1
|
Matsuda N, Sato C, Ishikawa K, Miura T, Funayama E, Yamamoto Y, Fuyama K, Ohnishi S, Maeda T. A novel mouse model for studies of burn wound conversion using a top hat-shaped brass template. Burns 2025; 51:107348. [PMID: 39721234 DOI: 10.1016/j.burns.2024.107348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 11/13/2024] [Accepted: 12/08/2024] [Indexed: 12/28/2024]
Abstract
INTRODUCTION The pathophysiology of burn wound conversion is not fully understood. Animal models are needed to elucidate the underlying mechanisms and develop treatments. Here, we established a new reproducible mouse model that simulates this process, thereby facilitating studies of burn wound conversion. MATERIALS AND METHODS After anesthesia and depilation, 75 mice were randomly assigned to 5-, 15-, and 25-s contact groups, and a top hat-shaped brass template was heated in boiling water and applied to the lateral abdomen. The wound area was calculated from photographs and the percentage of the surviving area was determined. Histological samples were collected 1-96 h after injury. RESULTS A 15-s contact time produced the desired 50 %-75 % interspace necrosis at 96 h after injury. The 5-s contact group had a mostly preserved interspace, while the 25-s contact group exhibited near-complete necrosis. Histologically, significant differences between the 5- and 15-s contact groups were seen in cutaneous appendage denaturation and panniculus carnosus denaturation early after injury. CONCLUSION Exposing mice to the heated template for 15 s provides a reproducible model for studying burn wound conversion mechanisms and treatments, facilitating further elucidation of burn pathophysiology and evaluation of therapies to prevent burn wound conversion.
Collapse
Affiliation(s)
- Norifumi Matsuda
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Chigusa Sato
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan; Department of Plastic and Reconstructive Surgery, Caress Sapporo Tokeidai Memorial Hospital, Kita 1, Higashi 1, Chuo-ku, Sapporo, Hokkaido 060-0031, Japan
| | - Kosuke Ishikawa
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Takahiro Miura
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Emi Funayama
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Yuhei Yamamoto
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Kanako Fuyama
- Data Science Center, Promotion Unit, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Kita 14, Nishi 5, Kita-ku, Sapporo, Hokkaido 060-8648, Japan
| | - Shunsuke Ohnishi
- Laboratory of Molecular and Cellular Medicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, Hokkaido 060-0812, Japan
| | - Taku Maeda
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan.
| |
Collapse
|
2
|
Gürünlüoğlu K, Satilmiş B, Gül M, Dündar M, Göktürk N, Akbulut S, Koç A, Gürünlüoğlu S, Aslan M, Karaaslan E, Türköz MA, Toplu ÇG, Ateş H, Üremiş MM, Menevşe İN, Kuştepe EK, Sari Ünal S, Altundaş E, Yildiz T, Şahin TT, Yilmaz S, Demircan M. The impact of subdermal adipose derived stem cell injections and early excision on systemic oxidative stress and wound healing in rats with severe scald burns. Burns 2024; 50:2056-2069. [PMID: 39127577 DOI: 10.1016/j.burns.2024.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/08/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024]
Abstract
AIM This study aims to develop an experimental treatment model effective against oxidative stress in the acute period of severe burns and to analyze the mechanisms of healing large wound defects. METHODS Five rats, including 2 females and 3 males, were used as donors to obtain adipose-derived stem cells (ADSC) from the inguinal fat pad. The stem cells were labeled with green fluorescent protein. The study included four groups of 17 rats, each with grade 3 scalding burns on 30 % of their body surface, and a control group of 10 rats with an equal number of males and females. After early excision, 106 ADSC-derived stem cells were administered subdermally to the burned wound and autografted to the stem cell group (n = 17). The early excision group (n = 17) received early excision and autograft, with 2 ml of normal saline injected subdermally into the burn wound edge. The PLM group (n = 17) was treated with a polylactic membrane (PLM) dressing after the burn. No treatment was given to the burn group (n = 17). Ten rats from all groups were sacrificed on the 4th day post-burn for oxidative stress evaluation. The control group (n = 10) was sacrificed on day 4. Blood and tissue samples were collected post-sacrifice. Oxidative stress and inflammation in the blood, as well as cell damage in the skin, liver, kidneys, and lungs, were investigated histopathologically and biochemically on the 4th day post-burn. On the 70th day after burn, wound healing was examined macroscopically and histopathologically. RESULTS On the 4th day, oxidative stress results showed that the levels of Total Oxidative Capacity (TOC) in the blood were lowest in the stem cell (7.4 [6-8.8]), control (6.7 [5.9-7.6]), and early excision (7.5 [6.6-8.5]) groups, with no significant difference between them. The burn group (14.7 [12.5-16.9]) had the highest TOC levels. The PLM group (9.7 [8.6-10.7]) had lower TOC levels than the burn group but higher levels than the other groups. Histopathological examination on the 4th day revealed low liver caspase-3 immunoreactivity in the stem cell and early excision groups among the burn groups. Caspase-3 immunoreactivity levels were as follows: stem cell group (20 [10-30]), early excision group (25 [15-50]), PLM group (70 [50-100]), control group (0), and burn group (80 [60-120]). Other oxidative stress and end-organ damage outcomes were consistent with these results. All rats in the stem cell group had burn wounds that healed completely by the 70th day. Examination of the skin and its appendages from the stem cell group with an immunofluorescence microscope demonstrated green coloration, indicating incorporation of stem cells. CONCLUSION Stem cells may have the potential to form new skin and its appendages, providing better healing for large skin defects. Early excision treatment, by removing local necrotic tissues after extensive and deep burns, can prevent end-organ damage due to systemic oxidative stress and inflammation. We also believe that when these two treatments are used together, they can achieve the best results.
Collapse
Affiliation(s)
- Kubilay Gürünlüoğlu
- Department of Pediatric Surgery, İnönü University, Faculty of Medicine, Malatya, Türkiye.
| | - Basri SatilmiÅŸ
- Department of Liver Transplantation Institute, İnönü University, Faculty of Medicine, Malatya, Türkiye
| | - Mehmet Gül
- Department of Histology and Embryology, İnönü University, Faculty of Medicine, Malatya, Türkiye
| | - Muhammed Dündar
- Department of Medical Genetics, İnönü University, Faculty of Medicine, Malatya, Türkiye
| | - Nurcan Göktürk
- Department of Medical Biochemistry, İnönü University, Faculty of Medicine, Malatya, Türkiye
| | - Sami Akbulut
- Department of Liver Transplantation Institute, İnönü University, Faculty of Medicine, Malatya, Türkiye
| | - Ahmet Koç
- Department of Medical Genetics, İnönü University, Faculty of Medicine, Malatya, Türkiye
| | - Semra Gürünlüoğlu
- Department of Pathology, İnönü University, Faculty of Medicine, Malatya, Türkiye
| | - Mehmet Aslan
- Department of Pediatrics, Division of Pediatric Emergency Medicine, İnönü University, Faculty of Medicine, Malatya, Türkiye
| | - Ezgi Karaaslan
- Department of Histology and Embryology, İnönü University, Faculty of Medicine, Malatya, Türkiye
| | - Mehmet Akif Türköz
- Department of Radiology, İnönü University, Faculty of Medicine, Malatya, Türkiye
| | - Çağla Güner Toplu
- Department of Pediatric Surgery, İnönü University, Faculty of Medicine, Malatya, Türkiye
| | - Hasan AteÅŸ
- Department of Pediatric Surgery, İnönü University, Faculty of Medicine, Malatya, Türkiye
| | - Muhammed Mehdi Üremiş
- Department of Medical Biochemistry, İnönü University, Faculty of Medicine, Malatya, Türkiye
| | - İrem Nur Menevşe
- Department of Medical Genetics, İnönü University, Faculty of Medicine, Malatya, Türkiye
| | - Elif Kayhan KuÅŸtepe
- Department of Histology and Embryology, İnönü University, Faculty of Medicine, Malatya, Türkiye
| | - Seren Sari Ünal
- Department of Pediatric Surgery, İnönü University, Faculty of Medicine, Malatya, Türkiye
| | - Ebubekir AltundaÅŸ
- Department of Pediatric Surgery, İnönü University, Faculty of Medicine, Malatya, Türkiye
| | - Turan Yildiz
- Department of Pediatric Surgery, İnönü University, Faculty of Medicine, Malatya, Türkiye
| | - Tevfik Tolga Åžahin
- Department of Liver Transplantation Institute, İnönü University, Faculty of Medicine, Malatya, Türkiye
| | - Sezai Yilmaz
- Department of Liver Transplantation Institute, İnönü University, Faculty of Medicine, Malatya, Türkiye
| | - Mehmet Demircan
- Department of Pediatric Surgery, İnönü University, Faculty of Medicine, Malatya, Türkiye; Pediatric Intensive Burn Care Unit, İnönü University, Faculty of Medicine, Malatya, Türkiye
| |
Collapse
|
3
|
Mulder PPG, Hooijmans CR, Vlig M, Middelkoop E, Joosten I, Koenen HJPM, Boekema BKHL. Kinetics of Inflammatory Mediators in the Immune Response to Burn Injury: Systematic Review and Meta-Analysis of Animal Studies. J Invest Dermatol 2024; 144:669-696.e10. [PMID: 37806443 DOI: 10.1016/j.jid.2023.09.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023]
Abstract
Burns are often accompanied by a dysfunctional immune response, which can lead to systemic inflammation, shock, and excessive scarring. The objective of this study was to provide insight into inflammatory pathways associated with burn-related complications. Because detailed information on the various inflammatory mediators is scattered over individual studies, we systematically reviewed animal experimental data for all reported inflammatory mediators. Meta-analyses of 352 studies revealed a strong increase in cytokines, chemokines, and growth factors, particularly 19 mediators in blood and 12 in burn tissue. Temporal kinetics showed long-lasting surges of proinflammatory cytokines in blood and burn tissue. Significant time-dependent effects were seen for IL-1β, IL-6, TGF-β1, and CCL2. The response of anti-inflammatory mediators was limited. Burn technique had a profound impact on systemic response levels. Large burn size and scalds further increased systemic, but not local inflammation. Animal characteristics greatly affected inflammation, for example, IL-1β, IL-6, and TNF-α levels were highest in young, male rats. Time-dependent effects and dissimilarities in response demonstrate the importance of appropriate study design. Collectively, this review presents a general overview of the burn-induced immune response exposing inflammatory pathways that could be targeted through immunotherapy for burn patients and provides guidance for experimental set-ups to advance burn research.
