral precentral and postcentral gyri, and left angular gyrus. Real acupuncture led to reduced CBF in the bilateral occipital cortex and hippocampus, and left posterior cingulate gyrus, and increased CBF in the right postcentral gyrus, superior parietal lobule, and frontal areas. Sham acupuncture was associated with decreased CBF in the bilateral hippocampus and anterior cingulate gyrus. CONCLUSIONS These results suggest both shared and distinct patterns of CBF changes between real and sham tDCS, as well as between real and sham acupuncture, reflecting mode-dependent effects on brain networks involved in pain processing and modulation. Our findings highlight the different neural circuits implicated in the therapeutic mechanisms of tDCS and acupuncture in the management of cLBP.
Collapse
Affiliation(s)
| | | | | | | | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA; (V.S.); (N.M.); (S.R.); (S.H.)
| |
Collapse
|
2
|
Soliman N, Kersebaum D, Lawn T, Sachau J, Sendel M, Vollert J. Improving neuropathic pain treatment - by rigorous stratification from bench to bedside. J Neurochem 2024; 168:3699-3714. [PMID: 36852505 DOI: 10.1111/jnc.15798] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/10/2023] [Accepted: 02/22/2023] [Indexed: 03/01/2023]
Abstract
Chronic pain is a constantly recurring and persistent illness, presenting a formidable healthcare challenge for patients and physicians alike. Current first-line analgesics offer only low-modest efficacy when averaged across populations, further contributing to this debilitating disease burden. Moreover, many recent trials for novel analgesics have not met primary efficacy endpoints, which is particularly striking considering the pharmacological advances have provided a range of highly relevant new drug targets. Heterogeneity within chronic pain cohorts is increasingly understood to play a critical role in these failures of treatment and drug discovery, with some patients deriving substantial benefits from a given intervention while it has little-to-no effect on others. As such, current treatment failures may not result from a true lack of efficacy, but rather a failure to target individuals whose pain is driven by mechanisms which it therapeutically modulates. This necessitates a move towards phenotypical stratification of patients to delineate responders and non-responders in a mechanistically driven manner. In this article, we outline a bench-to-bedside roadmap for this transition to mechanistically informed personalised pain medicine. We emphasise how the successful identification of novel analgesics is dependent on rigorous experimental design as well as the validity of models and translatability of outcome measures between the animal model and patients. Subsequently, we discuss general and specific aspects of human trial design to address heterogeneity in patient populations to increase the chance of identifying effective analgesics. Finally, we show how stratification approaches can be brought into clinical routine to the benefit of patients.
Collapse
Affiliation(s)
- Nadia Soliman
- Pain Research, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Dilara Kersebaum
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Timothy Lawn
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Juliane Sachau
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Manon Sendel
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Jan Vollert
- Pain Research, Department of Surgery and Cancer, Imperial College London, London, UK
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
- Neurophysiology, Mannheim Center of Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
3
|
Shamli Oghli Y, Ashok A, Glener S, Ailes I, Syed M, Kang KC, Naghizadehkashani S, Fayed I, Mohamed FB, Talekar K, Krisa L, Wu C, Matias C, Alizadeh M. Multimodal functional imaging and clinical correlates of pain regions in chronic low-back pain patients treated with spinal cord stimulation: a pilot study. FRONTIERS IN NEUROIMAGING 2024; 3:1474060. [PMID: 39399386 PMCID: PMC11470492 DOI: 10.3389/fnimg.2024.1474060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024]
Abstract
Objective Spinal cord stimulation (SCS) is an invasive treatment option for patients suffering from chronic low-back pain (cLBP). It is an effective treatment that has been shown to reduce pain and increase the quality of life in patients. However, the activation of pain processing regions of cLBP patients receiving SCS has not been assessed using objective, quantitative functional imaging techniques. The purpose of the present study was to compare quantitative resting-state (rs)-fMRI and arterial spin labeling (ASL) measures between SCS patients and healthy controls and to correlate clinical measures with quantitative multimodal imaging indices in pain regions. Methods Multi-delay 3D GRASE pseudo-continuous ASL and rs-fMRI data were acquired from five patients post-SCS with cLBP and five healthy controls. Three ASL measures and four rs-fMRI measures were derived and normalized into MNI space and smoothed. Averaged values for each measure from a pain atlas were extracted and compared between patients and controls. Clinical pain scores assessing intensity, sensitization, and catastrophizing, as well as others assessing global pain effects (sleep quality, disability, anxiety, and depression), were obtained in patients and correlated with pain regions using linear regression analysis. Results Arterial transit time derived from ASL and several rs-fMRI measures were significantly different in patients in regions involved with sensation (primary somatosensory cortex and ventral posterolateral thalamus [VPL]), pain input (posterior short gyrus of the insula [PS]), cognition (dorsolateral prefrontal cortex [DLPC] and posterior cingulate cortex [PCC]), and fear/stress response (hippocampus and hypothalamus). Unidimensional pain rating and sensitization scores were linearly associated with PS, VPL, DLPC, PCC, and/or amygdala activity in cLBP patients. Conclusion The present results provide evidence that ASL and rs-fMRI can contrast functional activation in pain regions of cLBP patients receiving SCS and healthy subjects, and they can be associated with clinical pain evaluations as quantitative assessment tools.
