1
|
Luby AO, Nelson JM, Sacks GN, Daniel M, Buchman L, Lynn JV, Nelson NS, Buchman SR. Intraoperative Optimization of Stromal Vascular Fraction for Remediation of Radiated Fracture Repair: Closing the Gap on Clinical Translation of Cell-Based Therapies. Ann Plast Surg 2025:00000637-990000000-00819. [PMID: 40401910 DOI: 10.1097/sap.0000000000004407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
BACKGROUND Mechanical processing techniques to isolate the stromal vascular fraction (SVF) may optimize clinical translation of cell-based therapeutics. Therefore, the purpose of this study was to develop a technique for intraoperative isolation of SVF for immediate therapeutic use with the primary aim of enhancing bone healing at irradiated fracture sites. METHODS Male Lewis rats (n = 29) were divided into groups: fracture, radiation with fracture, and radiation with fracture and SVF implantation. Experimental groups received 35 Gy of targeted radiation. All groups underwent mandibular osteotomy and external fixation. SVF was isolated from inguinal fat pads using Tulip Sizing Transfers, serial filtration, and centrifugation. The resultant cell pellet was implanted at the osteotomy site. After 40 days, bone union and mineralization were evaluated based on gross pathology and micro-computed tomography, respectively, and biomechanical strength testing was performed. RESULTS SVF treatment increased union rates after radiation (79% vs 20%). Additionally, SVF improved both bone mineral density (666.2 ± 32.0 vs 312.2 ± 51.7; P = 0.000) and bone volume fraction (0.744 ± 0.072 vs 0.350 ± 0.041; P = 0.000) compared with the irradiated control. In fact, SVF treatment into irradiated fracture sites resulted in bone mineral density and bone volume fraction similar to the bone formed at nonirradiated fracture sites, as there was no significant difference between groups. SVF treatment did not significantly improve biomechanical strength compared with the irradiated control. CONCLUSIONS In this study, we developed a novel approach utilizing mechanical methods to enable intraoperative SVF isolation for immediate implantation. SVF demonstrates therapeutic potential for applications in irradiated fracture healing. The results of this study are promising for the long-awaited translation of cell-based therapeutics into the clinical arena.
Collapse
Affiliation(s)
- Alexandra O Luby
- From the Craniofacial Research Laboratory, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Eweida A, Sandberg E, Ritthaler O, Fleckenstein J, Abo-Madyan Y, Giordano FA, Schulte M, Kneser U, Harhaus L. Hypoxia as a stimulus for tissue formation: The concept of organogenesis in microsurgically vascularized tissue engineering constructs. J Craniomaxillofac Surg 2024; 52:707-714. [PMID: 38582676 DOI: 10.1016/j.jcms.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/12/2024] [Indexed: 04/08/2024] Open
Abstract
Axial vascularization of tissue constructs is essential to maintain an adequate blood supply for a stable regeneration of a clinically relevant tissue size. The versatility of the arterio-venous loop (AVL) has been previously shown in various small and large animal models as well as in clinical reports for bone regeneration. We have previously demonstrated the capability of the AVL to induce axial vascularization and to support the nourishment of tissue constructs in small animal models after applying high doses of ionizing radiation comparable to those applied for adjuvant radiotherapy after head and neck cancer. We hypothesize that this robust ability to induce regeneration after irradiation could be related to a state of hypoxia inside the constructs that triggers the HIF1 (hypoxia induced factor 1) - SDF1 (stromal derived factor 1) axis leading to chemotaxis of progenitor cells and induction of tissue regeneration and vascularization. We analyzed the expression of HIF1 and SDF1 via immunofluorescence in axially vascularized bone tissue engineering constructs in Lewis rats 2 and 5 weeks after local irradiation with 9Gy or 15Gy. We also analyzed the expression of various genes for osteogenic differentiation (collagen 1, RUNX, alkaline phosphatase and osteonectin) via real time PCR analysis. The expression of HIF1 and SDF1 was enhanced two weeks after irradiation with 15Gy in comparison to non-irradiated constructs. The expression of osteogenic markers was enhanced at the 5-weeks time point with significant results regarding collagen, alkaline phosphatase and osteonectin. These results indicate that the hypoxia within the AVL constructs together with an enhanced SDF1 expression probably play a role in promoting tissue differentiation. The process of tissue generation triggered by hypoxia in the vicinity of a definite vascular axis with enhanced tissue differentiation over time resembles hereby the well-known concept of organogenesis in fetal life.
Collapse
Affiliation(s)
- Ahmad Eweida
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwig-Guttmann-Str. 13, 67071, Ludwigshafen, Germany; Department of Head, Neck and Endocrine Surgery, Faculty of Medicine, University of Alexandria, Alkhartoum Square, 5372066, Alexandria, Egypt.
| | - Elli Sandberg
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwig-Guttmann-Str. 13, 67071, Ludwigshafen, Germany
| | - Oliver Ritthaler
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwig-Guttmann-Str. 13, 67071, Ludwigshafen, Germany
| | - Jens Fleckenstein
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Yasser Abo-Madyan
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Frank Anton Giordano
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Matthias Schulte
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwig-Guttmann-Str. 13, 67071, Ludwigshafen, Germany
| | - Ulrich Kneser
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwig-Guttmann-Str. 13, 67071, Ludwigshafen, Germany
| | - Leila Harhaus
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwig-Guttmann-Str. 13, 67071, Ludwigshafen, Germany
| |
Collapse
|
3
|
Borges JS, Paula IS, de Araújo Reis NT, de Lima Oliveira AP, Soares CJ, Soares PBF. Effects of different doses of ionizing radiation on alveolar bone repair in post-extraction tooth socket: an experimental study in rats. Clin Oral Investig 2023; 27:7583-7593. [PMID: 37906304 DOI: 10.1007/s00784-023-05348-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/16/2023] [Indexed: 11/02/2023]
Abstract
OBJECTIVE This study aimed to evaluate the dose-response effects of ionizing radiation (IR) on alveolar bone repair and bone strength after tooth extraction. MATERIALS AND METHODS A total of 32 male Wistar rats were used in the study, 28 animals were included in the final analysis, and n = 7 for each experimental group. Mandibular first molars were extracted. After 7 days, the animals were randomly divided into four groups according to single-dose irradiation: NIr, control group; Ir15, irradiated at 15 Gy; Ir20, irradiated at 20 Gy; and Ir30, irradiated at 30 Gy. The tooth extraction sites were subjected to micro-computed tomography (micro-CT), histological, histomorphometric, and biomechanical analyses 14 days after extraction. Data were analyzed using one-way ANOVA followed by Tukey's post hoc test (α = 0.05). RESULTS Micro-CT analysis revealed that IR led to lower values of bone volume (BV, in mm3) (0.68 ± 0.08, P < 0.001) and bone volume fraction, ratio of the segmented bone volume to the total volume of the region of interest (BV/TV, in %) (44.1 ± 8.3, P < 0.001) for the Ir30 group compared to the control group. A significantly lower amount of newly formed bone was observed in the Ir30 (P = 0.005) than in the Ir15 group. The histomorphometric results of quantification of bone matrix neoformation and the micro-CT were in agreement, demonstrating greater damage to the Ir30 group. IR30 cells showed a lower percentage of densely packed collagen than control cells. No significant differences were found in the biomechanical parameters. CONCLUSION IR affects alveolar bone repair. A dose of 30 Gy reduced the bone healing process owing to a smaller amount of newly formed bone and a lower percentage of densely packed collagen. Therefore, a dose of 30 Gy can be used to successfully establish an animal model of an irradiated mandible that mimics the irradiated clinical conditions. CLINICAL RELEVANCE Radiotherapy can lead to severe side effects and tooth extraction is a major risk factor. A proper understanding of the pathological mechanisms of radiation in alveolar bone repair requires the establishment of a suitable animal model of clinical conditions.
Collapse
Affiliation(s)
- Juliana Simeão Borges
- Department of Periodontology and Implantology, School of Dentistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Isabella Santos Paula
- Department of Periodontology and Implantology, School of Dentistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Nayara Teixeira de Araújo Reis
- Department of Periodontology and Implantology, School of Dentistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Ana Paula de Lima Oliveira
- Department of Periodontology and Implantology, School of Dentistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Carlos José Soares
- Department of Operative Dentistry and Dental Materials, School of Dentistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Priscilla Barbosa Ferreira Soares
- Department of Periodontology and Implantology, School of Dentistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
4
|
Lynn JV, Lalchandani KB, Daniel M, Urlaub KM, Ettinger RE, Nelson NS, Donneys A, Buchman SR. Adipose-Derived Stem Cells Enhance Graft Incorporation and Mineralization in a Murine Model of Irradiated Mandibular Nonvascularized Bone Grafting. Ann Plast Surg 2023; 91:154-158. [PMID: 37450875 DOI: 10.1097/sap.0000000000003598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
BACKGROUND Nonvascularized bone grafting represents a practical method of mandibular reconstruction. However, the destructive effects of radiotherapy on native bone preclude the use of nonvascularized bone grafts in head and neck cancer patients. Adipose-derived stem cells have been shown to enhance bone healing and regeneration in numerous experimental models. The purpose of this study was to determine the impact of adipose-derived stem cells on nonvascularized bone graft incorporation in a murine model of irradiated mandibular reconstruction. METHODS Thirty isogenic rats were randomly divided into 3 groups: nonvascularized bone graft (control), radiation with nonvascularized bone graft (XRT), and radiation with nonvascularized bone graft and adipose-derived stem cells (ASC). Excluding the control group, all rats received a human-equivalent dose of radiation. All groups underwent mandibular reconstruction of a critical-sized defect with a nonvascularized bone graft from the contralateral hemimandible. After a 60-day recovery period, graft incorporation and bone mineralization were compared between groups. RESULTS Compared with the control group, the XRT group demonstrated significantly decreased graft incorporation (P = 0.011), bone mineral density (P = 0.005), and bone volume fraction (P = 0.001). Compared with the XRT group, the ASC group achieved a significantly increased graft incorporation (P = 0.006), bone mineral density (P = 0.005), and bone volume fraction (P = 0.013). No significant differences were identified between the control and ASC groups. CONCLUSIONS Adipose-derived stem cells enhance nonvascularized bone graft incorporation in the setting of human-equivalent radiation.
Collapse
Affiliation(s)
- Jeremy V Lynn
- From the Craniofacial Research Laboratory, University of Michigan, Ann Arbor, MI
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Therapeutic Efficacy of Adipose-Derived Stem Cells Versus Bone Marrow Stromal Cells for Irradiated Mandibular Fracture Repair. Ann Plast Surg 2022; 89:459-464. [PMID: 36149985 DOI: 10.1097/sap.0000000000003301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Mesenchymal stem cells have immense potential in applications of bone healing and regeneration. However, few studies have evaluated the therapeutic efficacy of adipose-derived stem cells (ASCs) and bone marrow stromal cells (BMSCs) in irradiated bone. The purpose of this study is to compare the ability of ASCs versus BMSCs to enhance healing outcomes in a murine model of irradiated mandibular fracture repair. METHODS Forty-eight isogenic male Lewis rats underwent radiation therapy followed by mandibular osteotomy with intraoperative placement of either ASCs or BMSCs. Animals were killed on postoperative day 40. Mandibles were analyzed for union rate, biomechanical strength, vascularity, and mineralization. Groups were compared at P < 0.05 significance. RESULTS The ASC and BMSC groups demonstrated 92% and 75% union rates. Compared with the BMSC group, the ASC group demonstrated a trending increase in maximum load ( P = 0.095) on biomechanical strength analysis and a significant increase in vessel number ( P = 0.001), vessel thickness ( P = 0.035), and vessel volume fraction ( P = 0.007) on micro-computed tomography angiography analysis. No significant differences in bone mineralization were identified on micro-computed tomography analysis. CONCLUSION This study demonstrates the superior therapeutic efficacy of ASCs over BMSCs in irradiated fracture healing as evidenced by union rate, vascular morphometry, and a trend in biomechanical strength. We posit that the robust vascular response induced by ASCs better recapitulates the sequence and synchronicity of physiologic bone healing compared with BMSCs, thereby improving the reliability of irradiated fracture repair.
