1
|
Aili Y, Wei P, Yu X, Fan G, Maimaitiaili N, Li Y, Liu S, Huang Y, Zhao B, Wang Z, Qin H, Wang Y. Janus adhesive bio-patches with targeted drug delivery enabled anti-bacteria and pro-angiogenesis for dura mater repair. Mater Today Bio 2025; 31:101484. [PMID: 39925716 PMCID: PMC11804716 DOI: 10.1016/j.mtbio.2025.101484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/18/2024] [Accepted: 01/11/2025] [Indexed: 02/11/2025] Open
Abstract
Dural injuries often result in severe complications such as cerebrospinal fluid (CSF) leakage, intracranial infections, and brain herniation, which significantly impact patient recovery and quality of life. Conventional dural repair materials, which rely on suturing to peripheral tissues, fail to promote tissue regeneration and provide sufficient CSF leakage prevention, leading to suboptimal outcomes. To address these limitations, we developed a Janus adhesive bio-patch with both antibacterial and pro-angiogenic properties to enhance dura mater repair. This bio-patch consisted of a polyacrylic acid (PAA) adhesive gel layer loaded with vancomycin and magnesium carbonate (MgCO3), integrated onto a small intestinal submucosa (SIS) extracellular matrix. It exhibited a burst strength of 20.50±2.89kPa, effectively sealing CSF leaks, while demonstrating excellent antibacterial efficacy (∼99%) and significant enhanced angiogenesis (3.47-fold higher than the control). In rat, rabbit, and dog dural injury models, the bio-patch adhered seamlessly to the injury site, successfully preventing leaks and promoting tissue regeneration. These results highlighted the Janus adhesive bio-patch as a promising solution for improving dural repair in neurosurgery, offering a safer and more effective alternative to conventional suturing techniques.
Collapse
Affiliation(s)
- Yirizhati Aili
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, No.393 Xinyi Road, Urumqi, Xinjiang, 830054, China
- Key Laboratory of Precision Diagnosis and Clinical Transformation of Nervous System Tumors, Xinjiang Medical University, No.393 Xinyi Road, Urumqi, Xinjiang, 830054, China
| | - Pengfei Wei
- Beijing Biosis Healing Biological Technology Co., Ltd, No.29 Yongda Road, Beijing, 102600, China
| | - Xueqiao Yu
- Beijing Biosis Healing Biological Technology Co., Ltd, No.29 Yongda Road, Beijing, 102600, China
| | - Guofeng Fan
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, No.393 Xinyi Road, Urumqi, Xinjiang, 830054, China
| | - Nuerailijiang Maimaitiaili
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, No.393 Xinyi Road, Urumqi, Xinjiang, 830054, China
| | - Yunhuan Li
- Beijing Biosis Healing Biological Technology Co., Ltd, No.29 Yongda Road, Beijing, 102600, China
| | - Siqi Liu
- Beijing Biosis Healing Biological Technology Co., Ltd, No.29 Yongda Road, Beijing, 102600, China
| | - Yiqian Huang
- Beijing Biosis Healing Biological Technology Co., Ltd, No.29 Yongda Road, Beijing, 102600, China
| | - Bo Zhao
- Beijing Biosis Healing Biological Technology Co., Ltd, No.29 Yongda Road, Beijing, 102600, China
| | - Zengliang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, No.393 Xinyi Road, Urumqi, Xinjiang, 830054, China
- Key Laboratory of Precision Diagnosis and Clinical Transformation of Nervous System Tumors, Xinjiang Medical University, No.393 Xinyi Road, Urumqi, Xinjiang, 830054, China
| | - Hu Qin
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, No.393 Xinyi Road, Urumqi, Xinjiang, 830054, China
| | - Yongxin Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, No.393 Xinyi Road, Urumqi, Xinjiang, 830054, China
- Key Laboratory of Precision Diagnosis and Clinical Transformation of Nervous System Tumors, Xinjiang Medical University, No.393 Xinyi Road, Urumqi, Xinjiang, 830054, China
| |
Collapse
|
2
|
Wang L, Wei X, He X, Xiao S, Shi Q, Chen P, Lee J, Guo X, Liu H, Fan Y. Osteoinductive Dental Pulp Stem Cell-Derived Extracellular Vesicle-Loaded Multifunctional Hydrogel for Bone Regeneration. ACS NANO 2024; 18:8777-8797. [PMID: 38488479 DOI: 10.1021/acsnano.3c11542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Stem cell-derived extracellular vesicles (EVs) show great potential for promoting bone tissue regeneration. However, normal EVs (Nor-EVs) have a limited ability to direct tissue-specific regeneration. Therefore, it is necessary to optimize the osteogenic capacity of EV-based systems for repairing extensive bone defects. Herein, we show that hydrogels loaded with osteoinductive dental pulp stem cell-derived EVs (Ost-EVs) enhanced bone tissue remodeling, resulting in a 2.23 ± 0.25-fold increase in the expression of bone morphogenetic protein 2 (BMP2) compared to the hydrogel control group. Moreover, Ost-EVs led to a higher expression of alkaline phosphatase (ALP) (1.88 ± 0.16 of Ost-EVs relative to Nor-EVs) and the formation of orange-red calcium nodules (1.38 ± 0.10 of Ost-EVs relative to Nor-EVs) in vitro. RNA sequencing revealed that Ost-EVs showed significantly high miR-1246 expression. An ideal hydrogel implant should also adhere to surrounding moist tissues. In this study, we were drawn to mussel-inspired adhesive modification, where the hydrogel carrier was crafted from hyaluronic acid (HA) and polyethylene glycol derivatives, showcasing impressive tissue adhesion, self-healing capabilities, and the ability to promote bone growth. The modified HA (mHA) hydrogel was also responsive to environmental stimuli, making it an effective carrier for delivering EVs. In an ectopic osteogenesis animal model, the Ost-EV/hydrogel system effectively alleviated inflammation, accelerated revascularization, and promoted tissue mineralization. We further used a rat femoral condyle defect model to evaluate the in situ osteogenic ability of the Ost-EVs/hydrogel system. Collectively, our results suggest that Ost-EVs combined with biomaterial-based hydrogels hold promising potential for treating bone defects.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P.R. China
