1
|
Li X, Li C, Zhang W, Wang Y, Qian P, Huang H. Inflammation and aging: signaling pathways and intervention therapies. Signal Transduct Target Ther 2023; 8:239. [PMID: 37291105 PMCID: PMC10248351 DOI: 10.1038/s41392-023-01502-8] [Citation(s) in RCA: 429] [Impact Index Per Article: 214.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/26/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Aging is characterized by systemic chronic inflammation, which is accompanied by cellular senescence, immunosenescence, organ dysfunction, and age-related diseases. Given the multidimensional complexity of aging, there is an urgent need for a systematic organization of inflammaging through dimensionality reduction. Factors secreted by senescent cells, known as the senescence-associated secretory phenotype (SASP), promote chronic inflammation and can induce senescence in normal cells. At the same time, chronic inflammation accelerates the senescence of immune cells, resulting in weakened immune function and an inability to clear senescent cells and inflammatory factors, which creates a vicious cycle of inflammation and senescence. Persistently elevated inflammation levels in organs such as the bone marrow, liver, and lungs cannot be eliminated in time, leading to organ damage and aging-related diseases. Therefore, inflammation has been recognized as an endogenous factor in aging, and the elimination of inflammation could be a potential strategy for anti-aging. Here we discuss inflammaging at the molecular, cellular, organ, and disease levels, and review current aging models, the implications of cutting-edge single cell technologies, as well as anti-aging strategies. Since preventing and alleviating aging-related diseases and improving the overall quality of life are the ultimate goals of aging research, our review highlights the critical features and potential mechanisms of inflammation and aging, along with the latest developments and future directions in aging research, providing a theoretical foundation for novel and practical anti-aging strategies.
Collapse
Affiliation(s)
- Xia Li
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310058, China
| | - Chentao Li
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Wanying Zhang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Yanan Wang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Pengxu Qian
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310058, China.
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310058, China.
| |
Collapse
|
2
|
San Martin R, Das P, Sanders JT, Hill AM, McCord RP. Transcriptional profiling of Hutchinson-Gilford Progeria syndrome fibroblasts reveals deficits in mesenchymal stem cell commitment to differentiation related to early events in endochondral ossification. eLife 2022; 11:e81290. [PMID: 36579892 PMCID: PMC9833827 DOI: 10.7554/elife.81290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/29/2022] [Indexed: 12/30/2022] Open
Abstract
The expression of a mutant Lamin A, progerin, in Hutchinson-Gilford Progeria Syndrome leads to alterations in genome architecture, nuclear morphology, epigenetic states, and altered phenotypes in all cells of the mesenchymal lineage. Here, we report a comprehensive analysis of the transcriptional status of patient derived HGPS fibroblasts, including nine cell lines not previously reported, in comparison with age-matched controls, adults, and old adults. We find that Progeria fibroblasts carry abnormal transcriptional signatures, centering around several functional hubs: DNA maintenance and epigenetics, bone development and homeostasis, blood vessel maturation and development, fat deposition and lipid management, and processes related to muscle growth. Stratification of patients by age revealed misregulated expression of genes related to endochondral ossification and chondrogenic commitment in children aged 4-7 years old, where this differentiation program starts in earnest. Hi-C measurements on patient fibroblasts show weakening of genome compartmentalization strength but increases in TAD strength. While the majority of gene misregulation occurs in regions which do not change spatial chromosome organization, some expression changes in key mesenchymal lineage genes coincide with lamin associated domain misregulation and shifts in genome compartmentalization.