Collapse
|
6
|
Chen HW, Zhang SF, He HT. Effects of different irradiators on the establishment of osteoradionecrosis model of rat mandible. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2021; 39:524-530. [PMID: 34636199 PMCID: PMC8548215 DOI: 10.7518/hxkq.2021.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 06/19/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES To compare the effects of different irradiators on the establishment of osteoradionecrosis of jaw model (ORNJ) to explore an ideal modeling method. METHODS A total of 33 adult SD rats were included and randomly divided into three groups according to the radiation equipment, namely, the blank control (CN, 3 rats), group A (linear accelerator irradiation, 15 rats), and group B (small-animal irradiator irradiation, 15 rats). Groups A and B were irradiated with daily fractions of 7, 8, and 9 Gy for 5 days and further divided into three subgroups as follows: group A35/B35, 35 Gy; group A40/B40, 40 Gy; and group A45/B45, 45 Gy. The left mandibular molars of the rats were extracted 1 week after irradiation. The rats were sacrificed 3 weeks after tooth extraction, and the mandible specimens were obtained for gross observation, micro-CT scanning, and histological detection to evaluate the success rate of modeling. RESULTS At 3 weeks after dental extractions, complete gingival healing was found in the regions of dental extractions in groups A35 and A40. However, failed gingival healing and bone exposure were found in groups A45 and B. Hematoxylin and eosin staining showed necrotic bone of the irradiated mandible in groups A40, A45,and B, with success modeling rates of 40% in group A and 93.3% in group B. CONCLUSIONS Small-animal irradiator irradiation is an ideal device for establishing ORNJ model.
Collapse
Affiliation(s)
- Hua-Wei Chen
- Dept. of Stomatology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Sheng-Fu Zhang
- Dept. of Stomatology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Hai-Tao He
- Dept. of Stomatology, Daping Hospital, Army Medical University, Chongqing 400042, China
| |
Collapse
|
7
|
Intraoperative Stromal Vascular Fraction Therapy Improves Histomorphometric and Vascular Outcomes in Irradiated Mandibular Fracture Repair. Plast Reconstr Surg 2021; 147:865-874. [PMID: 33760575 DOI: 10.1097/prs.0000000000007781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Cell-based treatments have demonstrated the capacity to enhance reconstructive outcomes in recent decades but are hindered in clinical utility by regulatory hurdles surrounding cell culture. This investigation examines the ability of a noncultured stromal vascular fraction derived from lipoaspirate to enhance bone healing during fracture repair to further the development of translatable cell therapies that may improve outcomes in irradiated reconstruction. METHODS Isogenic male Lewis rats were divided into three groups: fracture, irradiated fracture, and irradiated fracture with stromal vascular fraction treatment. Irradiated groups received a fractioned dose of 35 Gy before mandibular osteotomy. Stromal vascular fraction was harvested from the inguinal fat of isogenic donors, centrifuged, and placed intraoperatively into the osteotomy site. All mandibles were evaluated for bony union and vascularity using micro-computed tomography before histologic analysis. RESULTS Union rates were significantly improved in the irradiated fracture with stromal vascular fraction treatment group (82 percent) compared to the irradiated fracture group (25 percent) and were not statistically different from the fracture group (100 percent). Stromal vascular fraction therapy significantly improved all metrics of bone vascularization compared to the irradiated fracture group and was not statistically different from fracture. Osteocyte proliferation and mature bone formation were significantly reduced in the irradiated fracture group. Bone cellularity and maturity were restored to nonirradiated levels in the irradiated fracture with stromal vascular fraction treatment group despite preoperative irradiation. CONCLUSIONS Vascular and cellular depletion represent principal obstacles in the reconstruction of irradiated bone. This study demonstrates the efficacy of stromal vascular fraction therapy in remediating these damaging effects and provides a promising foundation for future studies aimed at developing noncultured, cell-based therapies for clinical implementation.
Collapse
|
8
|
Overcoming Nuclear Winter: The Cutting-edge Science of Bone Healing and Regeneration in Irradiated Fields. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2021; 9:e3605. [PMID: 34235033 PMCID: PMC8245112 DOI: 10.1097/gox.0000000000003605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/08/2021] [Indexed: 11/25/2022]
Abstract
Background: The incidence of cancer worldwide is expected to be more than 22 million annually by 2030. Approximately half of these patients will likely require radiation therapy. Although radiotherapy has been shown to improve disease control and increase survivorship, it also results in damage to adjacent healthy tissues, including the bone, which can lead to devastating skeletal complications, such as nonunion, pathologic fractures, and osteoradionecrosis. Pathologic fractures and osteoradionecrosis are ominous complications that can result in large bone and soft tissue defects requiring complex reconstruction. Current clinical management strategies for these conditions are suboptimal and dubious at best. The gold standard in treatment of severe radiation injury is free tissue transfer; however, this requires a large operation that is limited to select candidates. Methods: With the goal to expand current treatment options and to assuage the devastating sequelae of radiation injury on surrounding normal tissue, our laboratory has performed years of translational studies aimed at remediating bone healing and regeneration in irradiated fields. Three therapeutics (amifostine, deferoxamine, and adipose-derived stem cells) have demonstrated great promise in promoting healing and regeneration of irradiated bone. Results: Amifostine confers prophylactic protection, whereas deferoxamine and adipose-derived stem cells function to remediate postradiation associated injury. Conclusions: These prospective therapeutics exploit a mechanism attributed to increasing angiogenesis and ultimately function to protect or restore cellularity, normal cellular function, osteogenesis, and bone healing to nonirradiated metrics. These discoveries may offer innovative treatment alternatives to free tissue transfer with the added benefit of potentially preventing and treating osteoradionecrosis and pathologic fractures
Collapse
|
9
|
Noncultured Minimally Processed Adipose-Derived Stem Cells Improve Radiated Fracture Healing. Ann Plast Surg 2021; 85:83-88. [PMID: 32187072 DOI: 10.1097/sap.0000000000002354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Adipose-derived stem cells mitigate deleterious effects of radiation on bone and enhance radiated fracture healing by replacing damaged cells and stimulating angiogenesis. However, adipose-derived stem cell harvest and delivery techniques must be refined to comply with the US Food and Drug Administration restrictions on implantation of cultured cells into human subjects prior to clinical translation. The purpose of this study is to demonstrate the preservation of efficacy of adipose-derived stem cells to remediate the injurious effects of radiation on fracture healing utilizing a novel harvest and delivery technique that avoids the need for cell culture. Forty-four Lewis rats were divided into 4 groups: fracture control (Fx), radiated fracture control (XFx), radiated fracture treated with cultured adipose-derived stem cells (ASC), and radiated fracture treated with noncultured minimally processed adipose-derived stem cells (MP-ASC). Excluding the Fx group, all rats received a fractionated human-equivalent dose of radiation. All groups underwent mandibular osteotomy with external fixation. Following sacrifice on postoperative day 40, union rate, mineralization, and biomechanical strength were compared between groups at P < 0.05 significance. Compared with Fx controls, the XFx group demonstrated decreased union rate (100% vs 20%), bone volume fraction (P = 0.003), and ultimate load (P < 0.001). Compared with XFx controls, the MP-ASC group tripled the union rate (20% vs 60%) and demonstrated statistically significant increases in both bone volume fraction (P = 0.005) and ultimate load (P = 0.025). Compared with the MP-ASC group, the ASC group showed increased union rate (60% vs 100%) and no significant difference in bone volume fraction (P = 0.936) and ultimate load (P = 0.202). Noncultured minimally processed adipose-derived stem cells demonstrate the capacity to improve irradiated fracture healing without the need for cell proliferation in culture. Further refinement of the cell harvest and delivery techniques demonstrated in this report will enhance the ability of noncultured minimally processed adipose-derived stem cells to improve union rate and bone quality, thereby optimizing clinical translation.
Collapse
|
10
|
Seo MH, Lee MY, Eo MY, Lee SK, Woo KM, Kim SM. Development of a standardized mucositis and osteoradionecrosis animal model using external radiation. J Korean Assoc Oral Maxillofac Surg 2020; 46:240-249. [PMID: 32855371 PMCID: PMC7469963 DOI: 10.5125/jkaoms.2020.46.4.240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 11/25/2022] Open
Abstract
Objectives Although the side effects of radiation therapy vary from mucositis to osteomyelitis depending on the dose of radiation therapy, to date, an experimental animal model has not yet been proposed. The aim of this study was to develop an animal model for assessing complications of irradiated bone, especially to quantify the dose of radiation needed to develop a rat model. Materials and Methods Sixteen Sprague-Dawley rats aged seven weeks with a mean weight of 267.59 g were used. Atraumatic extraction of a right mandibular first molar was performed. At one week after the extraction, the rats were randomized into four groups and received a single dose of external radiation administered to the right lower jaw at a level of 14, 16, 18, or 20 Gy, respectively. Clinical alopecia with body weight changes were compared and bony volumetric analysis with micro-computed tomography (CT), histologic analysis with H&E were performed. Results The progression of the skin alopecia was different depending on the irradiation dose. Micro-CT parameters including bone volume, bone volume/tissue volume, bone mineral density, and trabecular spaces, showed no significant differences. The progression of osteoradionecrosis (ORN) along with that of inflammation, fibrosis, and bone resorption, was found with increased osteoclast or fibrosis in the radiated group. As the radiation dose increases, osteoclast numbers begin to decrease and osteoclast tends to increase. Osteoclasts respond more sensitively to the radiation dose, and osteoblasts are degraded at doses above 18 Gy. Conclusion A standardized animal model clinically comparable to ORN of the jaw is a valuable tool that can be used to examine the pathophysiology of the disease and trial any potential treatment modalities. We present a methodology for the use of an experimental rat model that incorporates a guideline regarding radiation dose.
Collapse
Affiliation(s)
- Mi Hyun Seo
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Min Young Lee
- Laboratory Animal Center, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Mi Young Eo
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Suk Keun Lee
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Gangneung, Korea
| | - Kyung Mi Woo
- Department of Pharmacology & Dental Therapeutics, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Soung Min Kim
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| |
Collapse
|
11
|
Dréno M, Bléry P, Guicheux J, Weiss P, Malard O, Espitalier F. Development of a Rat Model of Mandibular Irradiation Sequelae for Preclinical Studies of Bone Repair. Tissue Eng Part C Methods 2020; 26:447-455. [PMID: 32729379 DOI: 10.1089/ten.tec.2020.0109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Repairing mandibular bone defects after radiotherapy of the upper aerodigestive tract is clinically challenging. Although bone tissue engineering has recently generated a number of innovative treatment approaches for osteoradionecrosis (ORN), these modalities must be evaluated preclinically in a relevant, reproducible, animal model. The objective of this study was to evaluate a novel rat model of mandibular irradiation sequelae, with a focus on the adverse effects of radiotherapy on bone structure, intraosseous vascularization, and bone regeneration. Rats were irradiated with a single 80 Gy dose to the jaws. Three weeks after irradiation, mandibular bone defects of different sizes (0, 1, 3, or 5 mm) were produced in each hemimandible. Five weeks after the surgical procedure, the animals were euthanized. Explanted mandibular samples were qualitatively and quantitatively assessed for bone formation, bone structure, and intraosseous vascular volume by using micro-computed tomography, scanning electron microscopy, and histology. Twenty irradiated hemimandibles and 20 nonirradiated hemimandibles were included in the study. The bone and vessel volumes were significantly lower in the irradiated group. The extent of bone remodeling was inversely related to the defect size. In the irradiated group, scanning electron microscopy revealed a large number of polycyclic gaps consistent with periosteocytic lysis (described as being pathognomonic for ORN). This feature was correlated with elevated osteoclastic activity in a histological assessment. In the irradiated areas, the critical-sized defect was 3 mm. Hence, our rat model of mandibular irradiation sequelae showed hypovascularization and osteopenia. Impact statement Repairing mandibular bone defects after radiotherapy of the upper aerodigestive tract is clinically challenging. Novel tissue engineering approaches for healing irradiated bone must first be assessed in animal models. The current rat model of mandibular irradiation sequelae is based on tooth extraction after radiotherapy. However, the mucosal sequelae of radiotherapy often prevent the retention of tissue-engineered biomaterials within the bone defect. We used a submandibular approach to create a new rat model of mandibular irradiation sequelae, which enables the stable retention of biomaterials within the bone defect and should thus facilitate the assessment of bone regeneration.