Collapse
Affiliation(s)
- Patrick P G Mulder
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Carlijn R Hooijmans
- Meta-Research Team, Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel Vlig
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands
| | - Esther Middelkoop
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Tissue Function and Regeneration, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Irma Joosten
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hans J P M Koenen
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bouke K H L Boekema
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Shimizu Y, Ntege EH, Sunami H. Current regenerative medicine-based approaches for skin regeneration: A review of literature and a report on clinical applications in Japan. Regen Ther 2022; 21:73-80. [PMID: 35785041 PMCID: PMC9213559 DOI: 10.1016/j.reth.2022.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/11/2022] [Accepted: 05/25/2022] [Indexed: 11/18/2022] Open
Abstract
Current trends indicate a growing interest among healthcare specialists and the public in the use of regenerative medicine-based approaches for skin regeneration. The approaches are categorised in either cell-based or cell-free therapies and are reportedly safe and effective. Cell-based therapies include mesenchymal stem cells (MSCs), tissue induced pluripotent stem cells (iPSCs), fibroblast-based products, and blood-derived therapies, such as those employing platelet-rich plasma (PRP) products. Cell-free therapies primarily involve the use of MSC-derived extracellular vesicles/exosomes. MSCs are isolated from various tissues, such as fat, bone marrow, umbilical cord, menstrual blood, and foetal skin, and expanded ex vivo before transplantation. In cell-free therapies, MSC exosomes, MSC-derived cultured media, and MSC-derived extracellular vesicles are collected from MSC-conditioned media or supernatant. In this review, a literature search of the Cochrane Library, MEDLINE (PubMed), EMBASE, and Scopus was conducted using several combinations of terms, such as ‘stem’, ‘cell’, ‘aging’, ‘wrinkles’, ‘nasolabial folds’, ‘therapy’, ‘mesenchymal stem cells’, and ‘skin’, to identify relevant articles providing a comprehensive update on the different regenerative medicine-based therapies and their application to skin regeneration. In addition, the regulatory perspectives on the clinical application of some of these therapies in Japan are highlighted. The use of regenerative medicine-based therapy for skin rejuvenation is expanding. Therapies can be categorised as either cell-based or cell-free therapies. MSCs can be isolated from various tissues for cosmetic applications. MSC-derived exosomes increase skin cell proliferation and migration. In Japan, most cell-based treatments carry class II/III regenerative medicine risks.
Collapse
Affiliation(s)
- Yusuke Shimizu
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, 903-0215 Okinawa, Japan
- Corresponding author. Department of Plastic and Reconstructive Surgery Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Edward Hosea Ntege
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, 903-0215 Okinawa, Japan
| | - Hiroshi Sunami
- Center for Advanced Medical Research, School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, 903-0215 Okinawa, Japan
| |
Collapse
|
5
|
Shibl NG, Fikry EM, Mansour HA, Alsemeh AE, Abdel-Ghany RH, El-Sayed SS. Ameliorative effect of bone marrow-derived mesenchymal stem cells on burn-induced hepatic and metabolic derangements in rats. Life Sci 2022; 307:120891. [PMID: 36007609 DOI: 10.1016/j.lfs.2022.120891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022]
Abstract
AIMS The current study aims to investigate the therapeutic potential of bone marrow-derived mesenchymal stem cells (MSCs) as a solo therapy in ameliorating both skin lesions and liver injury induced by cutaneous severe burn injury (SBI) in rats. MAIN METHODS In anesthetized male adult Wistar albino rats, 30 % total burn surface area and established hepatic injury was achieved via direct contact of each experimental animal's dorsum with heated metal rod (100 °C) for 10 s. On the next day following burn, human MSCs or mouse MSCs was administered locally around the burn site and intraperitonially (0.5 × 106 cells/rat for each route) and outcomes were investigated at 4 and 14 days following burn induction. KEY FINDINGS Both types of MSCs significantly improved skin and liver histology, decreased liver enzymes, and ameliorated oxidative stress in hepatocytes of SBI-rats. Further, SBI-induced rises in hepatic apoptotic marker (caspase-3, Bax) and serum inflammatory markers (TNF-α, IL-1β, and IL-6) were reduced following either human or mouse MSC administration. In addition, MSCs augmented insulin receptor substrate-1, phosphorylated protein kinase-B (phospho-Akt), while alleviating serum glucose levels in SBI-rats. These previous effects persisted even at the 14-day time point. SIGNIFICANCE Following single administration, bone marrow-derived MSCs is capable of counteracting SBI-induced skin lesions as well as related hepatic complications, specifically via mitigating postburn hyperglycemia and hyperinflammation.
Collapse
Affiliation(s)
- Nourhan G Shibl
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | - Ebtehal Mohammad Fikry
- Department of Pharmacology, Egyptian Drug Authority (EDA), formerly National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Hanaa A Mansour
- Department of Pharmacology, Egyptian Drug Authority (EDA), formerly National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Amira Ebrahim Alsemeh
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rasha H Abdel-Ghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | - Shaimaa S El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
6
|
The effect of mesenchymal stem cell lyophilizate on the recovery of the zone of stasis following thermal burns. Burns 2022; 48:1221-1229. [PMID: 34916090 DOI: 10.1016/j.burns.2021.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/01/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION AND AIM Mesenchymal Stem Cells (MSCs) are known to contribute to wound healing by increasing tissue regeneration. This study examined the effect of MSC-Lyophilizate (MSC-L) on the recovery of the zone of stasis in thermal burns. METHODS A comb was used to induce second-degree thermal burns (1 × 2 cm) on the dorsum of the rats. Within 30 min after the burn, MSC-L derived from the umbilical cord was administered to the experimental group and 1.5 ml of 0.9% isotonic sodium chloride to the sham group. The control group did not receive any intervention. Tissue samples were collected on postoperative day 7. Histopathological assessments were made using a microscope with digital camera attachment. SPSS for IBM 25 was used for data analysis. RESULTS Epithelial loss and subepidermal bullae were observed in the control and sham groups on day 7. In the experimental group, the MSC-L administration was found to increase epithelial tissue formation and neovascularization in the dermis. We found no significant pathological findings in the epidermis and dermis in the experimental group. CONCLUSION Administration of umbilical cord-derived MSC-L is of potential importance in wound healing. In our study, we observed that MSC-L that contained 1.5 million cells contributed significantly to the recovery of the stasis zone of burn.
Collapse
|
7
|
Palackic A, Jay JW, Duggan RP, Branski LK, Wolf SE, Ansari N, El Ayadi A. Therapeutic Strategies to Reduce Burn Wound Conversion. Medicina (B Aires) 2022; 58:medicina58070922. [PMID: 35888643 PMCID: PMC9315582 DOI: 10.3390/medicina58070922] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/02/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Burn wound conversion refers to the phenomenon whereby superficial burns that appear to retain the ability to spontaneously heal, convert later into deeper wounds in need of excision. While no current treatment can definitively stop burn wound conversion, attempts to slow tissue damage remain unsatisfactory, justifying the need for new therapeutic interventions. To attenuate burn wound conversion, various studies have targeted at least one of the molecular mechanisms underlying burn wound conversion, including ischemia, inflammation, apoptosis, autophagy, generation of reactive oxygen species, hypothermia, and wound rehydration. However, therapeutic strategies that can target various mechanisms involved in burn wound conversion are still lacking. This review highlights the pathophysiology of burn wound conversion and focuses on recent studies that have turned to the novel use of biologics such as mesenchymal stem cells, biomaterials, and immune regulators to mitigate wound conversion. Future research should investigate mechanistic pathways, side effects, safety, and efficacy of these different treatments before translation into clinical studies.
Collapse
Affiliation(s)
- Alen Palackic
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.P.); (J.W.J.); (R.P.D.); (L.K.B.); (S.E.W.)
