1
|
Xie Y, Ma C, Zhu Q, Fu T, Bai L, Lan X, Liu L, Xiao J. Facial nerve regeneration via body-brain crosstalk: The role of stem cells and biomaterials. Neurobiol Dis 2024; 200:106650. [PMID: 39197536 DOI: 10.1016/j.nbd.2024.106650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024] Open
Abstract
The human body is a complex, integral whole, and disruptions in one organ can lead to dysfunctions in other parts of the organ network. The facial nerve, as the seventh cranial nerve, arises from the brainstem, controls facial expression muscles and plays a crucial role in brain-body communication. This vulnerable nerve can be damaged by trauma, inflammation, tumors, and congenital diseases, often impairing facial expression. Stem cells have gained significant attention for repairing peripheral nerve injuries due to their multidirectional differentiation potential. Additionally, various biomaterials have been used in tissue engineering for regeneration and repair. However, the therapeutic potential of stem cells and biomaterials in treating facial nerve injuries requires further exploration. In this review, we summarize the roles of stem cells and biomaterials in the regeneration and repair of damaged facial nerves, providing a theoretical basis for the recovery and reconstruction of body-brain crosstalk between the brain and facial expression muscles.
Collapse
Affiliation(s)
- Yuping Xie
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
| | - Chuan Ma
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
| | - Qiang Zhu
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China; Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
| | - Ting Fu
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
| | - Long Bai
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
| | - Xiaorong Lan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
| | - Lin Liu
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China; Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China.
| | - Jingang Xiao
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China; Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
2
|
Jaloux C, Bonnet M, Vogtensperger M, Witters M, Veran J, Giraudo L, Sabatier F, Michel J, Legré R, Guiraudie-Capraz G, Féron F. Human nasal olfactory stem cells, purified as advanced therapy medicinal products, improve neuronal differentiation. Front Neurosci 2022; 16:1042276. [PMID: 36466172 PMCID: PMC9713000 DOI: 10.3389/fnins.2022.1042276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/04/2022] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Olfactory ecto-mesenchymal stem cells (OE-MSC) are mesenchymal stem cells derived from the lamina propria of the nasal mucosa. They display neurogenic and immunomodulatory properties and were shown to induce recovery in animal models of spinal cord trauma, hearing loss, Parkinsons's disease, amnesia, and peripheral nerve injury. As a step toward clinical practice, we sought to (i) devise a culture protocol that meets the requirements set by human health agencies and (ii) assess the efficacy of stem cells on neuron differentiation. METHODS Nasal olfactory mucosa biopsies from three donors were used to design and validate the good manufacturing process for purifying stem cells. All processes and procedures were performed by expert staff from the cell therapy laboratory of the public hospital of Marseille (AP-HM), according to aseptic handling manipulations. Premises, materials and air were kept clean at all times to avoid cross-contamination, accidents, or even fatalities. Purified stem cells were cultivated for 24 or 48 h and conditioned media were collected before being added to the culture medium of the neuroblastoma cell line Neuro2a. RESULTS Compared to the explant culture-based protocol, enzymatic digestion provides higher cell numbers more rapidly and is less prone to contamination. The use of platelet lysate in place of fetal calf serum is effective in promoting higher cell proliferation (the percentage of CFU-F progenitors is 15.5%), with the optimal percentage of platelet lysate being 10%. Cultured OE-MSCs do not show chromosomal rearrangement and, as expected, express the usual phenotypic markers of mesenchymal stem cells. When incorporated in standard culture medium, the conditioned medium of purified OE-MSCs promotes cell differentiation of Neuro2a neuroblastoma cells. CONCLUSION We developed a safer and more efficient manufacturing process for clinical grade olfactory stem cells. With this protocol, human OE-MSCs will soon be used in a Phase I clinical based on their autologous transplantation in digital nerves with a neglected injury. However, further studies are required to unveil the underlying mechanisms of action.