| | - Xinbo Wei
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P.R. China
| | - Xi He
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P.R. China
| | - Shengzhao Xiao
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P.R. China
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Qiusheng Shi
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P.R. China
| | - Peng Chen
- Department of Ultrasound, The Third Medical Center, Chinese PLA General Hospital, Beijing 100039, P.R. China
| | - Jesse Lee
- Arova Biosciences, Inc., Life Sciences Innovation Hub, Calgary Alberta T2L 1Y8, Canada
| | - Ximin Guo
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences, Beijing 100850, P.R. China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P.R. China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P.R. China
| |
Collapse
|
3
|
Alruwaili MK, Sugaya T, Morimoto Y, Nakanishi K, Akasaka T, Yoshida Y. Can a low dosage of recombinant human bone morphogenetic protein-2 loaded on collagen sponge induce ectopic bone? Dent Mater J 2023. [PMID: 37032102 DOI: 10.4012/dmj.2022-229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Recombinant human bone morphogenetic protein-2 (rhBMP-2) is one of the growth factors that may induce the formation of new bone. The aim was to determine the efficacy of low doses of rhBMP-2 for bone regeneration using a collagen sponge as a carrier. Three doses of rhBMP-2 (1.167, 0.117, and 0.039 mg/mL) were combined with an absorbable collagen sponge (ACS) as a delivery vehicle. The rhBMP-2/ACS implants were placed in the subcutaneous tissues of rat backs. X-ray microcomputed tomography (micro-CT) and histological analysis were used to evaluate bone formation. The samples treated with 1.167 mg/mL of rhBMP-2 showed greater bone formation than the samples treated with 0.117 mg/mL of rhBMP-2 four weeks after surgery. However, there was no evidence of bone formation in the samples that were treated with 0.039 mg/mL of rhBMP-2. It was found that rhBMP-2 was osteogenic even at one-tenth of its manufacturer's recommended concentration (1.167 mg/mL), indicating its potential for clinical use at lower concentrations.
Collapse
Affiliation(s)
- Mohammed Katib Alruwaili
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University
- Department of Preventive Dentistry, College of Dentistry, Jouf University
| | - Tsutomu Sugaya
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University
| | - Yasuhito Morimoto
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University
- Department of Developmental Biology of Hard Tissue, Faculty of Dental Medicine, Hokkaido University
| | - Ko Nakanishi
- Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University
| | - Tsukasa Akasaka
- Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University
| | - Yasuhiro Yoshida
- Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University
| |
Collapse
|
4
|
Murugan NJ, Vigran HJ, Miller KA, Golding A, Pham QL, Sperry MM, Rasmussen-Ivey C, Kane AW, Kaplan DL, Levin M. Acute multidrug delivery via a wearable bioreactor facilitates long-term limb regeneration and functional recovery in adult Xenopus laevis. SCIENCE ADVANCES 2022; 8:eabj2164. [PMID: 35080969 PMCID: PMC8791464 DOI: 10.1126/sciadv.abj2164] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Limb regeneration is a frontier in biomedical science. Identifying triggers of innate morphogenetic responses in vivo to induce the growth of healthy patterned tissue would address the needs of millions of patients, from diabetics to victims of trauma. Organisms such as Xenopus laevis-whose limited regenerative capacities in adulthood mirror those of humans-are important models with which to test interventions that can restore form and function. Here, we demonstrate long-term (18 months) regrowth, marked tissue repatterning, and functional restoration of an amputated X. laevis hindlimb following a 24-hour exposure to a multidrug, pro-regenerative treatment delivered by a wearable bioreactor. Regenerated tissues composed of skin, bone, vasculature, and nerves significantly exceeded the complexity and sensorimotor capacities of untreated and control animals' hypomorphic spikes. RNA sequencing of early tissue buds revealed activation of developmental pathways such as Wnt/β-catenin, TGF-β, hedgehog, and Notch. These data demonstrate the successful "kickstarting" of endogenous regenerative pathways in a vertebrate model.