Collapse
Affiliation(s)
- Marine Dréno
- Service d'ORL et de Chirurgie Cervico-Faciale, Centre Hospitalier Universitaire de Nantes, Nantes, France.,INSERM U1229 RMeS, Université de Nantes, Nantes, France.,PHU4 OTONN, Centre Hospitalier Universitaire de Nantes, Hôtel Dieu, Nantes, France
| | - Pauline Bléry
- INSERM U1229 RMeS, Université de Nantes, Nantes, France.,PHU4 OTONN, Centre Hospitalier Universitaire de Nantes, Hôtel Dieu, Nantes, France.,Service d'Odontologie Restauratrice et Chirurgicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Jérôme Guicheux
- INSERM U1229 RMeS, Université de Nantes, Nantes, France.,PHU4 OTONN, Centre Hospitalier Universitaire de Nantes, Hôtel Dieu, Nantes, France
| | - Pierre Weiss
- INSERM U1229 RMeS, Université de Nantes, Nantes, France.,PHU4 OTONN, Centre Hospitalier Universitaire de Nantes, Hôtel Dieu, Nantes, France.,Service d'Odontologie Restauratrice et Chirurgicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Olivier Malard
- Service d'ORL et de Chirurgie Cervico-Faciale, Centre Hospitalier Universitaire de Nantes, Nantes, France.,INSERM U1229 RMeS, Université de Nantes, Nantes, France.,PHU4 OTONN, Centre Hospitalier Universitaire de Nantes, Hôtel Dieu, Nantes, France
| | - Florent Espitalier
- Service d'ORL et de Chirurgie Cervico-Faciale, Centre Hospitalier Universitaire de Nantes, Nantes, France.,INSERM U1229 RMeS, Université de Nantes, Nantes, France.,PHU4 OTONN, Centre Hospitalier Universitaire de Nantes, Hôtel Dieu, Nantes, France
| |
Collapse
|
12
|
Chen Y, Zong C, Jia J, Liu Y, Zhang Z, Cai B, Tian L. A study on the protective effect of molecular hydrogen on osteoradionecrosis of the jaw in rats. Int J Oral Maxillofac Surg 2020; 49:1648-1654. [PMID: 32451233 DOI: 10.1016/j.ijom.2020.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/04/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022]
Abstract
The aim of this study was to investigate the protective effect of hydrogen in a rat model of osteoradionecrosis of the jaw (ORNJ). The rats and bone marrow-derived mesenchymal stem cells (BMSCs) were pre-treated with hydrogen before receiving irradiation (7Gy per fraction, five fractions in total once a day for rats, 4Gy for BMSCs). Reactive oxygen species (ROS) and cell differentiation were measured in the BMSCs. Also, the radioprotective effect of hydrogen for ORNJ in Sprague-Dawley rats was examined by gross clinical manifestations, micro-computed tomography, and histology. Hydrogen significantly reduced the production of ROS in BMSCs after irradiation. The cell viability was significantly decreased after irradiation (P= 0.001), but pre-treatment with hydrogen before irradiation increased the cell viability (P= 0.025). Hydrogen considerably increased the cellular differentiation potential of the irradiated cells. Comparing with the rats underwent irradiaton only, those rats treated by hydrogen-rich saline significantly appeared improved occlusion, salivation, alopecia, oral ulcer, and less bone necrosis. Myofibroblasts accumulated overwhelmingly in the fibrosis medulla and around the sequestrum after irradiation, and this was decreased in the group pre-treated with hydrogen. Hydrogen may represent a strategy for the prevention and treatment of ORNJ. Its high efficacy and low toxicity suggest possible therapeutic application.
Collapse
Affiliation(s)
- Y Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Centre for Oral Diseases, and Department of Oral and Maxillofacial Surgery, School of Stomatology, the Fourth Military Medical University, Xi'an, China; State Key Laboratory of Military Stomatology and National Clinical Research Centre for Oral Diseases, School of Stomatology, the Fourth Military Medical University, Xi'an, China
| | - C Zong
- State Key Laboratory of Military Stomatology and National Clinical Research Centre for Oral Diseases, and Department of Oral and Maxillofacial Surgery, School of Stomatology, the Fourth Military Medical University, Xi'an, China; State Key Laboratory of Military Stomatology and National Clinical Research Centre for Oral Diseases, School of Stomatology, the Fourth Military Medical University, Xi'an, China
| | - J Jia
- State Key Laboratory of Military Stomatology and National Clinical Research Centre for Oral Diseases, School of Stomatology, the Fourth Military Medical University, Xi'an, China
| | - Y Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Centre for Oral Diseases, and Department of Oral and Maxillofacial Surgery, School of Stomatology, the Fourth Military Medical University, Xi'an, China
| | - Z Zhang
- State Key Laboratory of Military Stomatology and National Clinical Research Centre for Oral Diseases, School of Stomatology, the Fourth Military Medical University, Xi'an, China
| | - B Cai
- State Key Laboratory of Military Stomatology and National Clinical Research Centre for Oral Diseases, and Department of Oral and Maxillofacial Surgery, School of Stomatology, the Fourth Military Medical University, Xi'an, China; State Key Laboratory of Military Stomatology and National Clinical Research Centre for Oral Diseases, School of Stomatology, the Fourth Military Medical University, Xi'an, China
| | - L Tian
- State Key Laboratory of Military Stomatology and National Clinical Research Centre for Oral Diseases, and Department of Oral and Maxillofacial Surgery, School of Stomatology, the Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
13
|
Li J, Yin P, Chen X, Kong X, Zhong W, Ge Y, She Y, Xian X, Qi L, Lin Z, Moe J, Fang S. Effect of α2‑macroglobulin in the early stage of jaw osteoradionecrosis. Int J Oncol 2020; 57:213-222. [PMID: 32377713 PMCID: PMC7252453 DOI: 10.3892/ijo.2020.5051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/30/2020] [Indexed: 12/17/2022] Open
Abstract
Advanced osteoradionecrosis (ORN) is one of the most serious complications in patients with head and neck cancer, resulting in poor prognosis. Numerous studies have therefore focused on the pathogenesis and interventions of ORN early stage. The present study aimed to investigate whether α2-macroglobulin (α2M) could prevent early-stage jaw osteoradionecrosis caused by radiotherapy (RT). Following local injection of α2M, a single dose of 30 Gy was delivered to rats for pathological exploration. For 28 days, the irradiated mandible and soft tissues were examined for potential changes. Furthermore, primary human bone marrow mesenchymal stem cells pretreated with α2M followed by 8 Gy irradiation (IR) were also used. Tartrate-resistant acid phosphatase assay, terminal uridine deoxynucleotidyl nick end labeling assay and immunohistochemical staining were performed on irradiated mandibular bone, tongue or buccal mucosa tissues from rats. Cell proliferation was assessed by evaluating the cell morphology by microscopy and by using the cell counting kit-8. Fluorescence staining, flow cytometry and western blotting were conducted to detect the reactive oxygen species level, cell apoptosis and protein expression of superoxide dismutase 2 (SOD2), heme oxygenase-1 (HO-1) and phosphorylated Akt following irradiation. The results demonstrated that α2M attenuated physical inflammation, osteoclasts number and fat vacuole accumulation in mandibular bone marrow and bone marrow cell apoptosis following IR in vivo. Furthermore, α2M pretreatment suppressed the expression of 8-hydroxy-2′-deoxyguanosine in mandibular bone and tongue paraffin embedded sections, which is a marker of oxidative damage, and increased SOD2 expression in mucosa and tongue paraffin embedded sections. The present study demonstrated the efficient regulation of antioxidative enzymes, including SOD2 and heme oxygenase-1, and reduction in oxidative damage by α2M. In addition, in vitro results confirmed that α2M may protect cells from apoptosis and suppress reactive oxygen species accumulation. Overall, the present study demonstrated that α2M treatment may exert some radioprotective effects in early-stage ORN via antioxidant mechanisms, and may therefore be considered as a potential alternative molecule in clinical prophylactic treatments.
Collapse
Affiliation(s)
- Jie Li
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Ping Yin
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xueying Chen
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xiangbo Kong
- Department of Stomatology, Sun Yat‑sen Memorial Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Wanzhen Zhong
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Yaping Ge
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Yangyang She
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xuehong Xian
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Lei Qi
- Department of Oral and Cranio‑maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai 200001, P.R. China
| | - Zhi Lin
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Justine Moe
- Department of Oral and Maxillofacial Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Silian Fang
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| |
Collapse
|
14
|
Implantable hyaluronic acid-deferoxamine conjugate prevents nonunions through stimulation of neovascularization. NPJ Regen Med 2019; 4:11. [PMID: 31123600 PMCID: PMC6529413 DOI: 10.1038/s41536-019-0072-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 04/08/2019] [Indexed: 01/05/2023] Open
Abstract
Approximately 6.3 million fractures occur in the U.S. annually, with 5–10% resulting in debilitating nonunions. A major limitation to achieving successful bony union is impaired neovascularization. To augment fracture healing, we designed an implantable drug delivery technology containing the angiogenic stimulant, deferoxamine (DFO). DFO activates new blood vessel formation through iron chelation and upregulation of the HIF-1α pathway. However, due to its short half-life and rapid clearance, maintaining DFO at the callus site during peak fracture angiogenesis has remained challenging. To overcome these limitations, we composed an implantable formulation of DFO conjugated to hyaluronic acid (HA). This compound immobilizes DFO within the fracture callus throughout the angiogenic window, making it a high-capacity iron sponge that amplifies blood vessel formation and prevents nonunions. We investigated implanted HA-DFO’s capacity to facilitate fracture healing in the irradiated rat mandible, a model whereby nonunions routinely develop secondary to obliteration of vascularity. HA-DFO implantation significantly improved radiomorphometrics and metrics of biomechanical strength. In addition, HA-DFO treated mandibles exhibited a remarkable 91% bone union rate, representing a 3.5-fold improvement over non-treated/irradiated controls (20% bone union rate). Collectively, our work proposes a unique methodology for the targeted delivery of DFO to fracture sites in order to facilitate neovascularization. If these findings are successfully translated into clinical practice, millions of patients will benefit from the prevention of nonunions.
Collapse
|
15
|
Li J, Kong XB, Chen XY, Zhong WZ, Chen JY, Liu Y, Yin P, Fang SL. Protective role of α2-macroglobulin against jaw osteoradionecrosis in a preclinical rat model. J Oral Pathol Med 2018; 48:166-173. [PMID: 30506608 DOI: 10.1111/jop.12809] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/05/2018] [Accepted: 11/22/2018] [Indexed: 01/03/2023]
Abstract
OBJECTIVE We have previously demonstrated the effect of alpha-2-macroglobulin (α2M) in the remediation of radiation-induced cellular damage. Here, we investigated the protective effects of α2M in a preclinical rat model of jaw osteoradionecrosis (ORN). METHODS Eighteen rats were divided randomly into three groups: the control group, the radiation therapy (RT) alone group, and the radiated mandibles pretreated with α2M (α2M + RT) group. One month after radiation, all left molar teeth were extracted. After another 3 months, the animals were sacrificed and body weight, histopathology, microcomputed tomography and immunofluorescence were evaluated in all groups. RESULTS The RT group showed serious alopecia, bone exposure, inflammation, necrosis, fibrosis, and the absence of new bone formation within the socket. The α2M + RT group exhibited less alopecia than the RT group and slight inflammation and fibrosis in the bone marrow cavity. The cortical bone was similar to normal bone tissue. Interestingly, compared with RT group, serum superoxide dismutase levels in the α2M + RT group increased at the 1th day (P = 0.037), 14th day (P = 0.012), while reactive oxygen species levels clearly decreased at the 1th day (P< 0.001), 14th day (P = 0.007), and 28th day (P = 0.013). CONCLUSIONS A clinically translational model of jaw ORN was successfully established and the application of α2M prior to radiation protected the bone from being injured by the radiation, possibly related to oxidative stress.
Collapse
Affiliation(s)
- Jie Li
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiang-Bo Kong
- Department of Stomatology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xue-Ying Chen
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wan-Zhen Zhong
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jie-Yu Chen
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yang Liu
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ping Yin
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Si-Lian Fang
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
16
|
Radioprotection With Amifostine Enhances Bone Strength and Regeneration and Bony Union in a Rat Model of Mandibular Distraction Osteogenesis. Ann Plast Surg 2018; 80:176-180. [PMID: 28930778 DOI: 10.1097/sap.0000000000001209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Using distraction osteogenesis (DO) to regenerate robust endogenous bone could greatly enhance postoncologic reconstruction of head and neck cancer. However, radiation (XRT) corrosive effects still preclude DO's immense potential. We posit that adjunctive pretreatment with the radioprotectant amifostine (AMF) can optimize wound healing and allow for successful DO with quantifiable enhancements in bony union and strength despite previous surgical bed irradiation. METHODS Two groups of murine left hemimandibles were exposed to a human equivalent radiation dosage fractionated over 5 daily doses of 7 Gy. AMF-XRT-DO (n = 30) received AMF before radiation, whereas XRT-DO (n = 22) was untreated. All animals underwent left hemimandibular osteotomy and external fixator placement, followed by distraction to a 5.1-mm gap. Left hemimandibles were harvested and mechanically tested for parameters of strength, yield, and breaking load. RESULTS Radiation-related complications such as severe alopecia were significantly increased in XRT-DO compared with the AMF-treated group (P = 0.001), whereas infection and death were comparable (P = 0.318). Upon dissection, bony defects were grossly visible in XRT-DO distraction gap compared with AMF-XRT-DO, which exhibited significantly more complete unions (P = 0.004). Those results were significantly increased in the specimens prophylactically treated with AMF (yield: 39.41 N vs 21.78 N, P = 0.023; breaking load: 61.74 N vs 34.77 N, P = 0.044; respectively). CONCLUSIONS Our study revealed that AMF enhances biomechanical strength, regeneration, and bony union after radiation in a murine model of DO. The use of prophylactic AMF in combination with DO offers the promise of an alternative reconstructive option for patients afflicted with head and neck cancer.
