1
|
Chatzileontiadou DSM, Lobos CA, Robson H, Almedia CA, Szeto C, Castley A, D'Orsogna LJ, Gras S. Public T cell clonotypes are selected in HLA-B ∗57:01 +/HIV + patients independently of the viral load. Cell Rep 2024; 43:114555. [PMID: 39083376 DOI: 10.1016/j.celrep.2024.114555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/10/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024] Open
Abstract
HIV controllers can control viral replication and remain healthy, but the mechanism behind this control is unknown. Despite human leukocyte antigen (HLA) diversity in the population, almost 50% of HIV controllers express the HLA-B∗57:01 molecule, which presents, among others, the Gag-derived epitope TW10. Given TW10's presentation in early infection, TW10-specific T cells could participate in the control of HIV. Here, we study the strength and functionality of TW10-specific T cells from HLA-B∗57:01+/HIV+ controller and non-controller individuals. We determine the TW10-specific T cell receptor (TCR) repertoire, revealing a bias in TCR gene usage with the presence of a public TCR. We determine that the T cell response is polyfunctional regardless of the viral load, despite the low affinity of TW10-specific TCRs. We solve the crystal structure of HLA-B∗57:01-TW10 in complex with a TCR, providing the basis of recognition that underpins the strong TRBV5 bias observed in TW10-specific clonotypes.
Collapse
Affiliation(s)
- Demetra S M Chatzileontiadou
- Immunity and Infection Program, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bundoora, VIC 3086, Australia; Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| | - Christian A Lobos
- Immunity and Infection Program, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bundoora, VIC 3086, Australia; Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Hayden Robson
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Coral-Ann Almedia
- School of Medicine, University of Western Australia, Nedlands, WA 6009, Australia
| | - Christopher Szeto
- Immunity and Infection Program, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bundoora, VIC 3086, Australia; Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
| | - Alison Castley
- Department of Clinical Immunology and PathWest, Fiona Stanley Hospital, Murdoch, WA 6150, Australia
| | - Lloyd J D'Orsogna
- School of Medicine, University of Western Australia, Nedlands, WA 6009, Australia; Department of Clinical Immunology and PathWest, Fiona Stanley Hospital, Murdoch, WA 6150, Australia
| | - Stephanie Gras
- Immunity and Infection Program, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bundoora, VIC 3086, Australia; Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
2
|
Moysi E, Darko S, Gea-Mallorquí E, Petrovas C, Almeida JR, Wolinsky D, Peng Y, Jaye A, Stewart-Jones G, Douek DC, Koup RA, Dong T, Rowland-Jones S. Clonotypic architecture of a Gag-specific CD8+ T-cell response in chronic human HIV-2 infection. Eur J Immunol 2021; 51:2485-2500. [PMID: 34369597 DOI: 10.1002/eji.202048931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 06/07/2021] [Accepted: 08/05/2021] [Indexed: 11/08/2022]
Abstract
The dynamics of T-cell receptor (TCR) selection in chronic HIV-1 infection, and its association with clinical outcome, is well documented for an array of MHC-peptide complexes and disease stages. However, the factors that may contribute to the selection and expansion of CD8+ T-cells in chronic HIV-2 infection, especially at clonal level remain unclear. To address this question, we undertook a detailed molecular characterization of the clonotypic architecture of an HLA-B*3501 restricted Gag -specific CD8+ T-cell response in donors chronically infected with HIV-2 using a combination of flow cytometry, tetramer-specific CD8+ TCR clonotyping and in vitro assays. We show that the response to the NY9 epitope is hierarchical and narrow in terms of T-cell receptor alpha (TCRA) and beta (TCRB) gene usage yet clonotypically diverse. Furthermore, clonotypic dominance in shared origin cytotoxic T lymphocyte (CTL) clones was associated with a greater magnitude of cytokine production and antigen sensitivity at limiting antigen dilution as well as enhanced cross-reactivity for known HIV-2 variants. Hence, our data suggest that effector mobilization and expansion in human chronic HIV-2 infection may be linked to the qualitative features of specific CD8+ T-cell clonotypes, which could have implications for viral control and disease outcome. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Eirini Moysi
- Tissue Analysis Core, Vaccine Research Centre, Bethesda, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Samuel Darko
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Ester Gea-Mallorquí
- Viral Immunology Unit, Nuffield Department of Medicine, Headington, Oxford, OX3 7FZ, United Kingdom
| | - Constantinos Petrovas
- Tissue Analysis Core, Vaccine Research Centre, Bethesda, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Jorge R Almeida
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, 20892, USA
| | - David Wolinsky
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Yanchun Peng
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, OX3 9DS, United Kingdom
| | - Assan Jaye
- MRC Laboratories, The Gambia, PO Box 273, West Africa
| | - Guillaume Stewart-Jones
- Structural Biology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Richard A Koup
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Tao Dong
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, OX3 9DS, United Kingdom
| | - Sarah Rowland-Jones
- Viral Immunology Unit, Nuffield Department of Medicine, Headington, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
3
|
Lima NS, Takata H, Huang SH, Haregot A, Mitchell J, Blackmore S, Garland A, Sy A, Cartwright P, Routy JP, Michael NL, Appay V, Jones RB, Trautmann L. CTL Clonotypes with Higher TCR Affinity Have Better Ability to Reduce the HIV Latent Reservoir. THE JOURNAL OF IMMUNOLOGY 2020; 205:699-707. [PMID: 32591402 DOI: 10.4049/jimmunol.1900811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 05/23/2020] [Indexed: 01/09/2023]
Abstract
The success of the shock and kill strategy for the HIV cure depends both on the reactivation of the latent reservoir and on the ability of the immune system to eliminate infected cells. As latency reversal alone has not shown any impact in the size of the latent reservoir, ensuring that effector CTLs are able to recognize and kill HIV-infected cells could contribute to reservoir reduction. In this study, we investigated which functional aspects of human CTLs are associated with a better capacity to kill HIV-infected CD4+ T cells. We isolated Gag- and Nef-specific CTL clones with different TCR sequences from the PBMC of donors in acute and chronic infection. High-affinity clonotypes that showed IFN-γ production preserved even when the CD8 coreceptor was blocked, and clones with high Ag sensitivity exhibited higher efficiency at reducing the latent reservoir. Although intrinsic cytotoxic capacity did not differ according to TCR affinity, clonotypes with high TCR affinity showed a better ability to kill HIV-infected CD4+ T cells obtained from in vivo-infected PBMC and subjected to viral reactivation. Strategies aiming to specifically boost and maintain long-living memory CTLs with high TCR affinity in vivo prior to latency-reversing treatment might improve the efficacy of the shock and kill approach to reduce the latent reservoir.