Collapse
Affiliation(s)
- Nirosha J. Murugan
- Department of Biology, Tufts University, Medford, MA, USA
- Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Hannah J. Vigran
- Department of Biology, Tufts University, Medford, MA, USA
- Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Kelsie A. Miller
- Department of Biology, Tufts University, Medford, MA, USA
- Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Annie Golding
- Allen Discovery Center at Tufts University, Medford, MA, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Quang L. Pham
- Allen Discovery Center at Tufts University, Medford, MA, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Megan M. Sperry
- Department of Biology, Tufts University, Medford, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Cody Rasmussen-Ivey
- Department of Biology, Tufts University, Medford, MA, USA
- Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Anna W. Kane
- Department of Biology, Tufts University, Medford, MA, USA
- Allen Discovery Center at Tufts University, Medford, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - David L. Kaplan
- Allen Discovery Center at Tufts University, Medford, MA, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Michael Levin
- Department of Biology, Tufts University, Medford, MA, USA
- Allen Discovery Center at Tufts University, Medford, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Corresponding author.
| |
Collapse
|
5
|
Kawai MY, Ozasa R, Ishimoto T, Nakano T, Yamamoto H, Kashiwagi M, Yamanaka S, Nakao K, Maruyama H, Bessho K, Ohura K. Periodontal Tissue as a Biomaterial for Hard-Tissue Regeneration following bmp-2 Gene Transfer. MATERIALS 2022; 15:ma15030993. [PMID: 35160948 PMCID: PMC8840059 DOI: 10.3390/ma15030993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 01/25/2023]
Abstract
The application of periodontal tissue in regenerative medicine has gained increasing interest since it has a high potential to induce hard-tissue regeneration, and is easy to handle and graft to other areas of the oral cavity or tissues. Additionally, bone morphogenetic protein-2 (BMP-2) has a high potential to induce the differentiation of mesenchymal stem cells into osteogenic cells. We previously developed a system for a gene transfer to the periodontal tissues in animal models. In this study, we aimed to reveal the potential and efficiency of periodontal tissue as a biomaterial for hard-tissue regeneration following a bmp-2 gene transfer. A non-viral expression vector carrying bmp-2 was injected into the palate of the periodontal tissues of Wistar rats, followed by electroporation. The periodontal tissues were analyzed through bone morphometric analyses, including mineral apposition rate (MAR) determination and collagen micro-arrangement, which is a bone quality parameter, before and after a gene transfer. The MAR was significantly higher 3-6 d after the gene transfer than that before the gene transfer. Collagen orientation was normally maintained even after the bmp-2 gene transfer, suggesting that the bmp-2 gene transfer has no adverse effects on bone quality. Our results suggest that periodontal tissue electroporated with bmp-2 could be a novel biomaterial candidate for hard-tissue regeneration therapy.
Collapse
Affiliation(s)
- Mariko Yamamoto Kawai
- Department of Welfare, Kansai Women’s College, Osaka 582-0026, Japan
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.Y.); (M.K.); (S.Y.); (K.N.); (K.B.)
- Correspondence: ; Tel.: +81-72-977-6561; Fax: +81-72-977-9564
| | - Ryosuke Ozasa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan; (R.O.); (T.I.); (T.N.)
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan; (R.O.); (T.I.); (T.N.)
- Center for Aluminum and Advanced Materials Research and International Collaboration, School of Sustainable Design, University of Toyama, Toyama 930-8555, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan; (R.O.); (T.I.); (T.N.)
| | - Hiromitsu Yamamoto
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.Y.); (M.K.); (S.Y.); (K.N.); (K.B.)
| | - Marina Kashiwagi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.Y.); (M.K.); (S.Y.); (K.N.); (K.B.)
| | - Shigeki Yamanaka
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.Y.); (M.K.); (S.Y.); (K.N.); (K.B.)
| | - Kazumasa Nakao
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.Y.); (M.K.); (S.Y.); (K.N.); (K.B.)
| | - Hiroki Maruyama
- Department of Clinical Nephroscience, Graduate School of Medicine and Dental Sciences, Niigata University, Niigata 951-8501, Japan;
| | - Kazuhisa Bessho
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.Y.); (M.K.); (S.Y.); (K.N.); (K.B.)
| | - Kiyoshi Ohura
- Department of Nursing, Taisei Gakuin University, Osaka 587-8555, Japan;
| |
Collapse
|
6
|
Schneider Werner Vianna T, Sartoretto SC, Neves Novellino Alves AT, Figueiredo de Brito Resende R, de Almeida Barros Mourão CF, de Albuquerque Calasans-Maia J, Martinez-Zelaya VR, Malta Rossi A, Granjeiro JM, Calasans-Maia MD, Seabra Louro R. Nanostructured Carbonated Hydroxyapatite Associated to rhBMP-2 Improves Bone Repair in Rat Calvaria. J Funct Biomater 2020; 11:jfb11040087. [PMID: 33291525 PMCID: PMC7768361 DOI: 10.3390/jfb11040087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 12/22/2022] Open
Abstract
Many biomaterials are used for Bone Morphogenetic Proteins (BMPs) delivery in bone tissue engineering. The BMP carrier system's primary function is to hold these growth factors at the wound's site for a prolonged time and provide initial support for cells to attach and elaborate the extracellular matrix for bone regeneration. This study aimed to evaluate the nanostructured carbonated hydroxyapatite microspheres (nCHA) as an rhBMP-2 carrier on rats calvaria. A total of fifteen male Wistar rats were randomly divided into three groups (n = 5): clot (control group), rhBMP-2 associated with collagen membrane (COL/rhBMP-2) or associated with the microspheres (nCHA/rhBMP-2). After 45 days, the calvaria defect samples were evaluated through histological, histomorphometric, and SR-µCT analyses to investigate new-formed bone and connective tissue volume densities. The descriptive histological analysis showed that nCHA/rhBMP-2 improved bone formation compared to other groups. These results were confirmed by histomorphometric and SR-µCT analysis that showed substantially defect area filling with a higher percentage of newly formed (36.24 ± 6.68) bone than those with the COL/rhBMP-2 (0.42 ± 0.40) and Clot (3.84 ± 4.57) (p < 0.05). The results showed that nCHA is an effective carrier for rhBMP-2 encouraging bone healing and an efficient alternative to collagen membrane for rhBMP-2 delivery.