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, A-8036 Graz, Austria
| | - Jayson W. Jay
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.P.); (J.W.J.); (R.P.D.); (L.K.B.); (S.E.W.)
| | - Robert P. Duggan
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.P.); (J.W.J.); (R.P.D.); (L.K.B.); (S.E.W.)
| | - Ludwik K. Branski
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.P.); (J.W.J.); (R.P.D.); (L.K.B.); (S.E.W.)
| | - Steven E. Wolf
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.P.); (J.W.J.); (R.P.D.); (L.K.B.); (S.E.W.)
| | - Naseem Ansari
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Amina El Ayadi
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.P.); (J.W.J.); (R.P.D.); (L.K.B.); (S.E.W.)
- Correspondence:
| |
Collapse
|
8
|
Ural A, Bilgen F, Altıntaş Aykan D, Koçarslan S, Altıntaş Ural D, Seyithanoğlu M, Bekerecioğlu M. The Effect of Udenafil on Stasis Zone in an Experimental Burn Model. Ann Plast Surg 2022; 88:38-43. [PMID: 34928244 DOI: 10.1097/sap.0000000000003045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Management of the burn injuries is still a problematic issue because the stasis zone may become necrotic. We hypothesized that udenafil, a potent phospodiesterase inhibitor, can be beneficial in burn treatment by enhancing the viability of the stasis zone. METHODS Fifteen Wistar rats were randomly divided into 3 groups. Comb burn injury model was conducted bilaterally on the back of rats in each subject. Group 1 received 1 mL/d of saline orally for 7 days. Group 2 received 10 mg/kg per day of udenafil for 7 days. Group 3 received 20 mg/kg per day of udenafil for 7 days. At the end of seventh day, gross morphological and histopathological samples of stasis zone survival were evaluated. RESULTS Histopathological examination of groups 2 and 3 revealed that the stasis zone was mostly viable. The mean necrotic area and severity of inflammation was significantly higher in the control group compared with the treatment groups. Significant differences were determined in treatment groups compared with control group in terms of vital stasis zone area and histopathological parameters. CONCLUSIONS Udenafil treatment improved tissue survival on zone of stasis in. Future experimental studies should be conducted to develop zone of stasis treatment protocols combining udenafil with potent anti-inflammatory and antioxidant drugs.
Collapse
Affiliation(s)
- Alper Ural
- From the Department of Plastic Reconstructive and Aesthetic Surgery, Memorial Ankara Hospital, Ankara
| | - Fatma Bilgen
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, Namik Kemal University, TekirdaÄŸ
| | | | - Sezen Koçarslan
- Pathology, Faculty of Medicine, Kahramanmaraş Sütçü İmam University, Kahramanmaraş
| | | | | | - Mehmet BekerecioÄŸlu
- Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey
| |
Collapse
|
9
|
Çekiç D, Yılmaz ŞN, Bölgen N, Ünal S, Duce MN, Bayrak G, Demir D, Türkegün M, Sarı A, Demir Y, Ünal Ş. Impact of injectable chitosan cryogel microspherescaffolds on differentiation and proliferation of adiposederived mesenchymal stem cells into fat cells. J Biomater Appl 2021; 36:1335-1345. [PMID: 34965760 DOI: 10.1177/08853282211048284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Difficulty in the clinical practice of stem cell therapy is often experienced in achieving desired target tissue cell differentiation and migration of stem cells to other tissue compartments where they are destroyed or die. This study was performed to evaluate if mesenchymal stem cells (MSCs) may differentiate into desired cell types when injected after combined with an injectable cryogel scaffold and to investigate if this scaffold may help in preventing cells from passing into different tissue compartments. MSCs were obtained from fat tissue of the rabbits as autografts and nuclei and cytoplasms of these cells were labeled with BrdU and PKH26. In Group 1, only-scaffold; in Group 2, only-MSCs; and in Group 3, combined stem cell/scaffold were injected to the right malar area of the rabbits. At postoperative 3Â weeks, volumes of the injected areas were calculated by computer-tomography scans and histopathological evaluation was performed. The increase in the volume of the right malar areas was more in Group 3. In histopathological evaluation, chitosan cryogel microspheres were observed microscopically within the tissue and the scaffold was only partially degraded. Normal tissue form was seen in Group 2. Cells differentiated morphologically into fat cells were detected in Groups 2 and 3. Injectable chitosan cryogel microspheres were used in vivo for the first time in this study. As it was demonstrated to be useful in carrying MSCs to the reconstructed area, help cell differentiation to desired cells and prevent migration to other tissue compartments, it may be used for reconstructive purposes in the future.
Collapse
Affiliation(s)
- Duran Çekiç
- Faculty of Medicine, Department of Plastic, Reconstructive and Aesthetic Surgery, Mersin University, Turkey
| | | | - Nimet Bölgen
- Faculty of Engineering, Department of Chemical Engineering, Mersin University, Turkey
| | - Selma Ünal
- Faculty of Engineering, Department of Chemical Engineering, Mersin University, Turkey
| | - Meltem Nass Duce
- Faculty of Medicine, Department of Radiology, Mersin University, Turkey
| | - Gülsen Bayrak
- Faculty of Medicine, Department of Histology, Mersin University, Turkey
| | - Didem Demir
- Faculty of Engineering, Department of Chemical Engineering, Mersin University, Turkey
| | - Merve Türkegün
- Faculty of Medicine, Department of Biostatistics and Medical Informatics, Mersin University, Turkey
| | - Alper Sarı
- Faculty of Medicine, Department of Plastic, Reconstructive and Aesthetic Surgery, Mersin University, Turkey
| | - Yavuz Demir
- Faculty of Medicine, Department of Plastic, Reconstructive and Aesthetic Surgery, Mersin University, Turkey
| | - Şakir Ünal
- Faculty of Medicine, Department of Plastic, Reconstructive and Aesthetic Surgery, Mersin University, Turkey
| |
Collapse
|
10
|
Gu C, Feng J, Waqas A, Deng Y, Zhang Y, Chen W, Long J, Huang S, Chen L. Technological Advances of 3D Scaffold-Based Stem Cell/Exosome Therapy in Tissues and Organs. Front Cell Dev Biol 2021; 9:709204. [PMID: 34568322 PMCID: PMC8458970 DOI: 10.3389/fcell.2021.709204] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
Recently, biomaterial scaffolds have been widely applied in the field of tissue engineering and regenerative medicine. Due to different production methods, unique types of three-dimensional (3D) scaffolds can be fabricated to meet the structural characteristics of tissues and organs, and provide suitable 3D microenvironments. The therapeutic effects of stem cell (SC) therapy in tissues and organs are considerable and have attracted the attention of academic researchers worldwide. However, due to the limitations and challenges of SC therapy, exosome therapy can be used for basic research and clinical translation. The review briefly introduces the materials (nature or polymer), shapes (hydrogels, particles and porous solids) and fabrication methods (crosslinking or bioprinting) of 3D scaffolds, and describes the recent progress in SC/exosome therapy with 3D scaffolds over the past 5 years (2016-2020). Normal SC/exosome therapy can improve the structure and function of diseased and damaged tissues and organs. In addition, 3D scaffold-based SC/exosome therapy can significantly improve the structure and function cardiac and neural tissues for the treatment of various refractory diseases. Besides, exosome therapy has the same therapeutic effects as SC therapy but without the disadvantages. Hence, 3D scaffold therapy provides an alternative strategy for treatment of refractory and incurable diseases and has entered a transformation period from basic research into clinical translation as a viable therapeutic option in the future.
Collapse
Affiliation(s)
- Chenyang Gu
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jia Feng
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- School of Medicine, Southeast University, Nanjing, China
| | - Ahmed Waqas
- School of Medicine, Southeast University, Nanjing, China
| | - Yushu Deng
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yifan Zhang
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wanghao Chen
- Department of Neurosurgery, Ninth People Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Long
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shiying Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lukui Chen
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Jian-Xing D, Wen-Jun L, Yue-Qin Z, Wang D, Gao-Fei Z, Jia-Mei L, Han-Xiao L. Umbilical Cord Mesenchymal Stem Cells for Inflammatory Regulation After Excision and Grafting of Severe Burn Wounds in Rats. J Burn Care Res 2021; 42:766-773. [PMID: 33313794 DOI: 10.1093/jbcr/iraa207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Severe burns predispose to shock and necessitate escharectomy and skin grafting. Previous studies show that mesenchymal stem cells are effective for burn wound healing and immune regulation. In this study, we combined escharectomy and skin grafting after burn injury with stem cell application, so as to examine the immune regulation of stem cells and the effect on the transplanted skin graft. SD rats were randomly divided into normal group, sham group, normal + hUCMSCs group, and normal + SB203580 group. Normal saline, hUCMSCs, and SB203580 were injected into the tail vein of each group, and serum inflammatory factors were detected by ELISA. The expression of p38 MAPK/NF-κB pathway proteins in rat liver was detected by western blot. Skin activity was detected by Trypan blue staining and western blot. Skin graft inflammatory infiltration was detected by histological analysis. We found that hUCMSCs could regulate the phosphorylation levels of P38MAPK and NF-B P65 proteins in the liver to reduce the inflammatory response. These effects could continue to reduce the production of inflammatory factors HMGB-1, IL-6, and TNF-α, and increase the anti-inflammatory factor IL-10. The infiltration of inflammatory cells in skin graft was significantly reduced in the normal + hUCMSCs group, and the macrophages in the hUCMSCs group polarized to the anti-inflammatory M2 direction in 3 days. However, the changes of skin graft activity and necroptosis markers protein RIP3 were not observed. The present study demonstrates the immunomodulatory effects of hUCMSCs on the systemic and skin graft microenvironment after excision.