Collapse
Affiliation(s)
- Yazan Shamli Oghli
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Arjun Ashok
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Steven Glener
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Isaiah Ailes
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Mashaal Syed
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Ki Chang Kang
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Sara Naghizadehkashani
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Islam Fayed
- Department of Neurosurgery, Cooper University Health Care, Camden, PA, United States
| | - Feroze B. Mohamed
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Kiran Talekar
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Laura Krisa
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Occupational Therapy, Thomas Jefferson University, Philadelphia, PA, United States
| | - Chengyuan Wu
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Caio Matias
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Mahdi Alizadeh
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
4
|
Clarke S, Rogers R, Wanigasekera V, Fardo F, Pia H, Nochi Z, Macian N, Leray V, Finnerup NB, Pickering G, Mouraux A, Truini A, Treede RD, Garcia-Larrea L, Tracey I. Systematic review and co-ordinate based meta-analysis to summarize the utilization of functional brain imaging in conjunction with human models of peripheral and central sensitization. Eur J Pain 2024; 28:1069-1094. [PMID: 38381488 DOI: 10.1002/ejp.2251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/04/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND AND OBJECTIVE Functional magnetic resonance imaging, in conjunction with models of peripheral and/or central sensitization, has been used to assess analgesic efficacy in healthy humans. This review aims to summarize the use of these techniques to characterize brain mechanisms of hyperalgesia/allodynia and to evaluate the efficacy of analgesics. DATABASES AND DATA TREATMENT Searches were performed (PubMed-Medline, Cochrane, Web of Science and Clinicaltrials.gov) to identify and review studies. A co-ordinate based meta-analysis (CBMA) was conducted to quantify neural activity that was reported across multiple independent studies in the hyperalgesic condition compared to control, using GingerALE software. RESULTS Of 217 publications, 30 studies met the inclusion criteria. They studied nine different models of hyperalgesia/allodynia assessed in the primary (14) or secondary hyperalgesia zone (16). Twenty-three studies focused on neural correlates of hyperalgesic conditions and showed consistent changes in the somatosensory cortex, prefrontal cortices, insular cortex, anterior cingulate cortex, thalamus and brainstem. The CBMA on 12 studies that reported activation coordinates for a contrast comparing the hyperalgesic state to control produced six activation clusters (significant at false discovery rate of 0.05) with more peaks for secondary (17.7) than primary zones (7.3). Seven studies showed modulation of brain activity by analgesics in five of the clusters but also in four additional regions. CONCLUSIONS This meta-analysis revealed substantial but incomplete overlap between brain areas related to neural mechanisms of hyperalgesia and those reflecting the efficacy of analgesic drugs. Studies testing in the secondary zone were more sensitive to evaluate analgesic efficacy on central sensitization at brainstem or thalamocortical levels. SIGNIFICANCE Experimental pain models that provide a surrogate for features of pathological pain conditions in healthy humans and functional imaging techniques are both highly valuable research tools. This review shows that when used together, they provide a wealth of information about brain activity during pain states and analgesia. These tools are promising candidates to help bridge the gap between animal and human studies, to improve translatability and provide opportunities for identification of new targets for back-translation to animal studies.