Collapse
Affiliation(s)
- Rebeca San Martin
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee at KnoxvilleKnoxvilleUnited States
| | - Priyojit Das
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee at KnoxvilleKnoxvilleUnited States
| | - Jacob T Sanders
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee at KnoxvilleKnoxvilleUnited States
- Department of Pathology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Ashtyn M Hill
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee at KnoxvilleKnoxvilleUnited States
| | - Rachel Patton McCord
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee at KnoxvilleKnoxvilleUnited States
| |
Collapse
|
3
|
Tiemann J, Wagner T, Vanakker OM, van Gils M, Cabrera JLB, Ibold B, Faust I, Knabbe C, Hendig D. Cellular and Molecular Biomarkers Indicate Premature Aging in Pseudoxanthoma Elasticum Patients. Aging Dis 2020; 11:536-546. [PMID: 32489700 PMCID: PMC7220280 DOI: 10.14336/ad.2019.0610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/05/2019] [Indexed: 01/09/2023] Open
Abstract
The molecular processes of aging are very heterogenic and not fully understood. Studies on rare progeria syndromes, which display an accelerated progression of physiological aging, can help to get a better understanding. Pseudoxanthoma elasticum (PXE) caused by mutations in the ATP-binding cassette sub-family C member 6 (ABCC6) gene shares some molecular characteristics with such premature aging diseases. Thus, this is the first study trying to broaden the knowledge of aging processes in PXE patients. In this study, we investigated aging associated biomarkers in primary human dermal fibroblasts and sera from PXE patients compared to healthy controls. Determination of serum concentrations of the aging biomarkers eotaxin-1 (CCL11), growth differentiation factor 11 (GDF11) and insulin-like growth factor 1 (IGF1) showed no significant differences between PXE patients and healthy controls. Insulin-like growth factor binding protein 3 (IGFBP3) showed a significant increase in serum concentrations of PXE patients older than 45 years compared to the appropriate control group. Tissue specific gene expression of GDF11 and IGFBP3 were significantly decreased in fibroblasts from PXE patients compared to normal human dermal fibroblasts (NHDF). IGFBP3 protein concentration in supernatants of fibroblasts from PXE patients were decreased compared to NHDF but did not reach statistical significance due to potential gender specific variations. The minor changes in concentration of circulating aging biomarkers in sera of PXE patients and the significant aberrant tissue specific expression seen for selected factors in PXE fibroblasts, suggests a link between ABCC6 deficiency and accelerated aging processes in affected peripheral tissues of PXE patients.
Collapse
Affiliation(s)
- Janina Tiemann
- 1Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Thomas Wagner
- 1Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | | | - Matthias van Gils
- 2Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - José-Luis Bueno Cabrera
- 3Haematology Department, Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda, Spain
| | - Bettina Ibold
- 1Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Isabel Faust
- 1Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Cornelius Knabbe
- 1Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Doris Hendig
- 1Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| |
Collapse
|
4
|
Goblirsch BR, Wiener MC. Ste24: An Integral Membrane Protein Zinc Metalloprotease with Provocative Structure and Emergent Biology. J Mol Biol 2020; 432:5079-5090. [PMID: 32199981 PMCID: PMC7172729 DOI: 10.1016/j.jmb.2020.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/06/2020] [Accepted: 03/12/2020] [Indexed: 01/30/2023]
Abstract
Ste24, an integral membrane protein zinc metalloprotease, is found in every kingdom of eukaryotes. It was discovered approximately 20 years ago by yeast genetic screens identifying it as a factor responsible for processing the yeast mating a-factor pheromone. In animals, Ste24 processes prelamin A, a component of the nuclear lamina; mutations in the human ortholog of Ste24 diminish its activity, giving rise to genetic diseases of accelerated aging (progerias). Additionally, lipodystrophy, acquired from the standard highly active antiretroviral therapy used to treat AIDS patients, likely results from off-target interactions of HIV (aspartyl) protease inhibitor drugs with Ste24. Ste24 possesses a novel “α-barrel” structure, consisting of a ring of seven transmembrane α-helices enclosing a large (> 12,000 Å3) interior volume that contains the active-site and substrate-binding region; this “membrane-interior reaction chamber” is unprecedented in integral membrane protein structures. Additionally, the surface of the membrane-interior reaction chamber possesses a strikingly large negative electrostatic surface potential, adding additional “functional mystery.” Recent publications implicate Ste24 as a key factor in several endoplasmic reticulum processes, including the unfolded protein response, a cellular stress response of the endoplasmic reticulum, and removal of misfolded proteins from the translocon. Ste24, with its provocative structure, enigmatic mechanism, and recently emergent new biological roles including “translocon unclogger” and (non-enyzmatic) broad-spectrum viral restriction factor, presents far differently than before 2016, when it was viewed as a “CAAX protease” responsible for cleavage of prenylated (farnesylated or geranylgeranylated) substrates. The emphasis of this review is on Ste24 of the “Post-CAAX-Protease Era.” Ste24 is a eukaryotic integral membrane protein of novel structure. Ste24 is a gluzincin ZMP whose structure/function relationships are poorly explored. ZMP core, ZMP accessory, and “ɑ-barrel modules form the Ste24 tripartite architecture. Emergent biology of Ste24 includes roles as a translocon unclogger and a viral restriction factor.