Collapse
Affiliation(s)
- Duan Jian-Xing
- Department of Burn, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Liu Wen-Jun
- Department of Burn, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zeng Yue-Qin
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China
| | - Di Wang
- Department of Burn, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhang Gao-Fei
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China
| | - Li Jia-Mei
- Department of Burn, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lou Han-Xiao
- Department of Burn, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
12
|
Wang M, Xu X, Lei X, Tan J, Xie H. Mesenchymal stem cell-based therapy for burn wound healing. BURNS & TRAUMA 2021; 9:tkab002. [PMID: 34212055 PMCID: PMC8240555 DOI: 10.1093/burnst/tkab002] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/14/2020] [Indexed: 02/05/2023]
Abstract
Burns, with their high incidence and mortality rates, have a devastating effect on patients. There are still huge challenges in the management of burns. Mesenchymal stem cells (MSCs), which have multidirectional differentiation potential, have aroused interest in exploring the capacity for treating different intractable diseases due to their strong proliferation, tissue repair, immune tolerance and paracrine abilities, among other features. Currently, several animal studies have shown that MSCs play various roles and have beneficial effects in promoting wound healing, inhibiting burn inflammation and preventing the formation of pathological scars during burn healing process. The substances MSCs secrete can act on peripheral cells and promote burn repair. According to preclinical research, MSC-based treatments can effectively improve burn wound healing and reduce pain. However, due to the small number of patients and the lack of controls, treatment plans and evaluation criteria vary widely, thus limiting the value of these clinical studies. Therefore, to better evaluate the safety and effectiveness of MSC-based burn treatments, standardization of the application scheme and evaluation criteria of MSC therapy in burn treatment is required in the future. In addition, the combination of MSC pretreatment and dressing materials are also conducive to improving the therapeutic effect of MSCs on burns. In this article, we review current animal research and clinical trials based on the use of stem cell therapy for treating burns and discuss the main challenges and coping strategies facing future clinical applications.
Collapse
Affiliation(s)
- Mingyao Wang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Keyuan Road 4, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Xinxuan Xu
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Keyuan Road 4, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Xiongxin Lei
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Keyuan Road 4, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Jie Tan
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Keyuan Road 4, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Huiqi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Keyuan Road 4, Gaopeng Street, Chengdu, Sichuan 610041, China
| |
Collapse
|
13
|
An update on stem cells applications in burn wound healing. Tissue Cell 2021; 72:101527. [PMID: 33756272 DOI: 10.1016/j.tice.2021.101527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 12/21/2022]
Abstract
Burn wounds have proven to be capable of having a long lasting devastating effects on human body. Conventional therapeutic approaches are not up to the mark as they are unable to completely heal the burn wound easily and effectively. Major pitfalls of these treatments include hypertrophic scarring, contracture and necrosis. Presence of these limitations in the current therapies necessitate the search for a better and more efficient cure. Regenerative potency of stem cells in burn wound healing outweigh the traditional treatment procedures. The use of multiple kinds of stem cells are gaining interest due to their enhanced healing efficiency. Distinctions of stem cells include better and faster burn wound healing, decreased inflammation levels, less scar progression and fibrosis on site. In this review, we have discussed the wound-healing process, present methods used for stem cells administration, methods of enhancing stem cells potency and human studies. Pre-clinical and the clinical studies focused on the treatment of thermal and radiation burns using stem cells from 2003 till the present time have been enlisted. Studies shows that the use of stem cells on burn wounds, whether alone or by the help of a scaffold significantly improves healing. Homing of the stem cells at the wound site results in the re-epithelialization, angiogenesis, granulation, inhibition of apoptosis, and regeneration of skin appendages together with reduced infection rate in the human studies. Several studies on animals have shown that stem cells can effectively promote wound healing. Although more research is needed to find out the effectiveness of this treatment in patients with severe burn wounds.
Collapse
|
14
|
Rangatchew F, Vester-Glowinski P, Rasmussen BS, Haastrup E, Munthe-Fog L, Talman ML, Bonde C, Drzewiecki KT, Fischer-Nielsen A, Holmgaard R. Mesenchymal stem cell therapy of acute thermal burns: A systematic review of the effect on inflammation and wound healing. Burns 2021; 47:270-294. [PMID: 33218945 DOI: 10.1016/j.burns.2020.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/25/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
AIM Mesenchymal stem cell (MSC) therapies are emerging as a promising strategy to promote tissue repair, and may extend their utility to burn care. This comprehensive review of the extant literature, evaluated all in vivo studies, to elucidate the potential protective and therapeutic effect of MSCs in acute thermal skin burns. METHODS PubMed was systematically searched, according to PRISMA guidelines, and all relevant preclinical and clinical studies were included according to pre-specified eligibility criteria. RESULTS Forty-two studies were included in a qualitative synthesis, of which three were human and 39 were animal studies. The preclinical studies showed that MSCs can significantly reduce inflammation, burn wound progression and accelerate healing rate of acute burns. The underlying mechanisms are complex and not fully understood but paracrine modulators, such as immunomodulatory, antioxidative and trophic factors, seem to play important roles. Allogeneic MSC therapy has proved feasible in humans, and could allow for prompt treatment of acute burns in a clinical setting. CONCLUSION MSC therapy show positive results, regarding improved burn wound healing and immunologic response. However, most findings are based on small animal studies. Randomized clinical trials are warranted to investigate the regenerative effects in human burns before translating the findings into clinical practice.
Collapse
Affiliation(s)
- Filip Rangatchew
- Department of Plastic Surgery and Burn Treatment, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Peter Vester-Glowinski
- Department of Plastic Surgery and Burn Treatment, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Bo Sonnich Rasmussen
- Department of Plastic Surgery and Burn Treatment, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Eva Haastrup
- Cell Therapy Facility, The Blood Bank, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Lea Munthe-Fog
- Cell Therapy Facility, The Blood Bank, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Maj-Lis Talman
- Department of Pathology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Christian Bonde
- Department of Plastic Surgery and Burn Treatment, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Krzysztof T Drzewiecki
- Department of Plastic Surgery and Burn Treatment, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Anne Fischer-Nielsen
- Cell Therapy Facility, The Blood Bank, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Rikke Holmgaard
- Department of Plastic Surgery and Burn Treatment, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
15
|
El Ayadi A, Wang CZ, Zhang M, Wetzel M, Prasai A, Finnerty CC, Enkhbaatar P, Herndon DN, Ansari NH. Metal chelation reduces skin epithelial inflammation and rescues epithelial cells from toxicity due to thermal injury in a rat model. BURNS & TRAUMA 2020; 8:tkaa024. [PMID: 33033727 PMCID: PMC7530369 DOI: 10.1093/burnst/tkaa024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/19/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND One of the most pervasive complications of burn injury is wound progression, characterized by continuous tissue destruction in untreated wounds, which leads to wound infection, inflammation, oxidative stress and excessive scar formation. We determined whether additional tissue destruction could be attenuated with Livionex formulation (LF) lotion, which contains a metal-chelating agent and reduces inflammation in burn wounds. METHODS We subjected male Sprague Dawley rats to a 2% total body surface area (TBSA) burn using a brass comb model and topically applied LF lotion (containing ethylenediaminetetraacetic acid and methyl sulfonyl methane) to the affected area every 8Â hours over 3Â days. Inflammatory cytokine levels, cell apoptosis and wound healing were compared in LF lotion-treated and untreated rats. Statistical analysis was performed using a one-way analysis of variance in conjunction with Tukey's post-hoc test. RESULTS Serum inflammatory cytokines were not detectable after 3Â days, suggesting that small burn wounds induce only an immediate, localized inflammatory response. Microscopy revealed that LF lotion improved burn site pathology. Deoxynucleotidyl transferase biotin-d-UTP nick-end labeling staining showed reduced cell death in the LF-treated samples. LF lotion prevented the spread of tissue damage, as seen by increased amounts of Ki-67-positive nuclei in the adjacent epidermis and hair follicles. Tumor necrosis factor-alpha, interleukin-6 and inducible nitric oxide synthase levels in LF-treated skin sections from burned rats were comparable to the levels observed in unburned control sections, indicating that LF lotion reduces inflammation in and around the burn site. CONCLUSIONS These results establish LF lotion as a therapeutic agent for reducing inflammatory stress, cell death and tissue destruction when applied immediately after a burn injury. Further studies of LF lotion on large TBSA burns will determine its efficacy as an emergency treatment for reducing long-term morbidity and scarring.