Collapse
Affiliation(s)
- Thiago Schneider Werner Vianna
- Pos-Graduation Program, Dentistry School, Universidade Federal Fluminense, Rio de Janeiro 24020-140, Brazil; (T.S.W.V.); (C.F.d.A.B.M.); (J.M.G.)
| | - Suelen Cristina Sartoretto
- Oral Surgery Department, Universidade Veiga de Almeida, Rio de Janeiro 20271-020, Brazil;
- Oral Surgery Department, Universidade Iguaçu, Rio de Janeiro 26260-045, Brazil;
| | | | - Rodrigo Figueiredo de Brito Resende
- Oral Surgery Department, Universidade Iguaçu, Rio de Janeiro 26260-045, Brazil;
- Oral Surgery Department, Dentistry School, Universidade Federal Fluminense, Rio de Janeiro 24020-140, Brazil;
| | | | | | - Victor R. Martinez-Zelaya
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo 13083-970, Brazil;
| | - Alexandre Malta Rossi
- Department of Condensed Matter, Applied Physics and Nanoscience, Brazilian Center for Research in Physics, Rio de Janeiro 22290-180, Brazil;
| | - Jose Mauro Granjeiro
- Pos-Graduation Program, Dentistry School, Universidade Federal Fluminense, Rio de Janeiro 24020-140, Brazil; (T.S.W.V.); (C.F.d.A.B.M.); (J.M.G.)
- Directory of Life Sciences Applied Metrology, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias 25250-020, Brazil
| | - Monica Diuana Calasans-Maia
- Oral Surgery Department, Dentistry School, Universidade Federal Fluminense, Rio de Janeiro 24020-140, Brazil;
- Correspondence: ; Tel.: +55-21-981535884
| | - Rafael Seabra Louro
- Oral Surgery Department, Dentistry School, Universidade Federal Fluminense, Rio de Janeiro 24020-140, Brazil;
| |
Collapse
|
7
|
De Witte TM, Wagner AM, Fratila-Apachitei LE, Zadpoor AA, Peppas NA. Degradable Poly(Methyl Methacrylate)-co-Methacrylic Acid Nanoparticles for Controlled Delivery of Growth Factors for Bone Regeneration. Tissue Eng Part A 2020; 26:1226-1242. [PMID: 32282291 PMCID: PMC7757707 DOI: 10.1089/ten.tea.2020.0010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/02/2020] [Indexed: 11/12/2022] Open
Abstract
Bone tissue engineering strategies have been developed to address the limitations of the current gold standard treatment options for bone-related disorders. These systems consist of an engineered scaffold that mimics the extracellular matrix and provides an architecture to guide the natural bone regeneration process, and incorporated growth factors that enhance cell recruitment and ingress into the scaffold and promote the osteogenic differentiation of stem cells and angiogenesis. In particular, the osteogenic growth factor bone morphogenetic protein 2 (BMP-2) has been widely studied as a potent agent to improve bone regeneration. A key challenge in growth factor delivery is that the growth factors must reach their target sites without losing bioactivity and remain in the location for an extended period to effectively aid in the formation of new bone. Protein incorporation into nanoparticles can both protect protein bioactivity and enable its sustained release. In this study, a poly(methyl methacrylate-co-methacrylic acid) nanoparticle-based system was synthesized incorporating a custom poly(ethylene glycol) dimethacrylate crosslinker. It was demonstrated that the nanoparticle degradation rate can be controlled by tuning the number of hydrolytically degradable ester units along the crosslinker. We also showed that the nanoparticles had high affinity for a model protein for BMP-2, and optimal conditions for maximum protein loading efficiency were elucidated. Ultimately, the proposed system and its high degree of tunability can be applied to a wide range of growth factors and tissue engineering applications. Impact Statement In this study, we developed a novel method of synthesizing nanoparticles with tunable degradation rates through the incorporation of a custom synthesized, hydrolytically degradable crosslinker. In addition, we demonstrated the affinity of the synthesized nanoparticles for a model protein for bone morphogenetic protein 2 (BMP-2). The tunability of these nanoparticles can be used to develop complex tissue engineering systems, for example, for the delivery of multiple growth factors involved at different stages of the bone regeneration process.