Collapse
Affiliation(s)
- Brandon R Goblirsch
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Michael C Wiener
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
5
|
von Kobbe C. Cellular senescence: a view throughout organismal life. Cell Mol Life Sci 2018; 75:3553-3567. [PMID: 30030594 PMCID: PMC11105332 DOI: 10.1007/s00018-018-2879-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/03/2018] [Accepted: 07/16/2018] [Indexed: 01/10/2023]
Abstract
Cellular senescence is the final fate of most cells in response to specific stimuli, but is not the end. Indeed, it is the beginning of a singular life, with multiple side roads leading to diverse effects on the organism. Many studies have been done in the last few years to elucidate the intriguing role of senescent cells in the organism, demonstrating them as the cause of several age-related diseases. However, these cells are also positively implicated in other important pathways, such as embryogenesis and wound healing. It appears that the multiple effects are time-dependent: long-term senescence is mostly implicated in chronic inflammation and disease, whereas in the short term, senescent cells seem to be beneficial, being rapidly targeted by the innate immune system. The influence of senescent cells on their neighbors by paracrine factors, differential activity depending on developmental stage, and duration of the effects make the cellular senescent program a unique spatial-temporal mechanism. During pathological conditions such as progeroid syndromes, this mechanism is deregulated, leading to accelerated onset of some aging-related diseases and a shorter lifespan, among other physiological defects. Here, we review the three primary cell senescence programs described so far (replicative, stress-induced, and developmentally programmed senescence), their onset during development, and their potential roles in diseases with premature aging. Finally, we discuss the role of immune cells in keeping senescence burden below the threshold of disease.
Collapse
Affiliation(s)
- Cayetano von Kobbe
- Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
6
|
|
7
|
Finley J. Reactivation of latently infected HIV-1 viral reservoirs and correction of aberrant alternative splicing in the LMNA gene via AMPK activation: Common mechanism of action linking HIV-1 latency and Hutchinson–Gilford progeria syndrome. Med Hypotheses 2015; 85:320-32. [DOI: 10.1016/j.mehy.2015.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 05/25/2015] [Accepted: 06/08/2015] [Indexed: 12/30/2022]
|
8
|
Casado JG, Blazquez R, Jorge I, Alvarez V, Gomez-Mauricio G, Ortega-Muñoz M, Vazquez J, Sanchez-Margallo FM. Mesenchymal stem cell-coated sutures enhance collagen depositions in sutured tissues. Wound Repair Regen 2014; 22:256-64. [DOI: 10.1111/wrr.12153] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 12/23/2013] [Indexed: 12/30/2022]
Affiliation(s)
- Javier G. Casado
- Stem Cell Therapy Unit; Minimally Invasive Surgery Centre Jesus Uson; Caceres Spain
| | - Rebeca Blazquez
- Stem Cell Therapy Unit; Minimally Invasive Surgery Centre Jesus Uson; Caceres Spain
| | - Inmaculada Jorge
- Cardiovascular Proteomics Laboratory; Centro Nacional de Investigaciones Cardiovasculares; Madrid Spain
| | - Veronica Alvarez
- Stem Cell Therapy Unit; Minimally Invasive Surgery Centre Jesus Uson; Caceres Spain
| | | | - Mariano Ortega-Muñoz
- Cardiovascular Proteomics Laboratory; Centro Nacional de Investigaciones Cardiovasculares; Madrid Spain
| | - Jesus Vazquez
- Cardiovascular Proteomics Laboratory; Centro Nacional de Investigaciones Cardiovasculares; Madrid Spain
| | | |
Collapse
|