Collapse
Affiliation(s)
- Amina El Ayadi
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Cheng Z Wang
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Min Zhang
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Michael Wetzel
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Anesh Prasai
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Celeste C Finnerty
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Perenlei Enkhbaatar
- Department of Anesthesiology, 301 University Blvd., University of Texas Medical Branch, Galveston, TX 77555, USA
| | - David N Herndon
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Naseem H Ansari
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
16
|
Abbas OL, Özatik O, Gönen ZB, Öğüt S, Entok E, Özatik FY, Bahar D, Bakir ZB, Musmul A. Prevention of Burn Wound Progression by Mesenchymal Stem Cell Transplantation: Deeper Insights Into Underlying Mechanisms. Ann Plast Surg 2018; 81:715-724. [PMID: 30260837 DOI: 10.1097/sap.0000000000001620] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Burns are dynamic wounds that may present a progressive expansion of necrosis into the initially viable zone of stasis. Therefore, salvage of this zone is a major subject of focus in burn research. The beneficial effects of mesenchymal stem cells (MSCs) on the survival of the zone of stasis have been previously documented. However, many gaps still exist in our knowledge regarding the underlying protective mechanisms. Hence, this study was designed to evaluate the pathophysiological basis of MSCs in the prevention of burn wound progression. METHODS Wistar rats received thermal trauma on the back according to the "comb burn" model. Animals were randomly divided into sham, control, and stem cell groups with sacrifice and analysis at 72 hours after the burn. The stasis zones were evaluated using histochemistry, immunohistochemistry, biochemistry, real-time polymerase chain reaction assay, and scintigraphy to evaluate the underlying mechanisms. RESULTS Gross evaluation of burn wounds revealed that vital tissue percentage of the zone of stasis was significantly higher in the stem cell group. Semiquantitative grading of the histopathologic findings showed that MSCs alleviated burn-induced histomorphological alterations in the zone of stasis. According to CC3a staining and expression analysis of Bax (B-cell leukemia 2-associated X) and Bcl-2 (B-cell leukemia 2) genes, MSCs attenuated increases in apoptosis postburn. In addition, these transplants showed an immunomodulatory effect that involves reduced neutrophilic infiltration, down-regulation of proinflammatory cytokines (tumor necrosis factor α, interleukin 1β [IL-1β], and IL-6), and up-regulation of the anti-inflammatory cytokine IL-10 in the zone of stasis. Burn-induced oxidative stress was significantly relieved with MSCs, as shown by increased levels of malondialdehyde, whereas the expression and activity of the antioxidant enzyme superoxide dismutase were increased. Finally, MSC-treated interspaces had enhanced vascular density with higher expression levels for vascular endothelial growth factor A, platelet-derived growth factor, fibroblast growth factor, and transforming growth factor β. Gamma camera images documented better tissue perfusion in animals treated with MSCs. CONCLUSIONS The protective effects of MSCs are mediated by the inhibition of apoptosis through immunomodulatory, antioxidative, and angiogenic actions.
Collapse
Affiliation(s)
- Ozan Luay Abbas
- From the Departments of Plastic, Reconstructive and Aesthetic Surgery and
| | - Orhan Özatik
- Histology and Embryology, Faculty of Medicine, Ahi Evran University, KirÅŸehir
| | | | - Serdal Öğüt
- Department of Nutrition and Dietetics, Faculty of Health Science, Adnan Menderes University, Aydin
| | - Emre Entok
- Department of Nuclear Medicine, Faculty of Medicine, Osmangazi University, EskiÅŸehir
| | | | - Dilek Bahar
- Gen Kök Genome and Stem Cell Center, Erciyes University, Kayseri
| | | | - Ahmet Musmul
- Department of Biostatistics, Faculty of Medicine, Osmangazi University, EskiÅŸehir, Turkey
| |
Collapse
|
17
|
Ahmadi AR, Chicco M, Huang J, Qi L, Burdick J, Williams GM, Cameron AM, Sun Z. Stem cells in burn wound healing: A systematic review of the literature. Burns 2018; 45:1014-1023. [PMID: 30497816 DOI: 10.1016/j.burns.2018.10.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/11/2018] [Accepted: 10/19/2018] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Severe burns are often associated with high morbidity and unsatisfactory functional and esthetic outcomes. Over the last two decades, stem cells have generated great hopes for the treatment of numerous conditions including burns. The aim of this systematic review is to evaluate the role of stem cell therapy as a means to promote burn wound healing. METHODS Comprehensive searches in major databases were carried out in March 2017 for articles on stem cell therapy in burn wound healing. In total 2103 articles were identified and screened on the basis of pre-determined inclusion and exclusion criteria. RESULTS Fifteen experimental and two clinical studies were included in the review. The majority of studies reported significant improvement in macroscopic burn wound appearance as well as a trend toward improved microscopic appearance, after stem cell therapy. Other parameters evaluated, such as re-vascularization, collagen formation, level of pro- and anti-inflammatory mediators, apoptosis and cellular infiltrates, yielded heterogeneous results across studies. CONCLUSION Stem cell therapy appears to exert a positive effect in burn wound healing. There is, therefore, justification for continued efforts to evaluate the use of stem cells as an adjunct to first-line therapies in burns.
Collapse
Affiliation(s)
- Ali R Ahmadi
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Maria Chicco
- Department of Surgery, St. Mary's Hospital, Imperial College London, London, United Kingdom
| | - Jinny Huang
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Le Qi
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - James Burdick
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - George M Williams
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew M Cameron
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Uraloğlu M, Ural A, Efe G, Yuluğ E, Livaoğlu M, Karaçal N. The Effect of Platelet-Rich Plasma on the Zone of Stasis and Apoptosis in an Experimental Burn Model. Plast Surg (Oakv) 2018; 27:173-181. [PMID: 31106177 DOI: 10.1177/2292550318800498] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background The zone of stasis that forms in acute burn is initially viable, but coagulation progresses to necrosis in the process that follows. Objective This study investigates the effects of platelet-rich plasma (PRP) on apoptosis in the burn zone of stasis and on the viability of living tissue. Methods Burns were established in the right ears of 20 female New Zealand rabbits using the "comb burn" model. Platelet-rich plasma was obtained from blood collected from rabbits' ears (n = 10) and was injected subcutaneously into the zone of stasis (n = 10). The same amount of saline solution was injected into the zone of stasis of the control group rabbits (n = 10). Histological and immunohistochemical apoptosis analysis was performed to evaluate viable areas. Results Apoptosis levels were higher in the control group than in the experimental group. The area of viable tissue in the zone of stasis was greater than in the control group. Infection-induced neutrophil infiltration was statistically significantly lower in the experimental group. Conclusion In this animal model, apoptosis count and viable tissue area measurement and the anti-inflammatory results in the burn area confirm that PRP therapy has a statistically significant positive impact on the survival of the zone of stasis and in acute burn injury.
Collapse
Affiliation(s)
- Muhammet UraloÄŸlu
- Faculty of Medicine, Department of Plastic and Reconstructive Surgery, Karadeniz Technical University, Trabzon, Turkey
| | - Alper Ural
- Faculty of Medicine, Department of Plastic and Reconstructive Surgery, Sutcuimam University, KahramanmaraÅŸ, Turkey
| | - Gökhan Efe
- Faculty of Medicine, Department of Plastic and Reconstructive Surgery, Karadeniz Technical University, Trabzon, Turkey
| | - Esin YuluÄŸ
- Faculty of Medicine, Department of Histology and Embryology, Karadeniz Technical University, Trabzon, Turkey
| | - Murat LivaoÄŸlu
- Faculty of Medicine, Department of Plastic and Reconstructive Surgery, Karadeniz Technical University, Trabzon, Turkey
| | - Naci Karaçal
- Faculty of Medicine, Department of Plastic and Reconstructive Surgery, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
19
|
Choi J, Kim R, Kim J, Jeong W, Park SW, Lee HW, Chung HY. Nicorandil reduces burn wound progression by enhancing skin blood flow. J Plast Reconstr Aesthet Surg 2018; 71:1196-1206. [DOI: 10.1016/j.bjps.2018.03.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/10/2018] [Accepted: 03/30/2018] [Indexed: 10/17/2022]
|
20
|
Fu Y, Karbaat L, Wu L, Leijten J, Both SK, Karperien M. Trophic Effects of Mesenchymal Stem Cells in Tissue Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2018; 23:515-528. [PMID: 28490258 DOI: 10.1089/ten.teb.2016.0365] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mesenchymal stem cells (MSCs) are considered to hold great therapeutic value for cell-based therapy and for tissue regeneration in particular. Recent evidence indicates that the main underlying mechanism for MSCs' beneficial effects in tissue regeneration is based on their capability to produce a large variety of bioactive trophic factors that stimulate neighboring parenchymal cells to start repairing damaged tissues. These new findings could potentially replace the classical paradigm of MSC differentiation and cell replacement. These bioactive factors have diverse actions like modulating the local immune system, enhancing angiogenesis, preventing cell apoptosis, and stimulating survival, proliferation, and differentiation of resident tissue specific cells. Therefore, MSCs are referred to as conductors of tissue repair and regeneration by secreting trophic mediators. In this review article, we have summarized the studies that focused on the trophic effects of MSC within the context of tissue regeneration. We will also highlight the various underlying mechanisms used by MSCs to act as trophic mediators. Besides the secretion of growth factors, we discuss two additional mechanisms that are likely to mediate MSC's beneficial effects in tissue regeneration, namely the production of extracellular vesicles and the formation of membrane nanotubes, which can both connect different cells and transfer a variety of trophic factors varying from proteins to mRNAs and miRNAs. Furthermore, we postulate that apoptosis of the MSCs is an integral part of the trophic effect during tissue repair.