Collapse
Affiliation(s)
- Tinke-Marie De Witte
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Delft, The Netherlands
| | - Angela M. Wagner
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, Texas, USA
| | - Lidy E. Fratila-Apachitei
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Delft, The Netherlands
| | - Amir A. Zadpoor
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Delft, The Netherlands
| | - Nicholas A. Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, Texas, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
- Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
8
|
Bangun K, Sukasah CL, Dilogo IH, Indrani DJ, Siregar NC, Pandelaki J, Iskandriati D, Kekalih A, Halim J. Bone Growth Capacity of Human Umbilical Cord Mesenchymal Stem Cells and BMP-2 Seeded Into Hydroxyapatite/Chitosan/Gelatin Scaffold in Alveolar Cleft Defects: An Experimental Study in Goat. Cleft Palate Craniofac J 2020; 58:707-717. [PMID: 34047209 DOI: 10.1177/1055665620962360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE To evaluate bone regeneration in alveolar defects treated with human umbilical cord-derived mesenchymal stem cells (hUCMSCs), hydroxyapatite/chitosan/gelatin (HA/CS/Gel) scaffold, and bone morphogenic protein-2 (BMP-2) in Capra hircus models. DESIGN Randomized posttest-only control group design. SETTING Animal Hospital at Bogor Agricultural Institute. PARTICIPANTS Healthy and equally treated 24 female Capra hircus/goats. INTERVENTION Animals were randomly assigned to 3 experimental group design (iliac crest alveolar bone graft/ICABG [control], HA/Cs/Gel+BMP-2 [Novosys], and HA/Cs/Gel+BMP-2+UCMSCs). Graft materials were implanted in surgically made alveolar defects. MAIN OUTCOME MEASURES Postoperative functional score and operating time were assessed. New bone growth, bone density, inflammatory cells recruitment, and neoangiogenesis were evaluated based on radiological and histological approach at 2 time points, week 4 and 12. Statistical analysis was done between treatment groups. RESULTS Operating time was 34% faster and functional score 94.5% more superior in HA/Cs/Gel+BMP-2+hUCMSC group. Bone growth capacity in HA/Cs/Gel+BMP-2+UCMSCs mimicked ICABG, but ICABG showed possibility of bone loss between week 4 and 12. The HA/Cs/Gel+BMP-2+UCMSCs showed early bone repopulation and unseen inflammatory cells and angiogenesis on week 12. DISCUSSION AND CONCLUSION The HA/Cs/Gel+BMP-2+hUCMSCs were superior in enhancing new bone growth without donor site morbidity compared to ICABG. The presence of hUCMSCs in tissue-engineered alveolar bone graft (ABG), supported with paracrine activity of the resident stem cells, initiated earlier new bone repopulation, and completed faster bone regeneration. The HA/Cs/Gel scaffold seeded with UCMSCs+BMP-2 is a safe substitute of ICABG to close alveolar bone defects suitable for patients with cleft lip, alveolus, and palate.
Collapse
Affiliation(s)
- Kristaninta Bangun
- Department of Plastic and Reconstructive Surgery, Cleft and Craniofacial Center, 364090Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Chaula L Sukasah
- Department of Plastic and Reconstructive Surgery, Cleft and Craniofacial Center, 364090Cipto Mangunkusumo General Hospital, Jakarta, Indonesia.,95338Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Ismail H Dilogo
- Unit Pelayanan Terpadu Teknologi Kedokteran Sel Punca (Stem Cell Research Center), 364090Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Decky J Indrani
- Department of Dental Material Science and Technology, 95338Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Nurjati Chairani Siregar
- 95338Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia.,Anatomical Pathology Department, 364090Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Jacub Pandelaki
- 95338Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia.,Radiology Department of 364090Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Diah Iskandriati
- Primate Research Center of 360976Bogor Agricultural Institute, Bogor, Indonesia
| | - Aria Kekalih
- 95338Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia.,Community Medicine Department, 364090Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Jessica Halim
- 95338Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia.,364090Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| |
Collapse
|
9
|
Liang T, Wu J, Li F, Huang Z, Pi Y, Miao G, Ren W, Liu T, Jiang Q, Guo L. Drug-loading three-dimensional scaffolds based on hydroxyapatite-sodium alginate for bone regeneration. J Biomed Mater Res A 2020; 109:219-231. [PMID: 32490561 DOI: 10.1002/jbm.a.37018] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/03/2020] [Accepted: 04/19/2020] [Indexed: 12/29/2022]
Abstract
Bone tissue engineering is a promising approach for tackling clinical challenges. Osteoprogenitor cells, osteogenic factors, and osteoinductive/osteoconductive scaffolds are employed in bone tissue engineering. However, scaffold materials remain limited due to their source, low biocompatibility, and so on. In this study, a composite hydrogel scaffold composed of hydroxyapatite (HA) and sodium alginate (SA) was manufactured using three-dimensional printing. Naringin (NG) and calcitonin-gene-related peptide (CGRP) were used as osteogenic factors in the fabrication of drug-loaded scaffolds. Investigation using animal experiments, as well as scanning electron microscopy, cell counting kit-8 testing, alkaline phosphatase staining, and alizarin red-D staining of bone marrow mesenchymal stem cell culture showed that the three scaffolds displayed similar physicochemical properties and that the HA/SA/NG and HA/SA/CGRP scaffolds displayed better osteogenesis than that of the HA/SA scaffold. Thus, the HA/SA scaffold could be a biocompatible material with potential applications in bone regeneration. Meanwhile, NG and CGRP doping could result in better and more positive proliferation and differentiation.