Collapse
|
17
|
Significant Differences in the Bone of an Isogenic Inbred Versus Nonisogenic Outbred Murine Mandible: A Study in Rigor and Reproducibility. J Craniofac Surg 2017; 28:915-919. [PMID: 28207468 DOI: 10.1097/scs.0000000000003530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Inattention to differences between animal strains is a potential cause of irreproducibility of basic science investigations. Accordingly, the authors' laboratory sought to ensure that cross-comparisons of results generated from studies of mandibular physiology utilizing the Sprague Dawley and Lewis rat strains are valid. The authors specifically investigated baseline histomorphometrics, bone mineral density, and biomechanical strength of the unaltered endogenous mandibles of the inbred, isogenic Lewis rat, and the outbred, nonisogenic Sprague Dawley rat to determine if they are indeed equal. The authors hypothesized that little difference would be found within these metrics.The authors' study utilized 20 male Lewis and Sprague Dawley rats, which underwent no manipulation other than final dissection and analysis. Ten rats from each strain underwent bone mineral density and biomechanical strength analysis. The remaining rats underwent histological analysis. Descriptive and bivariate statistics were computed and the P value was set at 0.05.Lewis rats had a significantly greater number of empty lacunae. Sprague Dawley rats exhibited a significantly greater ratio of bone volume-to-total volume, bone mineral density, tissue mineral density, bone volume fraction, and total mineral content. No differences were found during biomechanical testing.This study demonstrates that differences exist between the Lewis and Sprague Dawley rat within unaltered baseline mandibular tissue. However, these differences appear to have limited functional impact, as demonstrated by similar biomechanical strength metrics. Other specific differences not addressed in this manuscript may exist. However, the authors believe that researchers may confidently cross-compare results between the 2 strains, while taking into account the differences found within this study.
Collapse
|
18
|
Kang SY, Deshpande SS, Zheutlin AR, Donneys A, Rodriguez JJ, Nelson NS, Felice PA, Chepeha DB, Buchman SR. Role of parathyroid hormone in regeneration of irradiated bone in a murine model of mandibular distraction osteogenesis. Head Neck 2016; 39:464-470. [PMID: 27779806 DOI: 10.1002/hed.24612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/04/2016] [Accepted: 09/05/2016] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The purpose of this study was to measure the histologic and histomorphometric effects of parathyroid hormone (PTH) treatment on irradiated bone undergoing distraction osteogenesis (DO). METHODS Thirty-four rats were divided into 3 groups. The control group underwent DO and the radiation control group underwent radiotherapy (RT) before DO. The PTH group underwent RT and received PTH during DO. Quantitative histology and histomorphometry were performed. RESULTS RT resulted in a depletion of osteocytes and increase in empty lacunae. Treatment with PTH resulted in an increase in osteocyte counts and decrease in empty lacunae (p < .05), restoring osteocytes to levels seen in nonradiated bone (p = .121). RT decreased bone volume to tissue volume (BV-TV) ratio and increased osteoid volume to tissue volume (OV-TV) ratio, signifying increased immature bone formation. PTH treatment restored OV-TV ratio to that observed in nonradiated bone. CONCLUSION PTH treatment of irradiated bone enhanced bone regeneration and restored osteocyte counts and OV-TV ratio to levels comparable to nonradiated bone. © 2016 Wiley Periodicals, Inc. Head Neck 39: 464-470, 2017.
Collapse
Affiliation(s)
- Stephen Y Kang
- Craniofacial Research Laboratory, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Sagar S Deshpande
- Craniofacial Research Laboratory, University of Michigan Medical School, Ann Arbor, Michigan
| | - Alexander R Zheutlin
- Craniofacial Research Laboratory, University of Michigan Medical School, Ann Arbor, Michigan
| | - Alexis Donneys
- Craniofacial Research Laboratory, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jose J Rodriguez
- Craniofacial Research Laboratory, University of Michigan Medical School, Ann Arbor, Michigan
| | - Noah S Nelson
- Craniofacial Research Laboratory, University of Michigan Medical School, Ann Arbor, Michigan
| | - Peter A Felice
- Craniofacial Research Laboratory, University of Michigan Medical School, Ann Arbor, Michigan
| | - Douglas B Chepeha
- Department of Otolaryngology-Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Steven R Buchman
- Craniofacial Research Laboratory, University of Michigan Medical School, Ann Arbor, Michigan
- Section of Plastic Surgery, University of Michigan Health System, Ann Arbor, Michigan
| |
Collapse
|
19
|
A Comparison of Vascularity, Bone Mineral Density Distribution, and Histomorphometrics in an Isogenic Versus an Outbred Murine Model of Mandibular Distraction Osteogenesis. J Oral Maxillofac Surg 2016; 74:2055-65. [PMID: 27206629 DOI: 10.1016/j.joms.2016.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/16/2016] [Accepted: 04/18/2016] [Indexed: 11/22/2022]
Abstract
PURPOSE The vascularity, bone mineral density distribution, and histomorphometric data between the inbred, isogenic Lewis rat and the outbred, nonisogenic Sprague Dawley rat within mandibular distraction osteogenesis (MDO) were evaluated to allow future researchers to compare the results generated from these 2 animals. We hypothesized that little difference would be found between the 2 strains within these metrics. MATERIALS AND METHODS We implemented a comparative study between the Lewis and Sprague Dawley rat strains within MDO. The sample was composed of 17 male Lewis and 17 male Sprague Dawley rats that underwent surgical external fixation and distraction. The rats' hemimandibles were distracted to a total distance of 5.1 mm. After 28 days of consolidation, 9 rats from each group underwent bone mineral density distribution analysis. The remaining rats from each group were analyzed for the vascular and histologic metrics. Descriptive and bivariate statistics were computed, and the P value was set at .05. RESULTS We demonstrated successful MDO in all the rats, with no significant difference found in the histologic or bone mineral density distribution metrics. No significant differences were found in any of the vascular metrics, with the exception of vascular separation, which was not normalized to the mandibular volume (P = .048). CONCLUSIONS The results of the present study have demonstrated that little dissimilarity exists between the isogenic Lewis and outbred Sprague Dawley models of MDO. Thus, researchers can confidently compare the gross results between the 2 strains, with consideration of the very small differences between the 2 models. For studies that require an isogenic strain, the Lewis rat is an apt surrogate for the Sprague Dawley strain.
Collapse
|
20
|
Zong C, Cai B, Wen X, Alam S, Chen Y, Guo Y, Liu Y, Tian L. The role of myofibroblasts in the development of osteoradionecrosis in a newly established rabbit model. J Craniomaxillofac Surg 2016; 44:725-33. [PMID: 27150352 DOI: 10.1016/j.jcms.2016.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/01/2016] [Accepted: 03/14/2016] [Indexed: 11/29/2022] Open
Abstract
This study aimed to establish a proper animal model of osteoradionecrosis of jaws (ORNJ) and to observe preliminarily the characteristics of myofibroblasts, the key effector cell of fibrosis, in ORNJ. Rabbit mandibles were irradiated at three different doses based on a human equivalent radiation schedule, and examined by gross manifestation, single-photon emission computed tomography (SPECT), micro-computed tomography, sequential fluorochrome labeling, and histology. Immunohistochemistry staining of α-SMA was applied to detect the existence of myofibroblasts. The exposed necrotic bone, which is the main indication of ORNJ, started to be observed at all rabbits at 9 Gy. With the radiation dose increasing, the microarchitecture of the irradiated mandibles was more destroyed, the metabolism and mineralization of the irradiated mandibles diminished, the osteocytes number decreased, and more mature bones were substituted by fibrosis in the irradiated mandibles. In addition, as the radiation dose increased, the myofibroblast number increased and collected around the separated sequestrum, which indicated that myofibroblasts might relate to the pathogenesis of ORNJ. In summary, a clinically translational ORNJ model was successfully established in our study, and the role of myofibroblasts in the pathogenesis of ORNJ is described for the first time.
Collapse
Affiliation(s)
- Chunlin Zong
- Department of Cranio-facial Trauma and Orthognathic Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China; The State Key Laboratory of Military Stomatology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Bolei Cai
- Department of Cranio-facial Trauma and Orthognathic Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China; The State Key Laboratory of Military Stomatology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Xinxin Wen
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Syed Alam
- National Health Service Lothian, West Lothian, United Kingdom
| | - Yuanli Chen
- Department of Cranio-facial Trauma and Orthognathic Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China; The State Key Laboratory of Military Stomatology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Yuxuan Guo
- Department of Cranio-facial Trauma and Orthognathic Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China; The State Key Laboratory of Military Stomatology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Yanpu Liu
- Department of Cranio-facial Trauma and Orthognathic Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China; The State Key Laboratory of Military Stomatology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Lei Tian
- Department of Cranio-facial Trauma and Orthognathic Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China; The State Key Laboratory of Military Stomatology, School of Stomatology, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
21
|
Bléry P, Espitalier F, Hays A, Crauste E, Demarquay C, Pilet P, Sourice S, Guicheux J, Malard O, Benderitter M, Weiss P, Mathieu N. Development of mandibular osteoradionecrosis in rats: Importance of dental extraction. J Craniomaxillofac Surg 2015; 43:1829-36. [PMID: 26433771 DOI: 10.1016/j.jcms.2015.08.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/10/2015] [Accepted: 08/17/2015] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVES To develop an animal model of mandibular osteoradionecrosis (ORN) using a high-energy radiation source (as used in human therapeutics) and to assess the role of tooth extraction on ORN development. MATERIALS AND METHODS (STUDY DESIGN) Ten animals were irradiated with a single 35- or 50-Gy dose. Three weeks later, the second left mandibular molar was extracted from three animals in each group. Nine weeks after irradiation, the animals were euthanized, with an injection of contrast agent in the bloodstream to highlight vascularization. Mandibles were harvested and studied using micro-CT, histology, tartrate-resistant acid phosphatase activity and scanning electron microscopy. RESULTS This study demonstrates that a single 50-Gy dose associated with molar extraction is necessary for ORN development. In these conditions, absence of healing of the mucosa and bone, dental effects, fibrosis, an increase in osteoclast activity and a decrease in vascularization were observed. We also determined that molar extraction increases the impact of the cellular effects of radiation. CONCLUSION The mandibular ORN animal model was validated after 50-Gy irradiation and molar extraction. The results of this study therefore support an animal ORN model and tissue engineering strategies will now be developed to regenerate bone for patients with head and neck cancer.