Collapse
Affiliation(s)
- Yao Fu
- 1 Developmental BioEngineering, MIRA Institute for Biomedical Technology & Technical Medicine, University of Twente , Enschede, Netherlands
| | - Lisanne Karbaat
- 1 Developmental BioEngineering, MIRA Institute for Biomedical Technology & Technical Medicine, University of Twente , Enschede, Netherlands
| | - Ling Wu
- 2 Center for Craniofacial Molecular Biology, University of Southern California , Los Angeles, Los Angeles, California
| | - Jeroen Leijten
- 1 Developmental BioEngineering, MIRA Institute for Biomedical Technology & Technical Medicine, University of Twente , Enschede, Netherlands
| | - Sanne K Both
- 1 Developmental BioEngineering, MIRA Institute for Biomedical Technology & Technical Medicine, University of Twente , Enschede, Netherlands
| | - Marcel Karperien
- 1 Developmental BioEngineering, MIRA Institute for Biomedical Technology & Technical Medicine, University of Twente , Enschede, Netherlands
| |
Collapse
|
21
|
Magne B, Lataillade JJ, Trouillas M. Mesenchymal Stromal Cell Preconditioning: The Next Step Toward a Customized Treatment For Severe Burn. Stem Cells Dev 2018; 27:1385-1405. [PMID: 30039742 DOI: 10.1089/scd.2018.0094] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the last century, the clinical management of severe skin burns significantly progressed with the development of burn care units, topical antimicrobials, resuscitation methods, early eschar excision surgeries, and skin grafts. Despite these considerable advances, the present treatment of severe burns remains burdensome, and patients are highly susceptible to skin engraftment failure, infections, organ dysfunction, and hypertrophic scarring. Recent researches have focused on mesenchymal stromal cell (MSC) therapy and hold great promises for tissue repair, as reported in several animal studies and clinical cases. In the present review, we will provide an up-to-date outlook of the pathophysiology of severe skin burns, clinical treatment modalities and current limitations. We will then focus on MSCs and their potential in the burn wound healing both in in vitro and in vivo studies. A specific attention will be paid to the cell preconditioning approach, as a means of improving the MSC efficacy in the treatment of major skin burns. In particular, we will debate how several preconditioning cues would modulate the MSC properties to better match up with the burn pathophysiology in the course of the cell therapy. Finally, we will discuss the clinical interest and feasibility of a MSC-based therapy in comparison to their paracrine derivatives, including microvesicles and conditioned media for the treatment of major skin burn injuries.
Collapse
Affiliation(s)
- Brice Magne
- INSERM U1197-Institut de Recherche Biomédicale des Armées (IRBA)/Antenne Centre de Transfusion Sanguine des Armées (CTSA) , Clamart, France
| | - Jean-Jacques Lataillade
- INSERM U1197-Institut de Recherche Biomédicale des Armées (IRBA)/Antenne Centre de Transfusion Sanguine des Armées (CTSA) , Clamart, France
| | - Marina Trouillas
- INSERM U1197-Institut de Recherche Biomédicale des Armées (IRBA)/Antenne Centre de Transfusion Sanguine des Armées (CTSA) , Clamart, France
| |
Collapse
|
22
|
Eyuboglu AA, Uysal CA, Ozgun G, Coskun E, Markal Ertas N, Haberal M. The effect of adipose derived stromal vascular fraction on stasis zone in an experimental burn model. Burns 2018; 44:386-396. [DOI: 10.1016/j.burns.2017.08.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 01/02/2023]
|
23
|
Abbas OL, Özatik O, Gönen ZB, Öğüt S, Özatik FY, Salkın H, Musmul A. Comparative Analysis of Mesenchymal Stem Cells from Bone Marrow, Adipose Tissue, and Dental Pulp as Sources of Cell Therapy for Zone of Stasis Burns. J INVEST SURG 2018; 32:477-490. [PMID: 29442525 DOI: 10.1080/08941939.2018.1433254] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Introduction: The implantation of mesenchymal stem cells (MSCs) has been shown to exert benefits for the survival of the zone-of-stasis. However, the clinical experience indicates the importance of selecting the right source and type of stem cells. Therefore, we planned the current study to perform a quantitative comparison of MSCs isolated from three different sources to provide information useful in selection of the optimal source and to see whether critical mechanisms are conserved between different populations. Methods: The protective effects of MSCs derived from bone marrow, adipose tissue and dental pulp were compared in a rat model of thermal trauma. The stasis zones were evaluated 72 h after the burn using histochemistry, immunohistochemistry and biochemistry. Results: Gross evaluation of burn wounds revealed that the differences between the mean percentages of the calculated necrotic areas weren't statistically significant. Semi-quantitative grading of the histopathological findings revealed that there were no significant differences between damage scores. Immunohistochemical assessment of apoptotic and necrotic cell deaths revealed that the differences between the mean numbers of apoptotic and necrotic cells weren't statistically significant. Myeloperoxidase activity was found to be significantly lower in the adipose tissue group. Biochemical and immunohistochemical assessment of tissue malondialdehyde revealed that the differences between the groups weren't statistically significant. Finally, the number of neo-vessels in the dental pulp group was found to be significantly higher. Conclusion: Our findings suggest that bone marrow, adipose tissue and dental pulp may serve as a universal donor MSC source for the prevention of burn wound progression.
Collapse
Affiliation(s)
- Ozan Luay Abbas
- Ahi Evran University, Faculty of Medicine, Department of Plastic, Reconstructive and Aesthetic Surgery, Kırşehir, Turkey
| | - Orhan Özatik
- Dumlupınar University, Faculty of Medicine, Department of Histology and Embryology, Kütahya, Turkey
| | | | - Serdal Öğüt
- Adnan Menderes University, Faculty of Health Science, Department of Nutrition and Dietetics, Aydın, Turkey
| | | | - Hasan Salkın
- Beykent University, Vocational School, Department of Medical Services and techniques, Istanbul, Turkey
| | - Ahmet Musmul
- Osmangazi University, Faculty of Medicine, Department of Biostatistics, EskiÅŸehir, Turkey
| |
Collapse
|
24
|
Rodgers K, Jadhav SS. The application of mesenchymal stem cells to treat thermal and radiation burns. Adv Drug Deliv Rev 2018; 123:75-81. [PMID: 29031640 DOI: 10.1016/j.addr.2017.10.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/26/2017] [Accepted: 10/10/2017] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) have been developed for a number of indications due to their regenerative and anti-inflammatory phenotypes and their utility is enhanced by the fact that allogeneic transplant is feasible with this cell type. Animal studies and early human cases indicate that this has the potential to be an exciting new therapy for treating chronic non-healing wounds such as diabetic ulcers, burns and cutaneous radiation burns. This review will focus on the use of MSCs to treat thermal and radiation burns. Large, severe burns are difficult to treat and pose a major public health burden worldwide. They are characterized by an extensive loss of the outer protective barrier, delayed wound healing, increased oxidative stress and a heightened inflammatory state. The breakdown of the protective barrier results in increased susceptibility to fluid loss and bacterial sepsis. In the case of radiation burns, chronic inflammation can result in subsequent waves of tissue injury leading to skin breakdown and necrosis. The aim of this review is to summarize the current knowledge on MSCs in treating thermal and radiation burns along with the specific scope of characterizing the biologic function of MSCs that help enhance wound healing in these chronic injuries.
Collapse
|
25
|
Ho J, Walsh C, Yue D, Dardik A, Cheema U. Current Advancements and Strategies in Tissue Engineering for Wound Healing: A Comprehensive Review. Adv Wound Care (New Rochelle) 2017; 6:191-209. [PMID: 28616360 PMCID: PMC5467128 DOI: 10.1089/wound.2016.0723] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/09/2017] [Indexed: 12/20/2022] Open
Abstract
Significance: With an aging population leading to an increase in diabetes and associated cutaneous wounds, there is a pressing clinical need to improve wound-healing therapies. Recent Advances: Tissue engineering approaches for wound healing and skin regeneration have been developed over the past few decades. A review of current literature has identified common themes and strategies that are proving successful within the field: The delivery of cells, mainly mesenchymal stem cells, within scaffolds of the native matrix is one such strategy. We overview these approaches and give insights into mechanisms that aid wound healing in different clinical scenarios. Critical Issues: We discuss the importance of the biomimetic niche, and how recapitulating elements of the native microenvironment of cells can help direct cell behavior and fate. Future Directions: It is crucial that during the continued development of tissue engineering in wound repair, there is close collaboration between tissue engineers and clinicians to maintain the translational efficacy of this approach.