Collapse
Affiliation(s)
- Tingting Liang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jingwen Wu
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fuyao Li
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhu Huang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yixing Pi
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guohou Miao
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wen Ren
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tiantao Liu
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qianzhou Jiang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lvhua Guo
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
10
|
Arroyo R, López S, Romo E, Montoya G, Hoz L, Pedraza C, Garfias Y, Arzate H. Carboxy-Terminal Cementum Protein 1-Derived Peptide 4 (cemp1-p4) Promotes Mineralization through wnt/ β-catenin Signaling in Human Oral Mucosa Stem Cells. Int J Mol Sci 2020; 21:E1307. [PMID: 32075221 PMCID: PMC7072908 DOI: 10.3390/ijms21041307] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022] Open
Abstract
Human cementum protein 1 (CEMP1) is known to induce cementoblast and osteoblast differentiation and alkaline phosphatase (ALP) activity in human periodontal ligament-derived cells in vitro and promotes bone regeneration in vivo. CEMP1's secondary structure analysis shows that it has a random-coiled structure and is considered an Intrinsic Disordered Protein (IDP). CEMP1's short peptide sequences mimic the biological capabilities of CEMP1. However, the role and mechanisms of CEMP1's C-terminal-derived synthetic peptide (CEMP1-p4) in the canonical Wnt/β-catenin signaling pathway are yet to be described. Here we report that CEMP1-p4 promotes proliferation and differentiation of Human Oral Mucosa Stem Cells (HOMSCs) by activating the Wnt/β-catenin pathway. CEMP1-p4 stimulation upregulated the expression of β-catenin and glycogen synthase kinase 3 beta (GSK-3B) and activated the transcription factors TCF1/7 and Lymphoid Enhancer binding Factor 1 (LEF1) at the mRNA and protein levels. We found translocation of β-catenin to the nucleus in CEMP1-p4-treated cultures. The peptide also penetrates the cell membrane and aggregates around the cell nucleus. Analysis of CEMP1-p4 secondary structure revealed that it has a random-coiled structure. Its biological activities included the induction to nucleate hydroxyapatite crystals. In CEMP1-p4-treated HOMSCs, ALP activity and calcium deposits increased. Expression of Osterix (OSX), Runt-related transcription factor 2 (RUNX2), Integrin binding sialoproptein (IBSP) and osteocalcin (OCN) were upregulated. Altogether, these data show that CEMP1-p4 plays a direct role in the differentiation of HOMSCs to a "mineralizing-like" phenotype by activating the β-catenin signaling cascade.
Collapse
Affiliation(s)
- Rita Arroyo
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México, CDMX 04510, Mexico; (R.A.); (S.L.); (E.R.); (G.M.); (L.H.); (C.P.)
| | - Sonia López
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México, CDMX 04510, Mexico; (R.A.); (S.L.); (E.R.); (G.M.); (L.H.); (C.P.)
| | - Enrique Romo
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México, CDMX 04510, Mexico; (R.A.); (S.L.); (E.R.); (G.M.); (L.H.); (C.P.)
| | - Gonzalo Montoya
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México, CDMX 04510, Mexico; (R.A.); (S.L.); (E.R.); (G.M.); (L.H.); (C.P.)
| | - Lía Hoz
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México, CDMX 04510, Mexico; (R.A.); (S.L.); (E.R.); (G.M.); (L.H.); (C.P.)
| | - Claudia Pedraza
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México, CDMX 04510, Mexico; (R.A.); (S.L.); (E.R.); (G.M.); (L.H.); (C.P.)
| | - Yonathan Garfias
- Departamento de Bioquímica, Facultad de Medicina, UNAM, Universidad Nacional Autónoma de México, CDMX 04510, Mexico;
- Instituto de Oftalmología Conde de Valenciana, CDMX 06800, Mexico
| | - Higinio Arzate
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México, CDMX 04510, Mexico; (R.A.); (S.L.); (E.R.); (G.M.); (L.H.); (C.P.)
| |
Collapse
|
11
|
Donos N, Dereka X, Calciolari E. The use of bioactive factors to enhance bone regeneration: A narrative review. J Clin Periodontol 2019; 46 Suppl 21:124-161. [DOI: 10.1111/jcpe.13048] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/08/2018] [Accepted: 12/20/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Nikos Donos
- Centre for Oral Immunobiology & Regenerative Medicine & Centre for Oral Clinical Research (COCR); Institute of Dentistry, Barts & The London School of Medicine & Dentistry; Queen Mary University of London (QMUL); London UK
| | - Xanthippi Dereka
- Centre for Oral Immunobiology & Regenerative Medicine & Centre for Oral Clinical Research (COCR); Institute of Dentistry, Barts & The London School of Medicine & Dentistry; Queen Mary University of London (QMUL); London UK
- Department of Periodontology; School of Dentistry; National and Kapodistrian University of Athens; Athens Greece
| | - Elena Calciolari
- Centre for Oral Immunobiology & Regenerative Medicine & Centre for Oral Clinical Research (COCR); Institute of Dentistry, Barts & The London School of Medicine & Dentistry; Queen Mary University of London (QMUL); London UK
| |
Collapse
|
12
|
Jin YZ, Zheng GB, Lee JH. Escherichia coli BMP-2 showed comparable osteoinductivity with Chinese hamster ovary derived BMP-2 with demineralized bone matrix as carrier. Growth Factors 2019; 37:85-94. [PMID: 30947586 DOI: 10.1080/08977194.2019.1596905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Escherichia coli bone morphogenetic protein-2 (ErhBMP-2) had a larger yield but less osteoinductivity than Chinese hamster ovary cell bone morphogenetic protein-2 (CrhBMP-2). Since the release profile of rhBMP-2 affects its osteoinductivity, an appropriate carrier could improve the effect of ErhBMP-2. Demineralized bone matrix (DBM) was one of the most widely used bone substitutes, but few studies evaluated the osteoinductivity of ErhBMP-2 while it was carried by DBM. Therefore, we compared the osteoinductivity of ErhBMP-2 with CrhBMP-2 with DBM as the carrier of each. In vitro results showed ErhBMP-2 had slightly less osteoinductivity than CrhBMP-2. However, with DBM as the carrier, ErhBMP-2 induced significantly more bone regeneration in rat calvaria defects. Therefore, ErhBMP-2 might have comparable osteoinductivity with CrhBMP-2 while carried by DBM.