Collapse
Affiliation(s)
- Pauline Bléry
- Inserm U791 (Head: Prof. P. Weiss), LIOAD, Faculté de Chirurgie Dentaire, 1 Place Alexis Ricordeau, 44042 Nantes Cedex 1, France; Faculté de Chirurgie Dentaire (Head: Prof. Y. Amouriq), Université de Nantes, 1 Place Alexis Ricordeau, 44042 Nantes Cedex 1, France; IRCCyN, CNRS 6597, IVC (Head: Prof. Patrick Le Callet), Polytech'Nantes, rue Christian Pauc, 44306 Nantes Cedex 3, France; CHU Nantes, Pôle Hospitalo-Universitaire 4 OTONN (Head: Dr. G. Amador del Valle), 1 Place Alexis Ricordeau, 44093 Nantes Cedex 1, France; Service d'Odontologie Restauratrice et Chirurgicale (Head: Prof. Y. Amouriq), CHU de Nantes, PHU4OTONN, 1 Place Alexis Ricordeau, 44093 Nantes Cedex 1, France.
| | - Florent Espitalier
- Inserm U791 (Head: Prof. P. Weiss), LIOAD, Faculté de Chirurgie Dentaire, 1 Place Alexis Ricordeau, 44042 Nantes Cedex 1, France; CHU Nantes, Pôle Hospitalo-Universitaire 4 OTONN (Head: Dr. G. Amador del Valle), 1 Place Alexis Ricordeau, 44093 Nantes Cedex 1, France; Service d'Oto-Rhino-Laryngologie et de Chirurgie Cervico-Faciale (Head: Prof. P. Bordure), CHU de Nantes, Pôle Hospitalo-Universiatire 4 OTONN, France
| | - Alexandra Hays
- Inserm U791 (Head: Prof. P. Weiss), LIOAD, Faculté de Chirurgie Dentaire, 1 Place Alexis Ricordeau, 44042 Nantes Cedex 1, France
| | - Eléonore Crauste
- Inserm U791 (Head: Prof. P. Weiss), LIOAD, Faculté de Chirurgie Dentaire, 1 Place Alexis Ricordeau, 44042 Nantes Cedex 1, France
| | - Christelle Demarquay
- IRSN Institut de Radioprotection et de Sûreté Nucléaire, IRSN/PRP-HOM/SRBE/LR2I (Head: Dr. M. Benderitter), 31 avenue de la division Leclerc BP17, 92260 Fontenay aux Roses, France
| | - Paul Pilet
- Inserm U791 (Head: Prof. P. Weiss), LIOAD, Faculté de Chirurgie Dentaire, 1 Place Alexis Ricordeau, 44042 Nantes Cedex 1, France; CHU Nantes, Pôle Hospitalo-Universitaire 4 OTONN (Head: Dr. G. Amador del Valle), 1 Place Alexis Ricordeau, 44093 Nantes Cedex 1, France
| | - Sophie Sourice
- Inserm U791 (Head: Prof. P. Weiss), LIOAD, Faculté de Chirurgie Dentaire, 1 Place Alexis Ricordeau, 44042 Nantes Cedex 1, France
| | - Jérôme Guicheux
- Inserm U791 (Head: Prof. P. Weiss), LIOAD, Faculté de Chirurgie Dentaire, 1 Place Alexis Ricordeau, 44042 Nantes Cedex 1, France; CHU Nantes, Pôle Hospitalo-Universitaire 4 OTONN (Head: Dr. G. Amador del Valle), 1 Place Alexis Ricordeau, 44093 Nantes Cedex 1, France
| | - Olivier Malard
- Inserm U791 (Head: Prof. P. Weiss), LIOAD, Faculté de Chirurgie Dentaire, 1 Place Alexis Ricordeau, 44042 Nantes Cedex 1, France; CHU Nantes, Pôle Hospitalo-Universitaire 4 OTONN (Head: Dr. G. Amador del Valle), 1 Place Alexis Ricordeau, 44093 Nantes Cedex 1, France; Service d'Oto-Rhino-Laryngologie et de Chirurgie Cervico-Faciale (Head: Prof. P. Bordure), CHU de Nantes, Pôle Hospitalo-Universiatire 4 OTONN, France
| | - Marc Benderitter
- IRSN Institut de Radioprotection et de Sûreté Nucléaire, IRSN/PRP-HOM/SRBE/LR2I (Head: Dr. M. Benderitter), 31 avenue de la division Leclerc BP17, 92260 Fontenay aux Roses, France
| | - Pierre Weiss
- Inserm U791 (Head: Prof. P. Weiss), LIOAD, Faculté de Chirurgie Dentaire, 1 Place Alexis Ricordeau, 44042 Nantes Cedex 1, France; Faculté de Chirurgie Dentaire (Head: Prof. Y. Amouriq), Université de Nantes, 1 Place Alexis Ricordeau, 44042 Nantes Cedex 1, France; CHU Nantes, Pôle Hospitalo-Universitaire 4 OTONN (Head: Dr. G. Amador del Valle), 1 Place Alexis Ricordeau, 44093 Nantes Cedex 1, France
| | - Noëlle Mathieu
- IRSN Institut de Radioprotection et de Sûreté Nucléaire, IRSN/PRP-HOM/SRBE/LR2I (Head: Dr. M. Benderitter), 31 avenue de la division Leclerc BP17, 92260 Fontenay aux Roses, France
| |
Collapse
|
22
|
Donneys A, Blough JT, Nelson NS, Perosky JE, Deshpande SS, Kang SY, Felice PA, Figueredo C, Peterson JR, Kozloff KM, Levi B, Chepeha DB, Buchman SR. Translational treatment paradigm for managing non-unions secondary to radiation injury utilizing adipose derived stem cells and angiogenic therapy. Head Neck 2015; 38 Suppl 1:E837-43. [PMID: 25917284 DOI: 10.1002/hed.24110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2015] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Bony non-unions arising in the aftermath of collateral radiation injury are commonly managed with vascularized free tissue transfers. Unfortunately, these procedures are invasive and fraught with attendant morbidities. This study investigated a novel, alternative treatment paradigm utilizing adipose-derived stem cells (ASCs) combined with angiogenic deferoxamine (DFO) in the rat mandible. METHODS Rats were exposed to a bioequivalent dose of radiation and mandibular osteotomy. Those exhibiting non-unions were subsequently treated with surgical debridement alone or debridement plus combination therapy. Radiographic and biomechanical outcomes were assessed after healing. RESULTS Significant increases in biomechanical strength and radiographic metrics were observed in response to combination therapy (p < .05). Importantly, combined therapy enabled a 65% reduction in persisting non-unions when compared to debridement alone. CONCLUSION We support the continued investigation of this promising combination therapy in its potential translation for the management of radiation-induced bony pathology. © 2015 Wiley Periodicals, Inc. Head Neck 38: E837-E843, 2016.
Collapse
Affiliation(s)
- Alexis Donneys
- Craniofacial Research Laboratory, Plastic Surgery Section, University of Michigan, Ann Arbor, Michigan
| | - Jordan T Blough
- Craniofacial Research Laboratory, Plastic Surgery Section, University of Michigan, Ann Arbor, Michigan
| | - Noah S Nelson
- Craniofacial Research Laboratory, Plastic Surgery Section, University of Michigan, Ann Arbor, Michigan
| | - Joseph E Perosky
- Orthopedic Research Laboratories, Department of Orthopedic Surgery, University of Michigan, Ann Arbor, Michigan
| | - Sagar S Deshpande
- Craniofacial Research Laboratory, Plastic Surgery Section, University of Michigan, Ann Arbor, Michigan
| | - Stephen Y Kang
- Department of Otolaryngology/Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
| | - Peter A Felice
- Craniofacial Research Laboratory, Plastic Surgery Section, University of Michigan, Ann Arbor, Michigan.,Department of General Surgery, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Christian Figueredo
- Craniofacial Research Laboratory, Plastic Surgery Section, University of Michigan, Ann Arbor, Michigan
| | - Jonathan R Peterson
- Craniofacial Research Laboratory, Plastic Surgery Section, University of Michigan, Ann Arbor, Michigan
| | - Kenneth M Kozloff
- Orthopedic Research Laboratories, Department of Orthopedic Surgery, University of Michigan, Ann Arbor, Michigan
| | - Benjamin Levi
- Craniofacial Research Laboratory, Plastic Surgery Section, University of Michigan, Ann Arbor, Michigan
| | - Douglas B Chepeha
- Department of Otolaryngology/Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
| | - Steven R Buchman
- Craniofacial Research Laboratory, Plastic Surgery Section, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
23
|
Monson LA, Jing XL, Donneys A, Farberg AS, Buchman SR. Dose-response effect of human equivalent radiation in the mandible. J Craniofac Surg 2015; 24:1593-8. [PMID: 24036733 DOI: 10.1097/scs.0b013e31826cfeea] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Despite widespread use of adjuvant irradiation for head and neck cancer, the extent of damage to the underlying bone is not fully understood but is associated with pathologic fractures, nonunion, and osteoradionecrosis. The authors' laboratory previously demonstrated that radiation significantly impedes new bone formation in the murine mandible. We hypothesize that the detrimental effects of human equivalent radiation on the murine mandible results in a dose-dependent degradation in traditional micro-computed tomography (micro-CT) metrics. METHODS Fifteen male Sprague-Dawley rats were randomized into 3 radiation dosage groups: low (5.91 Gy), middle (7 Gy), and high (8.89 Gy), delivered in 5 daily fractions. These dosages approximated 75%, 100%, and 150%, respectively, of the biologically equivalent dose that the human mandible receives during radiation treatment. Hemimandibles were harvested 56 days after radiation and scanned using micro-CT. Bone mineral density, tissue mineral density, and bone volume fraction were measured along with microdensitometry measurements. RESULTS Animals demonstrated dose-dependent adverse effects of mucositis, alopecia, weight loss, and mandibular atrophy with increasing radiation. Traditional micro-CT parameters were not sensitive enough to demonstrate statistically significant differences between the radiated groups; however, microdensitometry analysis showed clear differences between radiated groups and statistically significant changes between radiated and nonradiated groups. CONCLUSIONS The authors report dose-dependent and clinically significant adverse effects of fractionated human equivalent radiation to the murine mandible. The authors further report the limited capacity of traditional micro-CT metrics to adequately capture key changes in bone composition and present microdensitometric histogram analysis to demonstrate significant radiation-induced changes in mineralization patterns.
Collapse
Affiliation(s)
- Laura A Monson
- From the *University of Pittsburgh, Pittsburgh, Pennsylvania; and †University of Michigan, Ann Arbor, Michigan
| | | | | | | | | |
Collapse
|
24
|
Hyperbaric oxygen therapy as a prevention modality for radiation damage in the mandibles of mice. J Craniomaxillofac Surg 2015; 43:214-9. [DOI: 10.1016/j.jcms.2014.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 09/09/2014] [Accepted: 11/12/2014] [Indexed: 01/01/2023] Open
|
25
|
Donneys A, Nelson NS, Page EE, Deshpande SS, Felice PA, Tchanque-Fossuo CN, Spiegel JP, Buchman SR. Targeting angiogenesis as a therapeutic means to reinforce osteocyte survival and prevent nonunions in the aftermath of radiotherapy. Head Neck 2014; 37:1261-7. [PMID: 24801669 DOI: 10.1002/hed.23744] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/19/2014] [Accepted: 05/03/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Radiotherapy (XRT) exerts detrimental collateral effects on bone tissue through mechanisms of vascular damage and impediments to osteocytes, ultimately predisposing patients to the debilitating problems of late pathologic fractures and nonunions. We posit that angiogenic therapy will reverse these pathologic effects in a rat model of radiated fracture healing. METHODS Three groups of rats underwent mandibular osteotomy. Radiated groups received a fractionated 35-Gy dose before surgery. The deferoxamine (DFO) group received local injections postoperatively. A 40-day healing period was allowed before histology. Analysis of variance (ANOVA; p < .05) was used for group comparisons. RESULTS Radiated fractures revealed a significantly decreased osteocyte count and corresponding increase in empty lacunae when compared to nonradiated fractures (p = .001). With the addition of DFO, these differences were not appreciated. Further, a 42% increase in bony unions was observed after DFO therapy. CONCLUSION Targeting angiogenesis is a useful means for promoting osteocyte survival and preventing bone pathology after XRT.
Collapse
Affiliation(s)
- Alexis Donneys
- Craniofacial Research Laboratory, Plastic Surgery Section, University of Michigan, Ann Arbor, Michigan
| | - Noah S Nelson
- Craniofacial Research Laboratory, Plastic Surgery Section, University of Michigan, Ann Arbor, Michigan
| | - Erin E Page
- Craniofacial Research Laboratory, Plastic Surgery Section, University of Michigan, Ann Arbor, Michigan
| | - Sagar S Deshpande
- Craniofacial Research Laboratory, Plastic Surgery Section, University of Michigan, Ann Arbor, Michigan
| | - Peter A Felice
- Craniofacial Research Laboratory, Plastic Surgery Section, University of Michigan, Ann Arbor, Michigan.,Department of General Surgery, University of South Carolina School of Medicine, Columbia, South Carolina
| | | | - Joshua P Spiegel
- Craniofacial Research Laboratory, Plastic Surgery Section, University of Michigan, Ann Arbor, Michigan
| | - Steven R Buchman
- Craniofacial Research Laboratory, Plastic Surgery Section, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
26
|
Yuhasz MM, Koch FP, Kwiatkowski A, Young C, Clune J, Travieso R, Wong K, Van Houten J, Steinbacher DM. Comparing calvarial transport distraction with and without radiation and fat grafting. J Craniomaxillofac Surg 2014; 42:1412-22. [PMID: 24864072 DOI: 10.1016/j.jcms.2014.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 11/26/2022] Open
Abstract
The purpose of this study is to: a) assess transport distraction to reconstruct cranial defects in radiated and non-radiated fields b) examine adipose grafting's effect on the bony regenerate and overlying wound, and c) elucidate sources of bone formation during transport distraction osteogenesis. Twenty-three male New Zealand white rabbits (3 months; 3.5 kg) were used, 10 non-irradiated and 13 irradiated (17 treatment, 6 control) with a one-time fraction of 35 Gy. A 16 × 16 mm defect was abutted by a 10 × 16 mm transport disc 5 weeks after irradiation, and 11 animals were fat grafted at the distraction site. Latency (1 day), distraction (1.5 mm/day), and consolidation (4 weeks) followed. Fluorochromes were injected subcutaneously and microCT, fluorescence, and histology assessed. In distracted animals without fat grafting, bone density measured 701.87 mgHA/ccm and 2271.95 mgHA/ccm in irradiated and non-irradiated animals. In distracted animals with fat grafting, bone density measured 703.23 mgHA/ccm and 2254.27 mgHA/ccm in irradiated and non-irradiated animals. Fluorescence revealed ossification emanating from the dura, periosteum, and transport segment with decreased formation in irradiated animals. Transport distraction is possible for cranial reconstruction in irradiated fields but short-term osseous fill is significantly diminished. Adipose grafting enhances wound healing in previously irradiated fields but does not enhance ossification.