Collapse
Affiliation(s)
- Sophie Clarke
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, Oxford, UK
| | - Richard Rogers
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, Oxford, UK
| | - Vishvarani Wanigasekera
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, Oxford, UK
| | - Francesca Fardo
- Department of Clinical Medicine, Danish Pain Research Center, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Hossein Pia
- Department of Clinical Medicine, Danish Pain Research Center, Aarhus University, Aarhus, Denmark
| | - Zahra Nochi
- Department of Clinical Medicine, Danish Pain Research Center, Aarhus University, Aarhus, Denmark
| | - Nicolas Macian
- Platform of Clinical Investigation, Inserm CIC 1405, University Hospital Clermont-Ferrand, Clermont-Ferrand, France
| | - Vincent Leray
- Platform of Clinical Investigation, Inserm CIC 1405, University Hospital Clermont-Ferrand, Clermont-Ferrand, France
| | - Nanna Brix Finnerup
- Department of Clinical Medicine, Danish Pain Research Center, Aarhus University, Aarhus, Denmark
| | - Gisèle Pickering
- Platform of Clinical Investigation, Inserm CIC 1405, University Hospital Clermont-Ferrand, Clermont-Ferrand, France
- Inserm 1107, University Clermont Auvergne, Clermont-Ferrand, France
| | - André Mouraux
- Institute of Neuroscience (IoNS), Université Catholique de Louvain (UCLouvain), Ottignies-Louvain-la-Neuve, Belgium
| | - Andrea Truini
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Rolf-Detlef Treede
- Department of Neurophysiology, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Luis Garcia-Larrea
- NeuroPain Lab, Lyon Centre for Neuroscience Inserm U1028 and University Claude Bernard, Lyon, France
- Pain Center Neurological Hospital (CETD), Hospices Civils de Lyon, Lyon, France
| | - Irene Tracey
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Pandey S, Jain N, Singh A, Paliwal VK, Kumar S. MRI Evaluation of Microstructural and Perfusion Changes in Patients with Hemsensory Neurological Syndromes. Neurol India 2024; 72:553-560. [PMID: 39041972 DOI: 10.4103/neuroindia.ni_1050_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 05/28/2021] [Indexed: 07/24/2024]
Abstract
BACKGROUND Hemisensory syndrome is characterized by a nondermatomal sensory deficit involving one half of the body. With the conventional imaging techniques, researches find low diagnostic yield in this condition; however, with the advancements in MRI imaging, there is hope to find the pathophysiological basis of hemisensory symptoms. OBJECTIVE To evaluate microstructural and perfusion changes in brain parenchyma in patients with hemisensory syndrome on MRI with diffusion tensor imaging (DTI) and arterial spin labeling (ASL). MATERIAL AND METHODS A total of 20 patients with hemisensory symptoms and 10 age-matched controls were enrolled and divided in two study groups - a) case vs. control and b) affected vs. nonaffected cerebral hemisphere in cases. Quantification of absolute cerebral blood flow (aCBF), fractional anisotropy (FA), and mean diffusivity (MD) was done in both groups. RESULTS On ASL, there was significantly increased aCBF in thalamus on the contralateral-affected side. DTI revealed significantly decreased FA in the thalamus and increased FA in corona radiata of the affected side. There was a significant difference for MD of corona radiata between affected and nonaffected hemisphere. The mean value of MD in corona radiata is decreased on the affected side. CONCLUSION Changes in advanced neuroimaging techniques like ASL and DTI along the pain processing pathway suggest an alteration in neuronal density and activity at the microstructural level. These findings may provide an insight into the etiopathogenesis of pain syndromes.