Collapse
Affiliation(s)
- Charlotte Jaloux
- CNRS, INP, UMR 7051, Institut de Neuropathophysiologie, Equipe Nasal Olfactory Stemness and Epigenesis (NOSE), Aix Marseille University, Marseille, France
- Department of Hand Surgery and Reconstructive Surgery of the Limbs, La Timone University Hospital, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Maxime Bonnet
- CNRS, INP, UMR 7051, Institut de Neuropathophysiologie, Equipe Nasal Olfactory Stemness and Epigenesis (NOSE), Aix Marseille University, Marseille, France
- Faculté des Sciences du Sport de Marseille, CNRS, ISM, UMR 7287, Institut des Sciences du Mouvement Etienne-Jules MAREY, Equipe Plasticité des Systèmes Nerveux et Musculaire (PSNM), Parc Scientifique et Technologique de Luminy, Aix Marseille University, Marseille, France
| | - Marie Vogtensperger
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, Marseille, France
| | - Marie Witters
- CNRS, INP, UMR 7051, Institut de Neuropathophysiologie, Equipe Nasal Olfactory Stemness and Epigenesis (NOSE), Aix Marseille University, Marseille, France
- Department of Hand Surgery and Reconstructive Surgery of the Limbs, La Timone University Hospital, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Julie Veran
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, Marseille, France
| | - Laurent Giraudo
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, Marseille, France
| | - Florence Sabatier
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, Marseille, France
- Aix-Marseille Université, C2VN, UMR-1263, INSERM, INRA 1260, UFR de Pharmacie, Marseille, France
| | - Justin Michel
- Department of Otorhinolaryngology and Head and Neck Surgery, Assistance Publique des Hôpitaux de Marseille, Institut Universitaire des Systèmes Thermiques Industriels, La Conception University Hospital, Aix Marseille University, Marseille, France
| | - Regis Legré
- Department of Hand Surgery and Reconstructive Surgery of the Limbs, La Timone University Hospital, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Gaëlle Guiraudie-Capraz
- CNRS, INP, UMR 7051, Institut de Neuropathophysiologie, Equipe Nasal Olfactory Stemness and Epigenesis (NOSE), Aix Marseille University, Marseille, France
| | - François Féron
- CNRS, INP, UMR 7051, Institut de Neuropathophysiologie, Equipe Nasal Olfactory Stemness and Epigenesis (NOSE), Aix Marseille University, Marseille, France
| |
Collapse
|
3
|
Ma F, Wang H, Yang X, Wu Y, Liao C, Xie B, Li Y, Zhang W. Controlled release of ciliary neurotrophic factor from bioactive nerve grafts promotes nerve regeneration in rats with facial nerve injuries. J Biomed Mater Res A 2021; 110:788-796. [PMID: 34792847 DOI: 10.1002/jbm.a.37327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/28/2021] [Accepted: 10/23/2021] [Indexed: 12/20/2022]
Abstract
It is critical to repair severed facial nerves, as lack of treatment may cause long-term motor and sensory impairments. Ciliary neurotrophic factor (CNTF) plays an important role in terms of enhancing nerve axon regrowth and maturation during peripheral nerve regeneration after injury. However, simple application of CNTF to the transected nerve site does not afford functional recovery, because it is rapidly flushed away by bodily fluids. The aim of the present study was the construction of a new, bioactive composite nerve graft facilitating persistent CNTF delivery to aid the reconstruction of facial nerve defects. The in vitro study showed that the bioactive nerve graft generated sustainable CNTF release for more than 25 days. The bioactive nerve graft was then transplanted into the injury sites of rat facial nerves. At 6 and 12 weeks post-transplantation, functional and histological analyses showed that the bioactive nerve graft featuring immobilized CNTF significantly enhanced nerve regeneration in terms of both axonal outgrowth and Schwann cell proliferation in the rat facial nerve gap model, compared to a collagen tube with adsorbed CNTF that initially released high levels of CNTF. The bioactive nerve graft may serve as novel, controlled bioactive release therapy for facial nerve regeneration.
Collapse
Affiliation(s)
- Fukai Ma
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanming Wang
- Department of Rehabilitation, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Xiaosheng Yang
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwei Wu
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenlong Liao
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingran Xie
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Li
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenchuan Zhang
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Yoo MC, Chon J, Jung J, Kim SS, Bae S, Kim SH, Yeo SG. Potential Therapeutic Strategies and Substances for Facial Nerve Regeneration Based on Preclinical Studies. Int J Mol Sci 2021; 22:ijms22094926. [PMID: 34066483 PMCID: PMC8124575 DOI: 10.3390/ijms22094926] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
Despite advances in microsurgical technology and an improved understanding of nerve regeneration, obtaining satisfactory results after facial nerve injury remains a difficult clinical problem. Among existing peripheral nerve regeneration studies, relatively few have focused on the facial nerve, particularly how experimental studies of the facial nerve using animal models play an essential role in understanding functional outcomes and how such studies can lead to improved axon regeneration after nerve injury. The purpose of this article is to review current perspectives on strategies for applying potential therapeutic methods for facial nerve regeneration. To this end, we searched Embase, PubMed, and the Cochrane library using keywords, and after applying exclusion criteria, obtained a total of 31 qualifying experimental studies. We then summarize the fundamental experimental studies on facial nerve regeneration, highlighting recent bioengineering studies employing various strategies for supporting facial nerve regeneration, including nerve conduits with stem cells, neurotrophic factors, and/or other therapeutics. Our summary of the methods and results of these previous reports reveal a common feature among studies, showing that various neurotrophic factors arising from injured nerves contribute to a microenvironment that plays an important role in functional recovery. In most cases, histological examinations showed that this microenvironmental influence increased axonal diameter as well as myelination thickness. Such an analysis of available research on facial nerve injury and regeneration represents the first step toward future therapeutic strategies.