Collapse
Affiliation(s)
- Mikell M Yuhasz
- Section of Plastic & Reconstructive Surgery, Yale School of Medicine, United States; Yale University School of Medicine, Department of Plastic and Reconstructive Surgery (John Persing, MD, Section Chief), 3rd Floor, Boardman Building, 330 Cedar Street, New Haven, CT 06520, United States
| | - Felix P Koch
- Oral and Maxillofacial Surgery, University Medical Centre Mainz & Research Fellow Plastic Surgery, Yale School of Medicine, United States; Yale University School of Medicine, Department of Plastic and Reconstructive Surgery (John Persing, MD, Section Chief), 3rd Floor, Boardman Building, 330 Cedar Street, New Haven, CT 06520, United States
| | - Anna Kwiatkowski
- Section of Plastic & Reconstructive Surgery, Yale School of Medicine, United States; Yale University School of Medicine, Department of Plastic and Reconstructive Surgery (John Persing, MD, Section Chief), 3rd Floor, Boardman Building, 330 Cedar Street, New Haven, CT 06520, United States
| | - Calvin Young
- Section of Plastic & Reconstructive Surgery, Yale School of Medicine, United States; Yale University School of Medicine, Department of Plastic and Reconstructive Surgery (John Persing, MD, Section Chief), 3rd Floor, Boardman Building, 330 Cedar Street, New Haven, CT 06520, United States
| | - James Clune
- Section of Plastic & Reconstructive Surgery, Yale School of Medicine, United States; Yale University School of Medicine, Department of Plastic and Reconstructive Surgery (John Persing, MD, Section Chief), 3rd Floor, Boardman Building, 330 Cedar Street, New Haven, CT 06520, United States
| | - Rob Travieso
- Section of Plastic & Reconstructive Surgery, Yale School of Medicine, United States; Yale University School of Medicine, Department of Plastic and Reconstructive Surgery (John Persing, MD, Section Chief), 3rd Floor, Boardman Building, 330 Cedar Street, New Haven, CT 06520, United States
| | - Kenneth Wong
- Section of Plastic & Reconstructive Surgery, Yale School of Medicine, United States; Yale University School of Medicine, Department of Plastic and Reconstructive Surgery (John Persing, MD, Section Chief), 3rd Floor, Boardman Building, 330 Cedar Street, New Haven, CT 06520, United States
| | - Joshua Van Houten
- Yale Core Center for Musculoskeletal Disorders, United States; Yale University School of Medicine, Department of Plastic and Reconstructive Surgery (John Persing, MD, Section Chief), 3rd Floor, Boardman Building, 330 Cedar Street, New Haven, CT 06520, United States
| | - Derek M Steinbacher
- Section of Plastic & Reconstructive Surgery, Director of Craniofacial Program, Yale School of Medicine, United States; Yale University School of Medicine, Department of Plastic and Reconstructive Surgery (John Persing, MD, Section Chief), 3rd Floor, Boardman Building, 330 Cedar Street, New Haven, CT 06520, United States.
| |
Collapse
|
27
|
Amifostine protects vascularity and improves union in a model of irradiated mandibular fracture healing. Plast Reconstr Surg 2014; 132:1542-1549. [PMID: 24281582 DOI: 10.1097/prs.0b013e3182a80766] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Pathologic fractures of the mandible can be devastating to cancer patients and are due in large part to the pernicious effects of irradiation on bone vascularity. The authors' aim was to ascertain whether amifostine, a radioprotective drug, will preserve vascularity and improve bone healing in a murine model of irradiated mandibular fracture repair. METHODS Rats were randomized into three groups: nonirradiated fracture (n = 9), irradiation/fracture (n = 5), and amifostine/irradiation/fracture (n = 7). Animals in the irradiation groups underwent a human equivalent dose of radiation directed at the left hemimandible. Animals treated in the amifostine group received amifostine concomitantly with radiation. All animals underwent unilateral left mandibular osteotomy with external fixation set to a 2.1-mm fracture gap. Fracture healing was allowed for 40 days before perfusion with Microfil. Vascular radiomorphometrics were quantified with micro-computed tomography. RESULTS When compared with the irradiated/fractured group, amifostine treatment more than doubled the rate of fracture unions to 57 percent. Amifostine treatment also resulted in an increase in vessel number (123 percent; p < 0.05) and a corresponding decrease in vessel separation (55.5 percent; p < 0.05) there was no statistical difference in the vascularity metrics between the amifostine/irradiation/fracture group and the nonirradiated/fracture group. CONCLUSIONS Amifostine prophylaxis during radiation maintains mandibular vascularity at levels observed in nonirradiated fracture specimens, corresponding to improved unions. These results set the stage for clinical exploration of this targeted therapy alone and in combination with other treatments, to mitigate the effects of irradiation on bone healing and fracture repair.
Collapse
|
28
|
Poort L, Lethaus B, Böckmann R, Buurman D, Jong JD, Hoebers F, Kessler P. Experimental Studies on the Irradiation of Facial Bones in Animals: A Review. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ijohns.2014.33022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Amifostine preserves osteocyte number and osteoid formation in fracture healing following radiotherapy. J Oral Maxillofac Surg 2013; 72:559-66. [PMID: 24342580 DOI: 10.1016/j.joms.2013.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/21/2013] [Accepted: 09/04/2013] [Indexed: 11/20/2022]
Abstract
PURPOSE Radiation is known to decrease osteocyte count and function, leading to bone weakening. A treatment strategy to mitigate these consequences could have immense therapeutic ramifications. The authors previously reported significantly decreased osteocyte count and mineralization capacity in a rat model of fracture healing after radiotherapy. They hypothesized that amifostine (AMF) would preserve osteocyte number and function in this model. MATERIALS AND METHODS Thirty-six rats were divided into 3 groups: fracture, radiated fracture, and radiated fracture with AMF. Radiated groups underwent human-equivalent radiotherapy to the mandible before fixator placement and mandibular osteotomy. The AMF group received a subcutaneous injection before each dose of radiotherapy. After 40 days, mandibles were harvested for histologic processing. Quantification of osteocyte count (Oc), empty lacunae (EL), and osteoid ratio (osteoid volume [OV] to tissue volume [TV]) was performed and the results were compared using analysis of variance (P < .05). RESULTS Radiated fractures showed significantly decreased Oc, increased EL, and a decreased capacity to produce new osteoid at the fracture site as measured with OV/TV compared with nonradiated fractures. In mandibles treated with AMF, these metrics were not statistically different than the control, indicating a preservation of osteocyte number and function. CONCLUSIONS These results support the hypothesis that AMF preserves osteocyte number and function, thereby preventing the pernicious effects of radiotherapy on the cellular environment of fracture healing. Based on these findings, the authors encourage future investigation of this promising therapy for use in the prevention of pathologic fractures and osteoradionecrosis.
Collapse
|
30
|
Tchanque-Fossuo CN, Donneys A, Sarhaddi D, Poushanchi B, Deshpande SS, Weiss DM, Buchman SR. The effect of Amifostine prophylaxis on bone densitometry, biomechanical strength and union in mandibular pathologic fracture repair. Bone 2013; 57:56-61. [PMID: 23860272 PMCID: PMC3804002 DOI: 10.1016/j.bone.2013.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/02/2013] [Accepted: 07/03/2013] [Indexed: 01/23/2023]
Abstract
BACKGROUND Pathologic fractures (Fx) of the mandibles are severely debilitating consequences of radiation (XRT) in the treatment of craniofacial malignancy. We have previously demonstrated Amifostine's effect (AMF) in the remediation of radiation-induced cellular damage. We posit that AMF prophylaxis will preserve bone strength and drastically reverse radiotherapy-induced non-union in a murine mandibular model of pathologic fracture repair. MATERIALS AND METHODS Twenty-nine rats were randomized into 3 groups: Fx, XRT/Fx, and AMF/XRT/Fx. A fractionated human equivalent dose of radiation was delivered to the left hemimandibles of XRT/Fx and AMF/XRT/Fx. AMF/XRT/Fx was pre-treated with AMF. All groups underwent left mandibular osteotomy with external fixation and setting of a 2.1mm fracture gap post-operatively. Utilizing micro-computed tomography and biomechanical testing, the healed fracture was evaluated for strength. RESULTS All radiomorphometrics and biomechanical properties were significantly diminished in XRT/Fx compared to both Fx and AMF/XRT/Fx. No difference was demonstrated between Fx and AMF/XRT/Fx in both outcomes. CONCLUSION Our investigation establishes the significant and substantial capability of AMF prophylaxis to preserve and enhance bone union, quality and strength in the setting of human equivalent radiotherapy. Such novel discoveries establish the true potential to utilize pharmacotherapy to prevent and improve the treatment outcomes of radiation-induced late pathologic fractures.
Collapse
Affiliation(s)
- Catherine N. Tchanque-Fossuo
- University of Michigan Hospital and Health Systems, Pediatric Plastic Surgery Section, 1540 E. Hospital Drive, Ann Arbor, MI 48109, Phone: (734) 936 5881, Fax: (734) 936 7815
| | - Alexis Donneys
- University of Michigan Hospital and Health Systems, Pediatric Plastic Surgery Section, 1540 E. Hospital Drive, Ann Arbor, MI 48109, Phone: (734) 936 5881, Fax: (734) 936 7815
| | - Deniz Sarhaddi
- University of Michigan Hospital and Health Systems, Pediatric Plastic Surgery Section, 1540 E. Hospital Drive, Ann Arbor, MI 48109, Phone: (734) 936 5881, Fax: (734) 936 7815
| | - Behdod Poushanchi
- University of Michigan Hospital and Health Systems, Pediatric Plastic Surgery Section, 1540 E. Hospital Drive, Ann Arbor, MI 48109, Phone: (734) 936 5881, Fax: (734) 936 7815
| | - Sagar S. Deshpande
- University of Michigan Hospital and Health Systems, Pediatric Plastic Surgery Section, 1540 E. Hospital Drive, Ann Arbor, MI 48109, Phone: (734) 936 5881, Fax: (734) 936 7815
| | - Daniela M. Weiss
- University of Michigan Hospital and Health Systems, Pediatric Plastic Surgery Section, 1540 E. Hospital Drive, Ann Arbor, MI 48109, Phone: (734) 936 5881, Fax: (734) 936 7815
| | - Steven R. Buchman
- 4-730 C.S. Mott Children’s Hospital, 1540 E. Hospital Drive, Ann Arbor, MI 48109-4215, Phone: (734) 936-5881, Fax: (734) 936-7815
| |
Collapse
|
31
|
Parathyroid hormone therapy mollifies radiation-induced biomechanical degradation in murine distraction osteogenesis. Plast Reconstr Surg 2013; 132:91e-100e. [PMID: 23806959 DOI: 10.1097/prs.0b013e3182910ae7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Descriptions of mandibular distraction osteogenesis for tissue replacement after oncologic resection or for defects caused by osteoradionecrosis have been limited. Previous work demonstrated radiation decreases union formation, cellularity and mineral density in mandibular distraction osteogenesis. The authors posit that intermittent systemic administration of parathyroid hormone will serve as a stimulant to cellular function, reversing radiation-induced damage and enhancing bone regeneration. METHODS Twenty male Lewis rats were randomly assigned to three groups: group 1 (radiation and distraction osteogenesis, n = 7) and group 2 (radiation, distraction osteogenesis, and parathyroid hormone, n = 5) received a human-equivalent dose of 35 Gy of radiation (human bioequivalent, 70 Gy) fractionated over 5 days. All groups, including group 3 (distraction osteogenesis, n = 8), underwent a left unilateral mandibular osteotomy with bilateral external fixator placement. Distraction osteogenesis was performed at a rate of 0.3 mm every 12 hours to reach a gap of 5.1 mm. Group 2 was injected with parathyroid hormone (60 µg/kg) subcutaneously daily for 3 weeks after the start of distraction osteogenesis. On postoperative day 40, all left hemimandibles were harvested. Biomechanical response parameters were generated. Statistical significance was considered at p ≤ 0.05. RESULTS Parathyroid hormone-treated mandibles had significantly higher failure load and higher yield than did untreated mandibles. However, these values were still significantly lower than those of nonirradiated mandibles. CONCLUSIONS The authors have successfully demonstrated the therapeutic efficacy of parathyroid hormone to stimulate and enhance bone regeneration in their irradiated murine mandibular model of distraction osteogenesis. Anabolic regimens of parathyroid hormone, a U.S. Food and Drug Administration-approved drug on formulary, significantly improve outcomes in a model of postoncologic craniofacial reconstruction.