Collapse
Affiliation(s)
- Saurabh Pandey
- Department of Radiodiagnosis, SGPGIMS, Lucknow, Uttar Pradesh, India
| | - Neeraj Jain
- Department of Radiodiagnosis, SGPGIMS, Lucknow, Uttar Pradesh, India
| | - Anuradha Singh
- Department of Radiodiagnosis, SGPGIMS, Lucknow, Uttar Pradesh, India
| | | | - Sunil Kumar
- Department of Radiodiagnosis, SGPGIMS, Lucknow, Uttar Pradesh, India
| |
Collapse
|
6
|
Hranilovich JA, Legget KT, Dodd KC, Wylie KP, Tregellas JR. Functional magnetic resonance imaging of headache: Issues, best-practices, and new directions, a narrative review. Headache 2023; 63:309-321. [PMID: 36942411 PMCID: PMC10089616 DOI: 10.1111/head.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/26/2022] [Accepted: 01/20/2023] [Indexed: 03/23/2023]
Abstract
OBJECTIVE To ensure readers are informed consumers of functional magnetic resonance imaging (fMRI) research in headache, to outline ongoing challenges in this area of research, and to describe potential considerations when asked to collaborate on fMRI research in headache, as well as to suggest future directions for improvement in the field. BACKGROUND Functional MRI has played a key role in understanding headache pathophysiology, and mapping networks involved with headache-related brain activity have the potential to identify intervention targets. Some investigators have also begun to explore its use for diagnosis. METHODS/RESULTS The manuscript is a narrative review of the current best practices in fMRI in headache research, including guidelines on transparency and reproducibility. It also contains an outline of the fundamentals of MRI theory, task-related study design, resting-state functional connectivity, relevant statistics and power analysis, image preprocessing, and other considerations essential to the field. CONCLUSION Best practices to increase reproducibility include methods transparency, eliminating error, using a priori hypotheses and power calculations, using standardized instruments and diagnostic criteria, and developing large-scale, publicly available datasets.
Collapse
Affiliation(s)
- Jennifer A Hranilovich
- Division of Child Neurology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kristina T Legget
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, Colorado, USA
- Research Service, Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
| | - Keith C Dodd
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Korey P Wylie
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jason R Tregellas
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, Colorado, USA
- Research Service, Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
| |
Collapse
|
7
|
Moyaert P, Padrela BE, Morgan CA, Petr J, Versijpt J, Barkhof F, Jurkiewicz MT, Shao X, Oyeniran O, Manson T, Wang DJJ, Günther M, Achten E, Mutsaerts HJMM, Anazodo UC. Imaging blood-brain barrier dysfunction: A state-of-the-art review from a clinical perspective. Front Aging Neurosci 2023; 15:1132077. [PMID: 37139088 PMCID: PMC10150073 DOI: 10.3389/fnagi.2023.1132077] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/15/2023] [Indexed: 05/05/2023] Open
Abstract
The blood-brain barrier (BBB) consists of specialized cells that tightly regulate the in- and outflow of molecules from the blood to brain parenchyma, protecting the brain's microenvironment. If one of the BBB components starts to fail, its dysfunction can lead to a cascade of neuroinflammatory events leading to neuronal dysfunction and degeneration. Preliminary imaging findings suggest that BBB dysfunction could serve as an early diagnostic and prognostic biomarker for a number of neurological diseases. This review aims to provide clinicians with an overview of the emerging field of BBB imaging in humans by answering three key questions: (1. Disease) In which diseases could BBB imaging be useful? (2. Device) What are currently available imaging methods for evaluating BBB integrity? And (3. Distribution) what is the potential of BBB imaging in different environments, particularly in resource limited settings? We conclude that further advances are needed, such as the validation, standardization and implementation of readily available, low-cost and non-contrast BBB imaging techniques, for BBB imaging to be a useful clinical biomarker in both resource-limited and well-resourced settings.
Collapse
Affiliation(s)
- Paulien Moyaert
- Department of Medical Imaging, Ghent University Hospital, Ghent, Belgium
- Lawson Health Research Institute, London, ON, Canada
- Department of Neurology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- *Correspondence: Paulien Moyaert,
| | - Beatriz E. Padrela
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands
| | - Catherine A. Morgan
- School of Psychology and Centre for Brain Research, The University of Auckland, Auckland, New Zealand
- Centre for Advanced MRI, Auckland UniServices Limited, Auckland, New Zealand
| | - Jan Petr
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Jan Versijpt
- Department of Neurology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London, United Kingdom
| | | | - Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Olujide Oyeniran
- Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
| | - Tabitha Manson
- Centre for Advanced MRI, Auckland UniServices Limited, Auckland, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Danny J. J. Wang
- Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Matthias Günther
- Fraunhofer Institute for Digital Medicine, University of Bremen, Bremen, Germany
| | - Eric Achten
- Department of Medical Imaging, Ghent University Hospital, Ghent, Belgium
| | - Henk J. M. M. Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands
| | - Udunna C. Anazodo
- Lawson Health Research Institute, London, ON, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
8
|
Vamvakas A, Lawn T, Veronese M, Williams SCR, Tsougos I, Howard MA. Neurotransmitter receptor densities are associated with changes in regional Cerebral blood flow during clinical ongoing pain. Hum Brain Mapp 2022; 43:5235-5249. [PMID: 35796178 PMCID: PMC9812236 DOI: 10.1002/hbm.25999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/07/2022] [Accepted: 06/19/2022] [Indexed: 01/15/2023] Open
Abstract
Arterial spin labelling (ASL) plays an increasingly important role in neuroimaging pain research but does not provide molecular insights regarding how regional cerebral blood flow (rCBF) relates to underlying neurotransmission. Here, we integrate ASL with positron emission tomography (PET) and brain transcriptome data to investigate the molecular substrates of rCBF underlying clinically relevant pain states. Two data sets, representing acute and chronic ongoing pain respectively, were utilised to quantify changes in rCBF; one examining pre-surgical versus post-surgical pain, and the second comparing patients with painful hand Osteoarthritis to a group of matched controls. We implemented a whole-brain spatial correlation analysis to explore associations between change in rCBF (ΔCBF) and neurotransmitter receptor distributions derived from normative PET templates. Additionally, we utilised transcriptomic data from the Allen Brain Atlas to inform distributions of receptor expression. Both datasets presented significant correlations of ΔCBF with the μ-opioid and dopamine-D2 receptor expressions, which play fundamental roles in brain activity associated with pain experiences. ΔCBF also correlated with the gene expression distributions of several receptors involved in pain processing. Overall, this is the first study illustrating the molecular basis of ongoing pain ASL indices and emphasises the potential of rCBF as a biomarker in pain research.
Collapse
Affiliation(s)
- Alexandros Vamvakas
- Medical Physics Department, Medical SchoolUniversity of ThessalyLarisaGreece
- Department of Neuroimaging, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Timothy Lawn
- Department of Neuroimaging, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Steven C. R. Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Ioannis Tsougos
- Medical Physics Department, Medical SchoolUniversity of ThessalyLarisaGreece
- Department of Neuroimaging, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Matthew A. Howard
- Department of Neuroimaging, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| |
Collapse
|
9
|
Medina S, O’Daly OG, Howard MA, Feliu-Soler A, Luciano JV. Differential Brain Perfusion Changes Following Two Mind–Body Interventions for Fibromyalgia Patients: an Arterial Spin Labelling fMRI Study. Mindfulness (N Y) 2022; 13:449-461. [PMID: 35222735 PMCID: PMC8831296 DOI: 10.1007/s12671-021-01806-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/04/2021] [Indexed: 12/20/2022]
Abstract
Objectives Further mechanistic insight on mind–body techniques for fibromyalgia (FMS) is needed. Arterial spin labelling (ASL) imaging can capture changes in regional cerebral blood flow (rCBF) that relate to spontaneous pain. Methods We recruited FMS patients undergoing either mindfulness-based stress reduction training (MBSR, n = 14) or a psychoeducational programme (FibroQoL, n = 18), and a control FMS group with no add-on treatment (n = 14). We acquired whole-brain rCBF maps and self-report measures at baseline and following treatment and explored interaction effects in brain perfusion between the treatment group and session with a focus on the amygdala, the insula and the anterior cingulate cortex (ACC). Results We identified a significant interaction effect in the amygdala, which corresponded with rCBF decreases following FibroQoL specifically. At baseline, rCBF in the amygdala for the FibroQoL group correlated with pain catastrophizing and anxiety scores, but not after treatment, suggesting a decoupling between activity in the amygdala and negative emotional symptoms of FMS as a consequence of treatment. Baseline rCBF correlated positively with pain symptoms in the ACC and the anterior insula across all patients; moreover, the correlation between rCBF changes post intervention in the insula and pain improvement was negative for both treatments and significantly different from the control group. We suggest that there is disruption of the typical relationship between clinical pain and activity as a product of these two nonpharmacological therapies. Conclusions We have demonstrated that different mind-to-body treatments correspond to differential changes in clinical symptoms and brain activity patterns, which encourages future research investigating predictors of treatment response. Trial Registration NCT02561416. Supplementary Information The online version contains supplementary material available at 10.1007/s12671-021-01806-2.