Collapse
Affiliation(s)
- Yuan-Zhe Jin
- a Department of Orthopedic Surgery, College of Medicine, Seoul National University , Seoul , South Korea
| | - Guang-Bin Zheng
- b Department of Orthopaedics, Taizhou Hospial of Zhejiang Province , Zhejiang , China
| | - Jae Hyup Lee
- a Department of Orthopedic Surgery, College of Medicine, Seoul National University , Seoul , South Korea
- c Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center , Seoul , South Korea
| |
Collapse
|
13
|
Wang C, Tanjaya J, Shen J, Lee S, Bisht B, Pan HC, Pang S, Zhang Y, Berthiaume EA, Chen E, Da Lio AL, Zhang X, Ting K, Guo S, Soo C. Peroxisome Proliferator-Activated Receptor-γ Knockdown Impairs Bone Morphogenetic Protein-2-Induced Critical-Size Bone Defect Repair. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:648-664. [PMID: 30593824 PMCID: PMC6412314 DOI: 10.1016/j.ajpath.2018.11.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 10/13/2018] [Accepted: 11/13/2018] [Indexed: 12/15/2022]
Abstract
The Food and Drug Administration-approved clinical dose (1.5 mg/mL) of bone morphogenetic protein-2 (BMP2) has been reported to induce significant adverse effects, including cyst-like adipose-infiltrated abnormal bone formation. These undesirable complications occur because of increased adipogenesis, at the expense of osteogenesis, through BMP2-mediated increases in the master regulatory gene for adipogenesis, peroxisome proliferator-activated receptor-γ (PPARγ). Inhibiting PPARγ during osteogenesis has been suggested to drive the differentiation of bone marrow stromal/stem cells toward an osteogenic, rather than an adipogenic, lineage. We demonstrate that knocking down PPARγ while concurrently administering BMP2 can reduce adipogenesis, but we found that it also impairs BMP2-induced osteogenesis and leads to bone nonunion in a mouse femoral segmental defect model. In addition, in vitro studies using the mouse bone marrow stromal cell line M2-10B4 and mouse primary bone marrow stromal cells confirmed that PPARγ knockdown inhibits BMP2-induced adipogenesis; attenuates BMP2-induced cell proliferation, migration, invasion, and osteogenesis; and escalates BMP2-induced cell apoptosis. More important, BMP receptor 2 and 1B expression was also significantly inhibited by the combined BMP2 and PPARγ knockdown treatment. These findings indicate that PPARγ is critical for BMP2-mediated osteogenesis during bone repair. Thus, uncoupling BMP2-mediated osteogenesis and adipogenesis using PPARγ inhibition to combat BMP2's adverse effects may not be feasible.
Collapse
Affiliation(s)
- Chenchao Wang
- Department of Plastic Surgery, First Hospital of China Medical University, Shenyang, People's Republic of China; Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California; Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery, and Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California
| | - Justine Tanjaya
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Jia Shen
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Soonchul Lee
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California; Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Bharti Bisht
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Hsin Chuan Pan
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Shen Pang
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Yulong Zhang
- Departments of Materials Science and Engineering, and Division of Advanced Prosthodontics, University of California, Los Angeles, Los Angeles, California
| | - Emily A Berthiaume
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Eric Chen
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Andrew L Da Lio
- Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery, and Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California
| | - Xinli Zhang
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Kang Ting
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Shu Guo
- Department of Plastic Surgery, First Hospital of China Medical University, Shenyang, People's Republic of China.
| | - Chia Soo
- Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery, and Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
14
|
Kolk A, Boskov M, Haidari S, Tischer T, van Griensven M, Bissinger O, Plank C. Comparative analysis of bone regeneration behavior using recombinant human BMP-2 versus plasmid DNA of BMP-2. J Biomed Mater Res A 2018; 107:163-173. [PMID: 30358084 DOI: 10.1002/jbm.a.36545] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/13/2018] [Accepted: 04/05/2018] [Indexed: 12/16/2022]
Abstract
Bone regeneration and the osteoinductive capacity of implants are challenging issues in clinical medicine. Currently, recombinant growth factors and nonviral gene transfer are the most frequently investigated methods for bone growth enhancement, although the more favorable method remains unclear. There is a lack of knowledge in literature about the in vivo comparison of these methods for bone regeneration. BMP-2, which is the most commonly used growth factor for osteogenesis, was applied at its most efficient dose as a recombinant growth factor (rhBMP-2) and as a growth-factor-encoding copolymer protected gene vector (pBMP-2) in a critical size bone defect (CSD) model to determine the most suitable method for bone regeneration. CSDs were induced bilaterally in 32 Sprague-Dawley rats. RhBMP-2 (62.5 μg) or pBMP-2 (2.5 μg) was embedded in poly(d,l-)lactide-coated titanium discs. Survival times were set at 14, 28, 56, and 112 days. After euthanasia, samples were analyzed via micro-computed tomography, polychrome sequential fluorescent labeling, and immunohistochemistry. Whereas defects in both groups were bridged with new bone after 56 days, rhBMP-2 initially induced ectopic new bone formation that was later remodeled in an unorganized hypodense manner. In contrast, pBMP-2 led to slower but steady bone regeneration with physiological tissue morphology, as confirmed by high osteoblast activity shown by osteocalcin staining. CD68 and TRAP staining verified high osteoclast activity for the rhBMP-2 group. pBMP-2 successfully induced locally controlled physiological bone regeneration, whereas rhBMP-2 triggered rapid and ectopic but insufficient bone formation. Thus, nonviral gene transfer appears to be more favorable for clinical applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 163-173, 2019.