Collapse
|
32
|
Kang SY, Deshpande SS, Donneys A, Rodriguez JJ, Nelson NS, Felice PA, Chepeha DB, Buchman SR. Parathyroid hormone reverses radiation induced hypovascularity in a murine model of distraction osteogenesis. Bone 2013; 56:9-15. [PMID: 23643680 PMCID: PMC3758112 DOI: 10.1016/j.bone.2013.04.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 04/19/2013] [Accepted: 04/20/2013] [Indexed: 01/30/2023]
Abstract
BACKGROUND Radiation treatment results in a severe diminution of osseous vascularity. Intermittent parathyroid hormone (PTH) has been shown to have an anabolic effect on osteogenesis, though its impact on angiogenesis remains unknown. In this murine model of distraction osteogenesis, we hypothesize that radiation treatment will result in a diminution of vascularity in the distracted regenerate and that delivery of intermittent systemic PTH will promote angiogenesis and reverse radiation induced hypovascularity. MATERIALS AND METHODS Nineteen Lewis rats were divided into three groups. All groups underwent distraction of the left mandible. Two groups received radiation treatment to the left mandible prior to distraction, and one of these groups was treated with intermittent subcutaneous PTH (60 μg/kg, once daily) beginning on the first day of distraction for a total duration of 21 days. One group underwent mandibular distraction alone, without radiation. After consolidation, the rats were perfused and imaged with micro-CT angiography and quantitative vascular analysis was performed. RESULTS Radiation treatment resulted in a severe diminution of osseous vascularity in the distracted regenerate. In irradiated mandibles undergoing distraction osteogenesis, treatment with intermittent PTH resulted in significant increases in vessel volume fraction, vessel thickness, vessel number, degree of anisotropy, and a significant decrease in vessel separation (p < 0.05). No significant difference in quantitative vascularity existed between the group that was irradiated, distracted and treated with PTH and the group that underwent distraction osteogenesis without radiation treatment. CONCLUSIONS We quantitatively demonstrate that radiation treatment results in a significant depletion of osseous vascularity, and that intermittent administration of PTH reverses radiation induced hypovascularity in the murine mandible undergoing distraction osteogenesis. While the precise mechanism of PTH-induced angiogenesis remains to be elucidated, this report adds a key component to the pleotropic effect of intermittent PTH on bone formation and further supports the potential use of PTH to enhance osseous regeneration in the irradiated mandible.
Collapse
Affiliation(s)
- Stephen Y. Kang
- Craniofacial Research Laboratory, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, 1500 E. Medical Center Dr., 1904 TC / SPC 5312, Ann Arbor, MI, USA
| | - Sagar S. Deshpande
- Craniofacial Research Laboratory, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Alexis Donneys
- Craniofacial Research Laboratory, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Joey J. Rodriguez
- Craniofacial Research Laboratory, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Noah S. Nelson
- Craniofacial Research Laboratory, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Peter A. Felice
- Craniofacial Research Laboratory, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Douglas B. Chepeha
- Craniofacial Research Laboratory, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, 1500 E. Medical Center Dr., 1904 TC / SPC 5312, Ann Arbor, MI, USA
| | - Steven R. Buchman
- Craniofacial Research Laboratory, University of Michigan Medical School, Ann Arbor, MI, USA
- Section of Plastic Surgery, University of Michigan Health System, 1500 E. Medical Center Dr., F7894 / 5219, Ann Arbor, MI, USA
| |
Collapse
|
33
|
El-Faramawy N, Ameen R, El-Haddad K, El-Zainy M. Effects of gamma radiation on hard dental tissues of albino rats: investigation by light microscopy. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2013; 52:375-387. [PMID: 23591916 DOI: 10.1007/s00411-013-0469-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 04/02/2013] [Indexed: 06/02/2023]
Abstract
The present work aims at studying the effect of gamma radiation on the hard dental tissues. Eighty adult male albino rats with weights of about 250 g were used. The rats were irradiated at 0.2, 0.5, 1.0, 2.0, 4.0 and 6.0 Gy whole-body gamma doses. The effects on hard dental tissue samples were investigated after 48 h in histological and ground sections using light microscopy. Areas of acid phosphatase activity were detected using tartrate-resistant acid phosphatase (TRAP) stains. Observation of histological sections revealed disturbance in predentin thickness and odontoblastic layer as the irradiation dose increased. In cementum, widened cementocytes lacunae were occasionally detected even with low irradiated doses. On the other hand, relatively homogenous enamel was detected with darkened areas in enamel surface at doses over than 0.5 Gy. TRAP-positive cells were detected on the surface of the dentin of irradiated groups as well as cementum surface. Minimal detectable changes were observed in ground sections.
Collapse
Affiliation(s)
- Nabil El-Faramawy
- Physics Department, Faculty of Science, Ain Shams University, Abbassia, Cairo 65511, Egypt.
| | | | | | | |
Collapse
|
34
|
Deshpande SS, Gallagher KK, Donneys A, Tchanque-Fossuo CN, Sarhaddi D, Sun H, Krebsbach PH, Buchman SR. Stem cell therapy remediates reconstruction of the craniofacial skeleton after radiation therapy. Stem Cells Dev 2013; 22:1625-32. [PMID: 23282102 PMCID: PMC3657278 DOI: 10.1089/scd.2012.0472] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 12/30/2012] [Indexed: 11/13/2022] Open
Abstract
This study utilized transplanted bone marrow stromal cells (BMSCs) as a cellular replacement therapy to remedy radiation-induced injury and restore impaired new bone formation during distraction osteogenesis (DO). BMSC therapy brought about the successful generation of new bone and significantly improved both the rate and quality of a bony union of irradiated, distracted [X-ray radiation therapy (XRT)/DO] murine mandibles to the level of nonirradiated DO animals. The bone mineral density and bone volume fraction were also significantly improved by the BMSC replacement therapy showing no difference when compared to nonirradiated animals. Finally, a biomechanical analysis examining the yield, failure load, and ultimate load also demonstrated a significantly improved structural integrity in BMSC-treated XRT/DO mandibles over XRT/DO alone. These results indicate that administration of BMSCs intraoperatively to a radiated distraction gap can function as an adequate stimulant to rescue the ability for irradiated bone to undergo DO and produce a healed regenerate of a vastly superior quality and strength. We believe that the fundamental information on the optimization of bone regeneration in the irradiated mandible provided by this work has immense potential to be translated from the bench to the bedside to lead to improved therapeutic options for patients suffering from the disastrous sequelae of radiation therapy.
Collapse
Affiliation(s)
- Sagar S. Deshpande
- Craniofacial Research Laboratory, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Kathleen K. Gallagher
- Craniofacial Research Laboratory, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
| | - Alexis Donneys
- Craniofacial Research Laboratory, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Catherine N. Tchanque-Fossuo
- Craniofacial Research Laboratory, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Deniz Sarhaddi
- Craniofacial Research Laboratory, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Hongli Sun
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan
| | - Paul H. Krebsbach
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Steven R. Buchman
- Craniofacial Research Laboratory, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
35
|
Tchanque-Fossuo CN, Gong B, Poushanchi B, Donneys A, Sarhaddi D, Gallagher KK, Deshpande SS, Goldstein SA, Morris MD, Buchman SR. Raman spectroscopy demonstrates Amifostine induced preservation of bone mineralization patterns in the irradiated murine mandible. Bone 2013; 52:712-717. [PMID: 22885239 PMCID: PMC3789510 DOI: 10.1016/j.bone.2012.07.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/26/2012] [Accepted: 07/27/2012] [Indexed: 12/28/2022]
Abstract
PURPOSE Adjuvant radiotherapy in the management of head and neck cancer remains severely debilitating. Fortunately, newly developed agents aimed at decreasing radiation-induced damage have shown great promise. Amifostine (AMF) is a compound, which confers radio-protection to the exposed normal tissues, such as bone. Our intent is to utilize Raman spectroscopy to demonstrate how AMF preserves the mineral composition of the murine mandible following human equivalent radiation. METHODS Sprague Dawley rats were randomized into 3 experimental groups: control (n=5), XRT (n=5), and AMF-XRT (n=5). Both XRT and AMF groups underwent bioequivalent radiation of 70Gy in 5 fractions to the left hemimandible. AMF-XRT received Amifostine prior to radiation. Fifty-six days post-radiation, the hemimandibles were harvested, and Raman spectra were taken in the region of interest spanning 2mm behind the last molar. Bone mineral and matrix-specific Raman bands were analyzed using one-way ANOVA, with statistical significance at p<0.05. RESULTS The full-width at half-maximum of the primary phosphate band (FWHM) and the ratio of carbonate/phosphate intensities demonstrated significant differences between AMF-XRT versus XRT (p<0.01) and XRT versus control (p<0.01). There was no difference between AMF-XRT and control (p>0.05) in both Raman metrics. Computer-aided spectral subtraction further confirmed these results where AMF-XRT was spectrally similar to the control. Interestingly, the collagen cross-link ratio did not differ between XRT and AMF-XRT (p<0.01) but was significantly different from the control (p<0.01). CONCLUSION Our novel findings demonstrate that AMF prophylaxis maintains and protects bone mineral quality in the setting of radiation. Raman spectroscopy is an emerging and exceptionally attractive clinical translational technology to investigate and monitor both the destructive effects of radiation and the therapeutic remediation of AMF on the structural, physical and chemical qualities of bone.
Collapse
Affiliation(s)
- Catherine N. Tchanque-Fossuo
- University of Michigan Hospital and Health Systems, Pediatric Plastic Surgery Section, 1540 E. Hospital Drive, MI 48109, USA
| | - Bo Gong
- University of Michigan Hospital and Health Systems, Department of Chemistry, 930 N. University, Ann Arbor, MI 48109, USA
| | - Behdod Poushanchi
- University of Michigan Hospital and Health Systems, Pediatric Plastic Surgery Section, 1540 E. Hospital Drive, MI 48109, USA
| | - Alexis Donneys
- University of Michigan Hospital and Health Systems, Pediatric Plastic Surgery Section, 1540 E. Hospital Drive, MI 48109, USA
| | - Deniz Sarhaddi
- University of Michigan Hospital and Health Systems, Pediatric Plastic Surgery Section, 1540 E. Hospital Drive, MI 48109, USA
| | - K. Kelly Gallagher
- University of Michigan Hospital and Health Systems, Department of Otolaryngology–Head and Neck Surgery, University of Michigan Medical School, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Sagar S. Deshpande
- University of Michigan Hospital and Health Systems, Pediatric Plastic Surgery Section, 1540 E. Hospital Drive, MI 48109, USA
| | - Steven A. Goldstein
- University of Michigan, Department of Orthopaedic Surgery, A. Alfred Taubman Biomedical Science Research Building, 109 Zina Pitcher Pl, Ann Arbor, MI, 48109, USA
| | - Michael D. Morris
- University of Michigan Hospital and Health Systems, Department of Chemistry, 930 N. University, Ann Arbor, MI 48109, USA
| | - Steven R. Buchman
- University of Michigan Hospital and Health Systems, Pediatric Plastic Surgery Section, 1540 E. Hospital Drive, MI 48109, USA
| |
Collapse
|
36
|
Quantitative histologic evidence of amifostine-induced cytoprotection in an irradiated murine model of mandibular distraction osteogenesis. Plast Reconstr Surg 2013; 130:1199-1207. [PMID: 22878481 DOI: 10.1097/prs.0b013e31826d2201] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Head and neck cancer management requires adjuvant radiotherapy. The authors have previously demonstrated the damaging effect of a human equivalent dose of radiation on a murine mandibular model of distraction osteogenesis. Using quantitative histomorphometry, the authors' specific aim was to objectively measure amifostine radioprotection of the cellular integrity and tissue quality of an irradiated and distracted regenerate. METHODS Sprague-Dawley rats were assigned randomly into two groups: radiotherapy/distraction osteogenesis and amifostine/radiotherapy/distraction osteogenesis, which received amifostine before radiotherapy. Both groups received a fractionated human equivalent dose of radiation prior to left mandibular osteotomy with fixator placement. Distraction to 5.1 mm was followed by a 28-day consolidation period. Quantitative histomorphometry was performed on left hemimandibles for osteocytes, empty lacunae, bone volume-to-tissue volume ratio, and osteoid volume-to-tissue volume ratio. RESULTS Amifostine/radiotherapy/distraction osteogenesis exhibited bony bridging as opposed to radiotherapy/distraction osteogenesis fibrous unions. Quantitative histomorphometry analysis revealed statistically significant higher osteocyte count and bone volume-to-tissue volume ratio in amifostine-treated mandibles compared with irradiated mandibles. There was a corresponding decrease in empty lacunae and the ratio of osteoid volume-to-tissue volume between both groups. CONCLUSIONS The authors have successfully established the significant osseous cytoprotective and histoprotective capacity of amifostine for distraction osteogenesis in the face of radiotherapy. The amifostine-sparing effect on bone cellularity correlated with increased bony unions and elimination of fibrous union. The authors posit that the demonstration of similar efficacy of amifostine in the clinic may allow the successful implementation of distraction osteogenesis as a viable reconstructive option for head and neck cancer in the future.