Collapse
Affiliation(s)
- Sonia Medina
- Department of Neuroimaging, King’s College London, London, UK
| | - Owen G. O’Daly
- Department of Neuroimaging, King’s College London, London, UK
| | | | - Albert Feliu-Soler
- Department of Clinical & Health Psychology, Autonomous University of Barcelona, Bellaterra, Spain
| | - Juan V. Luciano
- Department of Clinical & Health Psychology, Autonomous University of Barcelona, Bellaterra, Spain
- Research & Innovation Unit, Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Spain
| |
Collapse
|
10
|
Cardinale V, Demirakca T, Gradinger T, Sack M, Ruf M, Kleindienst N, Schmitz M, Schmahl C, Baumgärtner U, Ende G. Cerebral processing of sharp mechanical pain measured with arterial spin labeling. Brain Behav 2022; 12:e2442. [PMID: 34878219 PMCID: PMC8785639 DOI: 10.1002/brb3.2442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Arterial spin labeling (ASL) is a functional neuroimaging technique that has been frequently used to investigate acute pain states. A major advantage of ASL as opposed to blood-oxygen-level-dependent functional neuroimaging is its applicability for low-frequency designs. As such, ASL represents an interesting option for studies in which repeating an experimental event would reduce its ecological validity. Whereas most ASL pain studies so far have used thermal stimuli, to our knowledge, no ASL study so far has investigated pain responses to sharp mechanical pain. METHODS As a proof of concept, we investigated whether ASL has the sensitivity to detect brain activation within core areas of the nociceptive network in healthy controls following a single stimulation block based on 96 s of mechanical painful stimulation using a blunt blade. RESULTS We found significant increases in perfusion across many regions of the nociceptive network such as primary and secondary somatosensory cortices, premotor cortex, posterior insula, inferior parietal cortex, parietal operculum, temporal gyrus, temporo-occipital lobe, putamen, and the cerebellum. Contrary to our hypothesis, we did not find any significant increase within ACC, thalamus, or PFC. Moreover, we were able to detect a significant positive correlation between pain intensity ratings and pain-induced perfusion increase in the posterior insula. CONCLUSION We demonstrate that ASL is suited to investigate acute pain in a single event paradigm, although to detect activation within some regions of the nociceptive network, the sensitivity of our paradigm seemed to be limited. Regarding the posterior insula, our paradigm was sensitive enough to detect a correlation between pain intensity ratings and pain-induced perfusion increase. Previous experimental pain studies have proposed that intensity coding in this region may be restricted to thermal stimulation. Our result demonstrates that the posterior insula encodes intensity information for mechanical stimuli as well.
Collapse
Affiliation(s)
- Vita Cardinale
- Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Traute Demirakca
- Department of Neuroimaging and Core Facility ZIPP, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tobias Gradinger
- Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Markus Sack
- Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias Ruf
- Department of Neuroimaging and Core Facility ZIPP, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nikolaus Kleindienst
- Institute of Psychiatric and Psychosomatic Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marius Schmitz
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| | - Christian Schmahl
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ulf Baumgärtner
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience (MTCN), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Institute of Cognitive and Affective Neuroscience (ICAN), Medical School Hamburg, Hamburg, Germany
| | - Gabriele Ende
- Department of Neuroimaging and Core Facility ZIPP, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
11
|
Medina S, Bakar NA, O'Daly O, Miller S, Makovac E, Renton T, Williams SCR, Matharu M, Howard MA. Regional cerebral blood flow as predictor of response to occipital nerve block in cluster headache. J Headache Pain 2021; 22:91. [PMID: 34384347 PMCID: PMC8359299 DOI: 10.1186/s10194-021-01304-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/30/2021] [Indexed: 01/03/2023] Open
Abstract
Background Cluster headache is an excruciating disorder with no cure. Greater occipital nerve blockades can transiently suppress attacks in approximately 50% of patients, however, its mechanism of action remains uncertain, and there are no reliable predictors of treatment response. To address this, we investigated the effect of occipital nerve blockade on regional cerebral blood flow (rCBF), an index of brain activity, and differences between treatment responders and non-responders. Finally, we compared baseline perfusion maps from patients to a matched group of healthy controls. Methods 21 male, treatment-naive patients were recruited while in a cluster headache bout. During a pain-free phase between headaches, patients underwent pseudo-continuous arterial spin labelled MRI assessments to provide quantitative indices of rCBF. MRIs were performed prior to and 7-to-21 days following treatment. Patients also recorded the frequency of their headache attacks in a daily paper diary. Neuropsychological assessment including anxiety, depression and quality of life measures was performed in a first, scanning free session for each patient. Results Following treatment, patients demonstrated relative rCBF reductions in posterior temporal gyrus, cerebellum and caudate, and rCBF increases in occipital cortex. Responders demonstrated relative rCBF increases, compared to non-responders, in medial prefrontal cortex and lateral occipital cortex at baseline, but relative reductions in cingulate and middle temporal cortices. rCBF was increased in patients compared to healthy controls in cerebellum and hippocampus, but reduced in orbitofrontal cortex, insula and middle temporal gyrus. Conclusions We provide new mechanistic insights regarding the aetiology of cluster headache, the mechanisms of action of occipital nerve blockades and potential predictors of treatment response. Future investigation should determine whether observed effects are reproducible and extend to other headache disorders.