Collapse
Affiliation(s)
- Jasmine Ho
- UCL Division of Surgery and Interventional Sciences, UCL Institute for Orthopaedics and Musculoskeletal Sciences, University College London, London, United Kingdom
| | - Claire Walsh
- UCL Division of Surgery and Interventional Sciences, UCL Institute for Orthopaedics and Musculoskeletal Sciences, University College London, London, United Kingdom
| | - Dominic Yue
- Department of Plastic and Reconstructive Surgery, Royal Stoke University Hospital, Stoke-on-Trent, United Kingdom
| | - Alan Dardik
- The Vascular Biology and Therapeutics Program and the Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Umber Cheema
- UCL Division of Surgery and Interventional Sciences, UCL Institute for Orthopaedics and Musculoskeletal Sciences, University College London, London, United Kingdom
| |
Collapse
|
26
|
Rutin Attenuates Hepatotoxicity in High-Cholesterol-Diet-Fed Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5436745. [PMID: 27239252 PMCID: PMC4863108 DOI: 10.1155/2016/5436745] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/29/2016] [Accepted: 03/10/2016] [Indexed: 01/06/2023]
Abstract
Background and Objective. High-cholesterol diet (HCD) intends to increase the oxidative stress in liver tissues inducing hepatotoxicity. Rutin is a natural flavonoid (vitamin p) which is known to have antioxidative properties. The aim of the present study was to investigate the potential effects of Rutin on hypercholesterolemia-induced hepatotoxicity in rats. Materials and Methods. Male Wistar rats were divided into four groups: G-I control, G-II Rutin, G-III HCD, and G-IV Rutin + HCD. The liver functions and lipid profile were used to evaluate the HCD-induced hepatotoxicity. Quantitative real time-PCR was carried out to evaluate the expression levels of genes in TGF-β/Smad signaling pathway. Results. Rutin in combination with HCD showed a significant protective effect against hepatotoxicity. HCD caused significant increase in the mRNA expression of transforming growth factor beta (TGF-β), Mothers Against Decapentaplegic Homolog 2 (Smad-2), Mothers Against Decapentaplegic Homolog 4 (Smad-4), Bcl-2-binding component 3 (Bbc3), caspase-3, P53 and Interleukin-6 (IL-6) and decrease in the expression levels of Cyclin depended kinase inhibitor (P21) and Interleukin-3 (IL-3) in hepatic cells. Conclusion. TGF-β/Smad signaling pathway is involved in HCD-induced hepatotoxicity and Rutin inhibits the hepatotoxicity via suppressing this pathway. Therefore, Rutin might be considered as a protective agent for hepatotoxicity.
Collapse
|
27
|
Salibian AA, Rosario ATD, Severo LDAM, Nguyen L, Banyard DA, Toranto JD, Evans GRD, Widgerow AD. Current concepts on burn wound conversion-A review of recent advances in understanding the secondary progressions of burns. Burns 2016; 42:1025-1035. [PMID: 26787127 DOI: 10.1016/j.burns.2015.11.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/16/2015] [Accepted: 11/24/2015] [Indexed: 01/27/2023]
Abstract
Burn wound conversion describes the process by which superficial partial thickness burns convert into deeper burns necessitating surgical intervention. Fully understanding and thus controlling this phenomenon continues to defy burn surgeons. However, potentially guiding burn wound progression so as to obviate the need for surgery while still bringing about healing with limited scarring is the major unmet challenge. Comprehending the pathophysiologic background contributing to deeper progression of these burns is an essential prerequisite to planning any intervention. In this study, a review of articles examining burn wound progression over the last five years was conducted to analyze trends in recent burn progression research, determine changes in understanding of the pathogenesis of burn conversion, and subsequently examine the direction for future research in developing therapies. The majority of recent research focuses on applying therapies from other disease processes to common underlying pathogenic mechanisms in burn conversion. While ischemia, inflammation, and free oxygen radicals continue to demonstrate a critical role in secondary necrosis, novel mechanisms such as autophagy have also been shown to contribute affect significantly burn progression significantly. Further research will have to determine whether multiple mechanisms should be targeted when developing clinical therapies.
Collapse
Affiliation(s)
- Ara A Salibian
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine, 200 S. Manchester Avenue, Orange, CA, 92868-3298, United States
| | - Angelica Tan Del Rosario
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine, 200 S. Manchester Avenue, Orange, CA, 92868-3298, United States
| | - Lucio De Almeida Moura Severo
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine, 200 S. Manchester Avenue, Orange, CA, 92868-3298, United States
| | - Long Nguyen
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine, 200 S. Manchester Avenue, Orange, CA, 92868-3298, United States
| | - Derek A Banyard
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine, 200 S. Manchester Avenue, Orange, CA, 92868-3298, United States
| | - Jason D Toranto
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine, 200 S. Manchester Avenue, Orange, CA, 92868-3298, United States
| | - Gregory R D Evans
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine, 200 S. Manchester Avenue, Orange, CA, 92868-3298, United States
| | - Alan D Widgerow
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine, 200 S. Manchester Avenue, Orange, CA, 92868-3298, United States.
| |
Collapse
|
28
|
Comparison of Treatments with Local Mesenchymal Stem Cells and Mesenchymal Stem Cells with Increased Vascular Endothelial Growth Factor Expression on Irradiation Injury of Expanded Skin. Plast Reconstr Surg 2015. [DOI: 10.1097/01.prs.0000472319.20760.5a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Comparison of Treatments With Local Mesenchymal Stem Cells and Mesenchymal Stem Cells With Increased Vascular Endothelial Growth Factor Expression on Irradiation Injury of Expanded Skin. Ann Plast Surg 2015; 75:219-30. [DOI: 10.1097/sap.0000000000000574] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Li M, Zhao Y, Hao H, Han W, Fu X. Mesenchymal stem cell-based therapy for nonhealing wounds: today and tomorrow. Wound Repair Regen 2015; 23:465-82. [PMID: 25877885 DOI: 10.1111/wrr.12304] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 03/09/2015] [Accepted: 03/30/2015] [Indexed: 12/31/2022]
Abstract
Although advancements have been made with traditional therapies, the treatment of chronic nonhealing wounds still remains a tough challenge. In the past two decades, mesenchymal stem cell (MSC)-based therapy has emerged as a promising therapeutic strategy for nonhealing wounds because of their characteristics including self-renewal and a multidirectional differentiation ability and their easy collection and weak immunogenicity. There is a growing body of basic scientific studies that shed light on the functional mechanism of MSCs in modulating nonhealing wounds. Furthermore, critical advances have been achieved using MSC-based therapy in preclinical animal models as well as in clinics trials. In this present review, we summarize the mechanisms of MSCs and highlight the important preclinical and clinical trials of MSC therapy for nonhealing wounds. In particular, the combination of MSCs transplantation and tissue-engineered skin is addressed as a new strategy to optimize the delivery efficiency and therapeutic potential. Additionally, the current drawbacks of MSC therapy and the potential to further optimize the use of MSCs are implied.
Collapse
Affiliation(s)
- Meirong Li
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, Peoples Republic of China.,Trauma Treatment Center, Central Laboratory, Chinese PLA General Hospital Hainan Branch, Sanya, Peoples Republic of China
| | - Yali Zhao
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, Peoples Republic of China.,Trauma Treatment Center, Central Laboratory, Chinese PLA General Hospital Hainan Branch, Sanya, Peoples Republic of China
| | - Haojie Hao
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, Peoples Republic of China
| | - Weidong Han
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, Peoples Republic of China
| | - Xiaobing Fu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, Peoples Republic of China
| |
Collapse
|
31
|
Eren F, Öksüz S, Küçükodaci Z, Kendırlı MT, Cesur C, Alarçın E, Irem Bektaş E, Karagöz H, Kerımoğlu O, Köse GT, Ülkür E, Gorantla V. Targeted mesenchymal stem cell and vascular endothelial growth factor strategies for repair of nerve defects with nerve tissue implanted autogenous vein graft conduits. Microsurgery 2015; 36:578-585. [PMID: 25867169 DOI: 10.1002/micr.22401] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 01/13/2015] [Accepted: 02/18/2015] [Indexed: 01/16/2023]
Abstract
Peripheral nerve gaps exceeding 1 cm require a bridging repair strategy. Clinical feasibility of autogenous nerve grafting is limited by donor site comorbidity. In this study we investigated neuroregenerative efficacy of autogenous vein grafts implanted with tissue fragments from distal nerve in combination with vascular endothelial growth factor (VEGF) or mesenchymal stem cells (MSCs) in repair of rat peripheral nerve defects. Six-groups of Sprague-Dawley rats (n = 8 each) were evaluated in the autogenous setting using a 1.6 cm long peroneal nerve defect: Empty vein graft (group 1), Nerve graft (group 2), Vein graft and nerve fragments (group 3), Vein graft and nerve fragments and blank microspheres (group 4), Vein graft and nerve fragments and VEGF microspheres (group 5), Vein graft and nerve fragments and MSCs (group 6). Nerve fragments were derived from distal segment. Walking track analysis, electrophysiology and nerve histomorphometry were performed for assessment. Peroneal function indices (PFI), electrophysiology (amplitude) and axon count results for group 2 were -9.12 ± 3.07, 12.81 ± 2.46 mV, and 1697.88 ± 166.18, whereas the results for group 5 were -9.35 ± 2.55, 12.68 ± 1.78, and 1566 ± 131.44, respectively. The assessment results did not reveal statistical difference between groups 2 and 5 (P > 0.05). The best outcomes were seen in group 2 and 5 followed by group 6. Compared to other groups, poorest outcomes were seen in group 1 (P ≤ 0.05). PFI, electrophysiology (amplitude) and axon count results for group 1 were -208.82 ± 110.69, 0.86 ± 0.52, and 444.50 ± 274.03, respectively. Vein conduits implanted with distal nerve-derived nerve fragments improved axonal regeneration. VEGF was superior to MSCs in facilitating nerve regeneration. © 2015 Wiley Periodicals, Inc. Microsurgery 36:578-585, 2016.