Collapse
|
37
|
Gallagher KK, Deshpande S, Tchanque-Fossuo CN, Donneys A, Sarhaddi D, Nelson NS, Chepeha DB, Buchman SR. Role of parathyroid hormone therapy in reversing radiation-induced nonunion and normalization of radiomorphometrics in a murine mandibular model of distraction osteogenesis. Head Neck 2013; 35:1732-7. [PMID: 23335324 DOI: 10.1002/hed.23216] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2012] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The use of mandibular distraction osteogenesis (MDO) for tissue replacement after oncologic resection or for defects caused by osteoradionecrosis has been described but, in fact, has seen limited clinical utility. Previous laboratory work has shown that radiation (XRT) causes decreased union formation, decreased cellularity, and decreased mineral density in an animal model of MDO. Our global hypothesis is that radiation-induced bone damage is partly driven by the pathologic depletion of both the number and function of osteogenic cells. Parathyroid hormone (PTH) is a U.S. Food and Drug Administration-approved anabolic hormonal therapy that has demonstrated efficacy for increasing bone mineral density for the treatment of osteoporosis. We postulate that intermittent systemic administration of PTH will serve as an anabolic stimulant to cellular function that will act to reverse radiation-induced damage and enhance bone regeneration in a murine mandibular model of DO. METHODS A total of 20 isogenic male Lewis rats were randomly assigned into 3 groups. Group 1 (XRT-DO, n = 7) and group 2 (XRT-DO-PTH, n = 5) received a human bioequivalent dose of 70 Gy fractionated over 5 days. All groups including group 3 (DO, n = 8) underwent a left unilateral mandibular osteotomy with bilateral external fixator placement. Four days later, mandibular DO was performed at a rate of 0.3 mm every 12 hours to reach a maximum gap of 5.1 mm. Group 2 was injected PTH (60 μg/kg) subcutaneously daily for 3 weeks following the start of MDO. On postoperative day 41, all left hemimandibles were harvested. Micro-CT at 45-μm voxel size was performed and radiomorphometrics parameters of bone mineralization were generated. Union quality was evaluated on a 4-point qualitative grading scale. Radiomorphometric data were analyzed using 1-way ANOVA, and union quality assessment was analyzed via the Mann-Whitney test. Statistical significance was considered at p ≤ .05. RESULTS Groups 1 and 2 appropriately demonstrated clinical signs of radiation-induced stress ranging from alopecia to mucositis. Union quality was significantly higher in PTH-treated XRT-DO animals, compared with XRT-DO group animals (p = .02). Mineralization metrics, including bone volume fraction (BVF) and bone mineral density (BMD), also showed statistically significant improvement. The groups that were treated with PTH showed no statistical differences in union or radiomorphometrics when compared with DO in nonradiated animals. CONCLUSION We have successfully demonstrated the therapeutic efficacy of PTH to stimulate and enhance bone regeneration in our irradiated murine mandibular model of DO. Our investigation effectively resulted in statistically significant increases in BMD, BVF, and clinical unions in PTH-treated mandibles. PTH demonstrates immense potential to treat clinical pathologies where remediation of bone regeneration is essential.
Collapse
Affiliation(s)
- K Kelly Gallagher
- Departments of Otolaryngology-Head and Neck Surgery and Plastic Surgery, University of Michigan Health System, Ann Arbor, Michigan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Amifostine Therapeutic Enhancement of Vascularity in an Irradiated Model of Mandibular Fracture Repair Model. Plast Reconstr Surg 2012. [DOI: 10.1097/01.prs.0000421721.94954.6b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Assessment of the effect of low-energy diode laser irradiation on gamma irradiated rats' mandibles. Arch Oral Biol 2012; 58:796-805. [PMID: 23102551 DOI: 10.1016/j.archoralbio.2012.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 09/07/2012] [Accepted: 10/01/2012] [Indexed: 11/20/2022]
Abstract
OBJECTIVE The purpose of the present study was to evaluate the biostimulative and regenerative effects of low intensity laser irradiation (LILT) (applied before or after initiation of radiotherapy) on gamma irradiated rats' jaw bones. METHODS Forty eight male Albino rats were equally divided into two groups: group 1, in which the left side of the mandible was subjected to three successive sessions of laser (LILT) prior to whole body gamma radiation (2Gy/3 fractions/week) and group 2, received whole body gamma radiation (2Gy/3 fractions/week) prior to three successive sessions of laser applied to left side. The right side of both groups was used as gamma irradiated non-lased control group. Each group was then subdivided into four equal subgroups (a, b, c, d) according to the time of scarification (3, 7, 14, 21 days respectively). Specimens were subjected to histological, histomorphometric and scanning electron microscopic examinations. RESULTS Thin irregular bone trabeculae and widened marrow spaces were identified in the control group. The lased sides of groups 1 and 2 demonstrated regular, thick and continuous bone trabeculae. Ultrastructurally, collagen fibres of the control group appeared irregularly arranged and more spaced compared to groups 1 and 2. Normal-sized osteocytic lacunae were seen in the lased groups, as compared to the wide lacunar spaces noted in the control group. Histomorphometric analysis showed a significant increase in the area of bone trabeculae, as well as the width of compact bone, for the lased groups. CONCLUSIONS LILT seemed to attenuate the radiation-related damage in alveolar bones.
Collapse
|
40
|
Amifostine remediates the degenerative effects of radiation on the mineralization capacity of the murine mandible. Plast Reconstr Surg 2012; 129:646e-655e. [PMID: 22456378 DOI: 10.1097/prs.0b013e3182454352] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Radiotherapy, a cornerstone of head and neck cancer treatment, causes substantial morbidity to normal adjoining bone. The authors assessed the radioprotective effect of amifostine therapy on the mineralization of the mandible using micro-computed tomography. They hypothesized that amifostine would safeguard the mandible from radiation-induced disruption of the mineralization process and the associated failure of new bone creation. METHODS Male Sprague-Dawley rats were randomized into three groups: control (n = 8), radiation therapy (n = 5), and amifostine (n = 8). Animals in the radiation therapy and amifostine groups underwent human bioequivalent radiation of 70 Gy in five fractions to the left hemimandible. Fifty-six days after irradiation, the hemimandibles were harvested for radiomorphometric analyses. RESULTS Amifostine-treated animals exhibited less alopecia, mucositis, and weight loss in addition to increased cortical density in comparison with those treated with radiation therapy. Bone and tissue mineral densities showed statistically significant improvement in amifostine versus radiation therapy, and no difference was observed between amifostine and control groups. Detailed micro-computed tomographic analysis further demonstrated significant differences in the mineralization profile when comparing radiation therapy and amifostine. Amifostine maintained regions of lower mineralization consistent with the preservation of normal remodeling. CONCLUSIONS The authors have successfully demonstrated the ability of amifostine pretreatment to protect the natural mineralization profile of bone. This reflects the capacity of amifostine prophylaxis to safeguard the normal surrounding mandible from the impediments of collateral damage imposed by irradiation. Further study can correlate these findings with the potential use of amifostine to prevent the devastating associated morbidities of radiotherapy such as pathologic fractures and osteoradionecrosis.
Collapse
|
41
|
Farberg AS, Jing XL, Monson LA, Donneys A, Tchanque-Fossuo CN, Deshpande SS, Buchman SR. Deferoxamine reverses radiation induced hypovascularity during bone regeneration and repair in the murine mandible. Bone 2012; 50:1184-7. [PMID: 22314387 PMCID: PMC3322244 DOI: 10.1016/j.bone.2012.01.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 01/23/2012] [Accepted: 01/24/2012] [Indexed: 02/05/2023]
Abstract
BACKGROUND Deferoxamine (DFO) is an iron-chelating agent that has also been shown to increase angiogenesis. We hypothesize that the angiogenic properties of DFO will improve bone regeneration in distraction osteogenesis (DO) after x-ray radiation therapy (XRT) by restoring the vascularity around the distraction site. MATERIAL AND METHODS Three groups of Sprague-Dawley rats underwent distraction of the left mandible. Two groups received pre-operative fractionated XRT, and one of these groups was treated with DFO during distraction. After consolidation, the animals were perfused and imaged with micro-CT to calculate vascular radiomorphometrics. RESULTS Radiation inflicted a severe diminution in the vascular metrics of the distracted regenerate and consequently led to poor clinical outcome. The DFO treated group revealed improved DO bone regeneration with a substantial restoration and proliferation of vascularity. CONCLUSIONS This set of experiments quantitatively demonstrates the ability of DFO to temper the anti-angiogenic effect of XRT in mandibular DO. These exciting results suggest that DFO may be a viable treatment option aimed at mitigating the damaging effects of XRT on new bone formation.
Collapse
Affiliation(s)
- Aaron S. Farberg
- Craniofacial Research Laboratory, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Xi L. Jing
- Craniofacial Research Laboratory, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Dept of Surgery, Henry Ford Health System, Detroit, Michigan, USA
| | - Laura A. Monson
- Craniofacial Research Laboratory, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Section of Plastic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Alexis Donneys
- Craniofacial Research Laboratory, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Sagar S. Deshpande
- Craniofacial Research Laboratory, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Steven R. Buchman
- Craniofacial Research Laboratory, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Section of Plastic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
42
|
Tchanque-Fossuo CN, Monson LA, Farberg AS, Donneys A, Deshpande SS, Razdolsky ER, Halonen NR, Goldstein SA, Buchman SR. Dose-response effect of human equivalent radiation in the murine mandible: Part II. A biomechanical assessment. Plast Reconstr Surg 2011; 128:480e-487e. [PMID: 22030507 DOI: 10.1097/prs.0b013e31822b67ae] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Despite the widespread use of adjuvant irradiation for head and neck cancer, the extent of damage to the underlying bone is not well understood. However, patients can suffer serious clinical consequences, including pathologic fractures, nonunion, and osteoradionecrosis. The authors' specific aim was to objectively quantify the human equivalent radiation dose-response effect of radiation on the biomechanical properties of the murine mandible. METHODS Twelve Sprague-Dawley rats were randomized into three radiation dosage groups--low (5.91 Gy), middle (7 Gy), and high (8.89 Gy)--delivered in five daily fractions. The fractionation regimen was used to approximate 75, 100, and 150 percent, respectively, of the bioequivalent dose humans receive in conventional head and neck cancer treatment. Fifty-six days after irradiation, hemimandibles were loaded to failure in a uniaxial tension at 0.5 mm/second. Load displacement curves were analyzed for yield and breaking load, and values were considered statistically significant at p<0.05. RESULTS The authors' data demonstrated a statistically significant decrease in the yield and breaking load metrics. The authors' reported averages for low, middle, and high radiation dosages were 162, 136, and 69 N, respectively, for yield; and 215, 211, and 141 N, respectively, for breaking load. Both of these quantitative biomechanical properties were diminished in a dose-response pattern. CONCLUSIONS In this article, the authors report a dose-response effect in the degradation of the biomechanical properties of the mandible after fractionated human equivalent radiation. The authors' findings and model can now be used to formulate therapies aimed at remediating those effects and augmenting bone regeneration and healing after adjuvant radiotherapy in head and neck cancer patients.
Collapse
|