Collapse
Affiliation(s)
- Sonia Medina
- Department of Neuroimaging, King's College London, Institute of Psychiatry, Psychology and Neuroscience, Box 89, De Crespigny Park, London, SE5 8AF, UK. .,Wolfson Centre for Age-Related Diseases, King's College London, London, UK.
| | | | - Owen O'Daly
- Department of Neuroimaging, King's College London, Institute of Psychiatry, Psychology and Neuroscience, Box 89, De Crespigny Park, London, SE5 8AF, UK
| | - Sarah Miller
- Headache and Facial Pain Group, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Elena Makovac
- Department of Neuroimaging, King's College London, Institute of Psychiatry, Psychology and Neuroscience, Box 89, De Crespigny Park, London, SE5 8AF, UK.,Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Tara Renton
- Department of Oral Surgery, King's College London, London, UK
| | - Steve C R Williams
- Department of Neuroimaging, King's College London, Institute of Psychiatry, Psychology and Neuroscience, Box 89, De Crespigny Park, London, SE5 8AF, UK
| | - Manjit Matharu
- Headache and Facial Pain Group, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Matthew A Howard
- Department of Neuroimaging, King's College London, Institute of Psychiatry, Psychology and Neuroscience, Box 89, De Crespigny Park, London, SE5 8AF, UK
| |
Collapse
|
12
|
Müller M, Wüthrich F, Federspiel A, Wiest R, Egloff N, Reichenbach S, Exadaktylos A, Jüni P, Curatolo M, Walther S. Altered central pain processing in fibromyalgia-A multimodal neuroimaging case-control study using arterial spin labelling. PLoS One 2021; 16:e0235879. [PMID: 33529254 PMCID: PMC7853499 DOI: 10.1371/journal.pone.0235879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 01/19/2021] [Indexed: 01/12/2023] Open
Abstract
Fibromyalgia is characterized by chronic pain and a striking discrepancy between objective signs of tissue damage and severity of pain. Function and structural alterations in brain areas involved in pain processing may explain this feature. Previous case-control studies in fibromyalgia focused on acute pain processing using experimentally-evoked pain paradigms. Yet, these studies do not allow conclusions about chronic, stimulus-independent pain. Resting-state cerebral blood flow (rsCBF) acquired by arterial spin labelling (ASL) may be a more accurate marker for chronic pain. The objective was to integrate four different functional and structural neuroimaging markers to evaluate the neural correlate of chronic, stimulus-independent pain using a resting-state paradigm. In line with the pathophysiological concept of enhanced central pain processing we hypothesized that rsCBF is increased in fibromyalgia in areas involved in processing of acute pain. We performed an age matched case-control study of 32 female fibromyalgia patients and 32 pain-free controls and calculated group differences in rsCBF, resting state functional connectivity, grey matter volume and cortical thickness using whole-brain and region of interest analyses. We adjusted all analyses for depression and anxiety. As centrally acting drugs are likely to interfere with neuroimaging markers, we performed a subgroup analysis limited to patients not taking such drugs. We found no differences between cases and controls in rsCBF of the thalamus, the basal ganglia, the insula, the somatosensory cortex, the prefrontal cortex, the anterior cingulum and supplementary motor area as brain areas previously identified to be involved in acute processing in fibromyalgia. The results remained robust across all neuroimaging markers and when limiting the study population to patients not taking centrally acting drugs and matched controls. In conclusion, we found no evidence for functional or structural alterations in brain areas involved in acute pain processing in fibromyalgia that could reflect neural correlates of chronic stimulus-independent pain.