Collapse
Affiliation(s)
- Fıkret Eren
- Department of Plastic and Reconstructive Surgery, Gulhane Military Medical Academy, Haydarpasa Training Hospital, Istanbul, Turkey
| | - Sınan Öksüz
- Department of Plastic and Reconstructive Surgery, Gulhane Military Medical Academy, Haydarpasa Training Hospital, Istanbul, Turkey. .,Department of Plastic and Reconstructive Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA.
| | - Zafer Küçükodaci
- Department of Pathology, Gulhane Military Medical Academy, Haydarpasa Training Hospital, Istanbul, Turkey
| | - Mustafa Tansel Kendırlı
- Department of Neurology, Gulhane Military Medical Academy, Haydarpasa Training Hospital, Istanbul, Turkey
| | - Ceyhun Cesur
- Department of Plastic and Reconstructive Surgery, Gulhane Military Medical Academy, Haydarpasa Training Hospital, Istanbul, Turkey
| | - Emıne Alarçın
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Marmara University, ıstanbul, Turkey
| | - Ezgı Irem Bektaş
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - Hüseyın Karagöz
- Department of Plastic and Reconstructive Surgery, Gulhane Military Medical Academy, Haydarpasa Training Hospital, Istanbul, Turkey
| | - Oya Kerımoğlu
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Marmara University, ıstanbul, Turkey
| | - Gamze Torun Köse
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey.,CoE in Biomaterials and Tissue Engineering, BIOMATEN, Ankara, Turkey
| | - Ersın Ülkür
- Department of Plastic and Reconstructive Surgery, Gulhane Military Medical Academy, Haydarpasa Training Hospital, Istanbul, Turkey
| | - Vijay Gorantla
- Department of Plastic and Reconstructive Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| |
Collapse
|
32
|
Ozturk S, Karagoz H. Experimental stem cell therapies on burn wound: do source, dose, timing and method matter? Burns 2015; 41:1133-9. [PMID: 25716759 DOI: 10.1016/j.burns.2015.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 12/15/2014] [Accepted: 01/13/2015] [Indexed: 12/11/2022]
Abstract
Stem cell therapy has been introduced as a new and promising modality of wound covering in recent decade. It has been used for improvement of burn wound, post burn scar and saving stasis zone of burn with good results. However, there have been some differences between the various experimental burn wound trials in stem cell source, therapeutic dose, delivery method and timing of stem cell delivery. In our study, we aimed to review stem cell biology and investigate discrepancies in animal trials of use of stem cells in burn wound account for the variation in, stem cell source, therapeutic dose, delivery method and timing of stem cell delivery.
Collapse
Affiliation(s)
- Sinan Ozturk
- Gulhane Military Medical Academy, Haydarpasa Training Hospital, Plastic and Reconstructive Surgery Department, Turkey.
| | - Huseyin Karagoz
- Gulhane Military Medical Academy, Haydarpasa Training Hospital, Plastic and Reconstructive Surgery Department, Turkey
| |
Collapse
|
33
|
Treatment of Secondary Burn Wound Progression in Contact Burns—A Systematic Review of Experimental Approaches. J Burn Care Res 2015; 36:e176-89. [DOI: 10.1097/bcr.0000000000000131] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
34
|
Zhao G, Yu YM, Shoup TM, Elmaleh DR, Bonab AA, Tompkins RG, Fischman AJ. Membrane potential-dependent uptake of 18F-triphenylphosphonium--a new voltage sensor as an imaging agent for detecting burn-induced apoptosis. J Surg Res 2014; 188:473-9. [PMID: 24582214 DOI: 10.1016/j.jss.2014.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/12/2013] [Accepted: 01/07/2014] [Indexed: 12/30/2022]
Abstract
BACKGROUND Mitochondrial dysfunction has been closely related to many pathologic processes, such as cellular apoptosis. Alterations in organelle membrane potential are associated with mitochondrial dysfunction. A fluorine-18 labeled phosphonium compound: (18)F-triphenylphosphonium ((18)F-TPP) was prepared to determine its potential use as a mitochondria-targeting radiopharmaceutical to evaluate cellular apoptosis. METHODS Studies were conducted in both ex vivo cell lines and in vivo using a burned animal model. Uptake of (18)F-TPP was assessed in PC-3 cells by gamma counting under the following conditions: graded levels of extracellular potassium concentrations, incubation with carbonyl cyanide m-chlorophenylhydrazone and staurosporine. Apoptosis was studied in a burn animal model using terminal deoxynucleotidyl transferase dUTP nick end labeling staining and simultaneous assessment of (18)F-TPP uptake by biodistribution. RESULTS We found that stepwise membrane depolarization by potassium (K) resulted in a linear decrease in (18)F-TPP uptake, with a slope of 0.62 ± 0.08 and a correlation coefficient of 0.936 ± 0.11. Gradually increased concentrations of m-chlorophenylhydrazone lead to decreased uptake of (18)F-TPP. Staurosporine significantly decreased the uptake of (18)F-TPP in PC-3 cells from 14.2 ± 3.8% to 5.6 ± 1.3% (P < 0.001). Burn-induced significant apoptosis (sham: 4.4 ± 1.8% versus burn: 24.6 ± 6.7 %; P < 0.005) and a reduced uptake of tracer in the spleens of burn-injured animals as compared with sham burn controls (burn: 1.13 ± 0.24% versus sham: 3.28 ± 0.67%; P < 0.005). Biodistribution studies demonstrated that burn-induced significant reduction in (18)F-TPP uptake in spleen, heart, lung, and liver, which were associated with significantly increased apoptosis. CONCLUSIONS (18)F-TPP is a promising new voltage sensor for detecting mitochondrial dysfunction and apoptosis in various tissues.
Collapse
Affiliation(s)
- Gaofeng Zhao
- Department of Surgery, Massachusetts General Hospital, Shriners Hospitals for Children, and Harvard Medical School, Boston, Massachusetts
| | - Yong-Ming Yu
- Department of Surgery, Massachusetts General Hospital, Shriners Hospitals for Children, and Harvard Medical School, Boston, Massachusetts
| | - Timothy M Shoup
- Department of Surgery, Massachusetts General Hospital, Shriners Hospitals for Children, and Harvard Medical School, Boston, Massachusetts
| | - David R Elmaleh
- Department of Surgery, Massachusetts General Hospital, Shriners Hospitals for Children, and Harvard Medical School, Boston, Massachusetts
| | - Ali A Bonab
- Department of Surgery, Massachusetts General Hospital, Shriners Hospitals for Children, and Harvard Medical School, Boston, Massachusetts
| | - Ronald G Tompkins
- Department of Surgery, Massachusetts General Hospital, Shriners Hospitals for Children, and Harvard Medical School, Boston, Massachusetts
| | - Alan J Fischman
- Department of Surgery, Massachusetts General Hospital, Shriners Hospitals for Children, and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
35
|
Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp Mol Med 2013; 45:e54. [PMID: 24232253 PMCID: PMC3849579 DOI: 10.1038/emm.2013.94] [Citation(s) in RCA: 883] [Impact Index Per Article: 73.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 07/22/2013] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are partially defined by their ability to differentiate into tissues including bone, cartilage and adipose in vitro, but it is their trophic, paracrine and immunomodulatory functions that may have the greatest therapeutic impact in vivo. Unlike pharmaceutical treatments that deliver a single agent at a specific dose, MSCs are site regulated and secrete bioactive factors and signals at variable concentrations in response to local microenvironmental cues. Significant progress has been made in understanding the biochemical and metabolic mechanisms and feedback associated with MSC response. The anti-inflammatory and immunomodulatory capacity of MSC may be paramount in the restoration of localized or systemic conditions for normal healing and tissue regeneration. Allogeneic MSC treatments, categorized as a drug by regulatory agencies, have been widely pursued, but new studies demonstrate the efficacy of autologous MSC therapies, even for individuals affected by a disease state. Safety and regulatory concerns surrounding allogeneic cell preparations make autologous and minimally manipulated cell therapies an attractive option for many regenerative, anti-inflammatory and autoimmune applications.
Collapse
|
36
|
Rennert RC, Rodrigues M, Wong VW, Duscher D, Hu M, Maan Z, Sorkin M, Gurtner GC, Longaker MT. Biological therapies for the treatment of cutaneous wounds: phase III and launched therapies. Expert Opin Biol Ther 2013; 13:1523-41. [PMID: 24093722 DOI: 10.1517/14712598.2013.842972] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Normal wound healing mechanisms can be overwhelmed in the setting of complex acute and chronic tissue injury. Biological therapies are designed to augment and/or restore the body's natural wound healing abilities. There are a variety of available and emerging technologies utilizing this approach that have demonstrated the ability to augment wound healing. AREAS COVERED In this review, the clinical data on launched and emerging biological therapies for wound healing applications are summarized. The methodologies discussed include biological skin equivalents, growth factors/small molecules and stem cell-based therapies. EXPERT OPINION While many products possess convincing clinical data demonstrating their efficacy in comparison to standard treatment options, more robust, controlled studies are needed to determine the relative value among established and emerging biological therapies. Future bioengineering and stem cell-based approaches are of particular interest due to the simultaneous correction of multiple deficiencies present in the nonhealing wound.
Collapse
Affiliation(s)
- Robert C Rennert
- Stanford University School of Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine , 257 Campus Drive West, Hagey Building GK106, Stanford, CA 94305 5148 , USA
| | | | | | | | | | | | | | | | | |
Collapse
|