Collapse
Affiliation(s)
- Myung Chul Yoo
- Department of Physical Medicine & Rehabilitation, College of Medicine, Kyung Hee University, Seoul 02447, Korea; (M.C.Y.); (J.C.)
| | - Jinmann Chon
- Department of Physical Medicine & Rehabilitation, College of Medicine, Kyung Hee University, Seoul 02447, Korea; (M.C.Y.); (J.C.)
| | - Junyang Jung
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Sung Su Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Seonhwan Bae
- Department of Otorhinolaryngology, Head & Neck Surgery, College of Medicine, Kyung Hee University, Seoul 02447, Korea; (S.B.); (S.H.K.)
| | - Sang Hoon Kim
- Department of Otorhinolaryngology, Head & Neck Surgery, College of Medicine, Kyung Hee University, Seoul 02447, Korea; (S.B.); (S.H.K.)
| | - Seung Geun Yeo
- Department of Otorhinolaryngology, Head & Neck Surgery, College of Medicine, Kyung Hee University, Seoul 02447, Korea; (S.B.); (S.H.K.)
- Correspondence: ; Tel.: +82-2-958-8980; Fax: +82-2-958-8470
| |
Collapse
|
5
|
Bonnet M, Guiraudie-Capraz G, Marqueste T, Garcia S, Jaloux C, Decherchi P, Féron F. Immediate or Delayed Transplantation of a Vein Conduit Filled with Nasal Olfactory Stem Cells Improves Locomotion and Axogenesis in Rats after a Peroneal Nerve Loss of Substance. Int J Mol Sci 2020; 21:E2670. [PMID: 32290426 PMCID: PMC7215801 DOI: 10.3390/ijms21082670] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/24/2020] [Accepted: 04/07/2020] [Indexed: 02/02/2023] Open
Abstract
Over the recent years, several methods have been experienced to repair injured peripheral nerves. Among investigated strategies, the use of natural or synthetic conduits was validated for clinical application. In this study, we assessed the therapeutic potential of vein guides, transplanted immediately or two weeks after a peroneal nerve injury and filled with olfactory ecto-mesenchymal stem cells (OEMSC). Rats were randomly allocated to five groups. A3 mm peroneal nerve loss was bridged, acutely or chronically, with a 1 cm long femoral vein and with/without OEMSCs. These four groups were compared to unoperated rats (Control group). OEMSCs were purified from male olfactory mucosae and grafted into female hosts. Three months after surgery, nerve repair was analyzed by measuring locomotor function, mechanical muscle properties, muscle mass, axon number, and myelination. We observed that stem cells significantly (i) increased locomotor recovery, (ii) partially maintained the contractile phenotype of the target muscle, and (iii) augmented the number of growing axons. OEMSCs remained in the nerve and did not migrate in other organs. These results open the way for a phase I/IIa clinical trial based on the autologous engraftment of OEMSCs in patients with a nerve injury, especially those with neglected wounds.
Collapse
Affiliation(s)
- Maxime Bonnet
- Aix Marseille Univ, CNRS, ISM, UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe Plasticité des Systèmes Nerveux et Musculaire (PSNM), Parc Scientifique et Technologique de Luminy, Faculté des Sciences du Sport de Marseille, CEDEX 09, F-13288 Marseille, France; (M.B.); (T.M.); (P.D.)
- Aix Marseille Univ, CNRS, INP, UMR 7051, Institut de Neuropathophysiologie, Equipe Nasal Olfactory Stemness and Epigenesis (NOSE), CEDEX 15, F-13344 Marseille, France; (G.G.-C.); (C.J.)
| | - Gaëlle Guiraudie-Capraz
- Aix Marseille Univ, CNRS, INP, UMR 7051, Institut de Neuropathophysiologie, Equipe Nasal Olfactory Stemness and Epigenesis (NOSE), CEDEX 15, F-13344 Marseille, France; (G.G.-C.); (C.J.)
| | - Tanguy Marqueste
- Aix Marseille Univ, CNRS, ISM, UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe Plasticité des Systèmes Nerveux et Musculaire (PSNM), Parc Scientifique et Technologique de Luminy, Faculté des Sciences du Sport de Marseille, CEDEX 09, F-13288 Marseille, France; (M.B.); (T.M.); (P.D.)
| | - Stéphane Garcia
- APHM, Laboratoire d’Anatomie Pathologique, Hôpital Nord, Chemin des Bourrely, CEDEX 20, F-13915 Marseille, France;
| | - Charlotte Jaloux
- Aix Marseille Univ, CNRS, INP, UMR 7051, Institut de Neuropathophysiologie, Equipe Nasal Olfactory Stemness and Epigenesis (NOSE), CEDEX 15, F-13344 Marseille, France; (G.G.-C.); (C.J.)
- APHM, Unité de Culture et Thérapie Cellulaire, Hôpital de la Conception, F-13006 Marseille, France
| | - Patrick Decherchi
- Aix Marseille Univ, CNRS, ISM, UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe Plasticité des Systèmes Nerveux et Musculaire (PSNM), Parc Scientifique et Technologique de Luminy, Faculté des Sciences du Sport de Marseille, CEDEX 09, F-13288 Marseille, France; (M.B.); (T.M.); (P.D.)
| | - François Féron
- Aix Marseille Univ, CNRS, INP, UMR 7051, Institut de Neuropathophysiologie, Equipe Nasal Olfactory Stemness and Epigenesis (NOSE), CEDEX 15, F-13344 Marseille, France; (G.G.-C.); (C.J.)
- APHM, Unité de Culture et Thérapie Cellulaire, Hôpital de la Conception, F-13006 Marseille, France
| |
Collapse
|