Collapse
Affiliation(s)
- Monika Müller
- University Clinic of Anesthesiology and Pain Medicine, Inselspital, Bern, Switzerland
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland
| | - Florian Wüthrich
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland
| | - Roland Wiest
- Department of Neuroradiology, University Clinic of Radiology, Inselspital, Bern, Switzerland
| | - Niklaus Egloff
- Department of Psychosomatic Medicine, University Clinic of Internal Medicine, Inselspital, Bern, Switzerland
| | - Stephan Reichenbach
- University Clinic of Rheumatology, Clinical Immunology and Allergology, Inselspital, Bern, Switzerland
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | | | - Peter Jüni
- Applied Health Research Centre (AHRC), Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Department of Medicine, University of Toronto, Toronto, Canada
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Canada
| | - Michele Curatolo
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, United States of America
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland
| |
Collapse
|
13
|
Bambach S, Smith M, Morris PP, Campeau NG, Ho ML. Arterial Spin Labeling Applications in Pediatric and Adult Neurologic Disorders. J Magn Reson Imaging 2020; 55:698-719. [PMID: 33314349 DOI: 10.1002/jmri.27438] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
Arterial spin labeling (ASL) is a powerful noncontrast magnetic resonance imaging (MRI) technique that enables quantitative evaluation of brain perfusion. To optimize the clinical and research utilization of ASL, radiologists and physicists must understand the technical considerations and age-related variations in normal and disease states. We discuss advanced applications of ASL across the lifespan, with example cases from children and adults covering a wide variety of pathologies. Through literature review and illustrated clinical cases, we highlight the subtleties as well as pitfalls of ASL interpretation. First, we review basic physical principles, techniques, and artifacts. This is followed by a discussion of normal perfusion variants based on age and physiology. The three major categories of perfusion abnormalities-hypoperfusion, hyperperfusion, and mixed patterns-are covered with an emphasis on clinical interpretation and relationship to the disease process. Major etiologies of hypoperfusion include large artery, small artery, and venous disease; other vascular conditions; global hypoxic-ischemic injury; and neurodegeneration. Hyperperfusion is characteristic of vascular malformations and tumors. Mixed perfusion patterns can be seen with epilepsy, migraine, trauma, infection/inflammation, and toxic-metabolic encephalopathy. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY STAGE: 3.
Collapse
Affiliation(s)
- Sven Bambach
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Mark Smith
- Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - P Pearse Morris
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Mai-Lan Ho
- Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|
14
|
Davis KD. Introduction to a Special Issue on Innovations and Controversies in Brain Imaging of Pain: Methods and Interpretations. Pain Rep 2019; 4:e771. [PMID: 31579862 PMCID: PMC6728002 DOI: 10.1097/pr9.0000000000000771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 11/27/2022] Open
Abstract
This special issue comprised 14 articles from leaders in the field, that provide opinions and reviews of concepts that are central to the next generation of pain imaging studies. Topics include cutting-edge technologies and approaches that are at the forefront of such studies, as well as developments toward biomarkers of pain and clinical applications that bring us closer to harnessing understanding of pains and its modulation to offer better options to those suffering from pain.
Collapse
Affiliation(s)
- Karen D. Davis
- Department of Surgery, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| |
Collapse
|
15
|
Tracey I, Woolf CJ, Andrews NA. Composite Pain Biomarker Signatures for Objective Assessment and Effective Treatment. Neuron 2019; 101:783-800. [PMID: 30844399 PMCID: PMC6800055 DOI: 10.1016/j.neuron.2019.02.019] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/05/2019] [Accepted: 02/13/2019] [Indexed: 02/09/2023]
Abstract
Pain is a subjective sensory experience that can, mostly, be reported but cannot be directly measured or quantified. Nevertheless, a suite of biomarkers related to mechanisms, neural activity, and susceptibility offer the possibility-especially when used in combination-to produce objective pain-related indicators with the specificity and sensitivity required for diagnosis and for evaluation of risk of developing pain and of analgesic efficacy. Such composite biomarkers will also provide improved understanding of pain pathophysiology.
Collapse
Affiliation(s)
- Irene Tracey
- Nuffield Department of Clinical Neurosciences, University of Oxford, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| | - Clifford J Woolf
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, 02115 MA, USA.
| | - Nick A Andrews
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, 02115 MA, USA
| |
Collapse
|