Collapse
Affiliation(s)
- Andreas Kolk
- Department of Oral and Maxillofacial Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Institute of Molecular Immunology & Experimental Oncology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Marko Boskov
- Department of Oral and Maxillofacial Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Selgai Haidari
- Department of Oral and Maxillofacial Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Tischer
- Department of Orthopaedics, Rostock University Medical Center, Munich, Germany
| | - Martijn van Griensven
- Experimental Trauma Surgery, Department of Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Oliver Bissinger
- Department of Oral and Maxillofacial Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christian Plank
- Institute of Molecular Immunology & Experimental Oncology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
15
|
Correa R, Arenas J, Montoya G, Hoz L, López S, Salgado F, Arroyo R, Salmeron N, Romo E, Zeichner-David M, Arzate H. Synthetic cementum protein 1-derived peptide regulates mineralization in vitro and promotes bone regeneration in vivo. FASEB J 2018; 33:1167-1178. [PMID: 30113883 DOI: 10.1096/fj.201800434rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The use of recombinant proteins has revolutionized the development of biologic pharmaceuticals; however, they are not free of complications. Some have very high molecular weight, some demonstrate in vivo instability, and the high cost of producing them remains a major problem. On the other hand, it has been shown that peptides derived from active domains keep their biologic activity and can trigger events, such as osteogenesis and bone regeneration. Small peptides are advantageous because of their ease of synthesis and handling and their low immunogenic activity. The purpose of this study was to investigate the functions of a synthetic peptide, cementum protein 1-peptide1 (CEMP-1-p1), both in vitro and in vivo. Our results show that CEMP-1-p1 significantly enhanced the proliferation and differentiation of human periodontal ligament cells toward a mineralizing-like phenotype, as evidenced by increasing alkaline phosphatase (ALP)-specific activity and osterix, runt-related transcription factor (RUNX)-2, integrin binding sialoprotein, bone morphogenetic protein-2, osteocalcin, and cementum protein (CEMP)-1 expression at mRNA and protein levels. In vivo assays performed through standardized critical-size calvarial defects in rats treated with CEMP-1-p1 resulted in newly formed bone after 30 and 60 d. These data demonstrate that CEMP-1-p1 is an effective bioactive peptide for bone tissue regeneration. The application of this bioactive peptide may lead to implementing new strategies for the regeneration of bone and other mineralized tissues.-Correa, R., Arenas, J., Montoya, G., Hoz, L., López, S., Salgado, F., Arroyo, R., Salmeron, N., Romo, E., Zeichner-David, M., Arzate, H. Synthetic cementum protein 1-derived peptide regulates mineralization in vitro and promotes bone regeneration in vivo.
Collapse
Affiliation(s)
- Rodrigo Correa
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Jesús Arenas
- Instituto de Física, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico; and
| | - Gonzalo Montoya
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Lía Hoz
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Sonia López
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Fabiola Salgado
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Rita Arroyo
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Nahúm Salmeron
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Enrique Romo
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | | | - Higinio Arzate
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| |
Collapse
|
16
|
Bone Morphogenetic Protein-7 Enhances Degradation of Osteoinductive Bioceramic Implants in an Ectopic Model. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2017; 5:e1375. [PMID: 28740783 PMCID: PMC5505844 DOI: 10.1097/gox.0000000000001375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/21/2017] [Indexed: 11/26/2022]
Abstract
BACKGROUND The aim of the present study was to evaluate the degradation pattern of highly porous bioceramics as well as the bone formation in presence of bone morphogenetic protein 7 (BMP-7) in an ectopic site. METHODS Novel calcium phosphate ceramic cylinders sintered at 1,300°C with a total porosity of 92-94 vol%, 45 pores per inch, and sized 15 mm (Ø) × 5 mm were grafted on the musculus latissimus dorsi bilaterally in 10 Göttingen minipigs: group I (n = 5): hydroxyapatite (HA) versus biphasic calcium phosphate (BCP), a mixture of HA and tricalcium phosphate (TCP) in a ratio of 60/40 wt%; group II (n = 5): TCP versus BCP. A test side was supplied in situ with 250 μg BMP-7. Fluorochrome bone labeling and computed tomography were performed in vivo. Specimens were evaluated 14 weeks after surgery by environmental scanning electron microscopy, fluorescence microscopy, tartrate-resistant acid phosphatase, and pentachrome staining. RESULTS Bone formation was enhanced in the presence of BMP-7 in all ceramics (P = 0.001). Small spots of newly formed bone were observed in all implants in the absence of BMP-7. Degradation of HA and BCP was enhanced in the presence of BMP-7 (P = 0.001). In those ceramics, osteoclasts were observed. TCP ceramics were almost completely degraded independently of the effect of BMP-7 after 14 weeks (P = 0.76), osteoclasts were not observed. CONCLUSIONS BMP-7 enhanced bone formation and degradation of HA and BCP ceramics via osteoclast resorption. TCP degraded via dissolution. All ceramics were osteoinductive. Novel degradable HA and BCP ceramics in the presence of BMP-7 are promising bone substitutes in the growing individual.
Collapse
|