Collapse
Affiliation(s)
- Noemia S Lima
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817.,Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814
| | - Hiroshi Takata
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817.,Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
| | - Szu-Han Huang
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY 10021.,Department of Microbiology, Immunology, and Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20037
| | - Alexander Haregot
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817
| | - Julie Mitchell
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817.,Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
| | - Stephen Blackmore
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817
| | - Ayanna Garland
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817
| | - Aaron Sy
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817
| | | | - Jean-Pierre Routy
- Division of Hematology and Chronic Viral Illness Service, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Nelson L Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Victor Appay
- Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, INSERM, Paris 75005, France; and.,International Research Center of Medical Sciences, Kumamoto University, Kumamoto 860-8555, Japan
| | - R Brad Jones
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY 10021.,Department of Microbiology, Immunology, and Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20037
| | - Lydie Trautmann
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910; .,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817.,Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
| |
Collapse
|
4
|
T cell receptors for the HIV KK10 epitope from patients with differential immunologic control are functionally indistinguishable. Proc Natl Acad Sci U S A 2018; 115:1877-1882. [PMID: 29437954 DOI: 10.1073/pnas.1718659115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
HIV controllers (HCs) are individuals who can naturally control HIV infection, partially due to potent HIV-specific CD8+ T cell responses. Here, we examined the hypothesis that superior function of CD8+ T cells from HCs is encoded by their T cell receptors (TCRs). We compared the functional properties of immunodominant HIV-specific TCRs obtained from HLA-B*2705 HCs and chronic progressors (CPs) following expression in primary T cells. T cells transduced with TCRs from HCs and CPs showed equivalent induction of epitope-specific cytotoxicity, cytokine secretion, and antigen-binding properties. Transduced T cells comparably, albeit modestly, also suppressed HIV infection in vitro and in humanized mice. We also performed extensive molecular dynamics simulations that provided a structural basis for similarities in cytotoxicity and epitope cross-reactivity. These results demonstrate that the differential abilities of HIV-specific CD8+ T cells from HCs and CPs are not genetically encoded in the TCRs alone and must depend on additional factors.
Collapse
|
5
|
Abdel-Hakeem MS, Boisvert M, Bruneau J, Soudeyns H, Shoukry NH. Selective expansion of high functional avidity memory CD8 T cell clonotypes during hepatitis C virus reinfection and clearance. PLoS Pathog 2017; 13:e1006191. [PMID: 28146579 PMCID: PMC5305272 DOI: 10.1371/journal.ppat.1006191] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/13/2017] [Accepted: 01/18/2017] [Indexed: 11/24/2022] Open
Abstract
The dynamics of the memory CD8 T cell receptor (TCR) repertoire upon virus re-exposure and factors governing the selection of TCR clonotypes conferring protective immunity in real life settings are poorly understood. Here, we examined the dynamics and functionality of the virus-specific memory CD8 TCR repertoire before, during and after hepatitis C virus (HCV) reinfection in patients who spontaneously resolved two consecutive infections (SR/SR) and patients who resolved a primary but failed to clear a subsequent infection (SR/CI). The TCR repertoire was narrower prior to reinfection in the SR/SR group as compared to the SR/CI group and became more focused upon reinfection. CD8 T cell clonotypes expanding upon re-exposure and associated with protection from viral persistence were recruited from the memory T cell pool. Individual CD8 T cell lines generated from the SR/SR group exhibited higher functional avidity and polyfunctionality as compared to cell lines from the SR/CI group. Our results suggest that protection from viral persistence upon HCV reinfection is associated with focusing of the HCV-specific CD8 memory T cell repertoire from which established cell lines showed high functional avidity. These findings are applicable to vaccination strategies aiming at shaping the protective human T cell repertoire. In this study we examined the diversity and dynamics of the repertoire of receptors of CD8 T cells that are selected and enriched upon real-life multiple exposures to viral infections. Using hepatitis C virus (HCV) infection in a cohort of high risk people who inject drugs, we demonstrate that protection upon two subsequent infections was associated with a narrow repertoire of virus-specific CD8 T cells and selective expansion of cells with high polyfunctionality (increased TNFα production and cytotoxic potential). Our results have important implications in vaccination programs aiming at shaping the CD8 T cell repertoire against viral infections and cancers.
Collapse
Affiliation(s)
- Mohamed S. Abdel-Hakeem
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Maude Boisvert
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Julie Bruneau
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Département de médecine familiale et de médecine d’urgence, Université de Montréal, Montréal, Québec, Canada
| | - Hugo Soudeyns
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
- Centre hospitalier universitaire Sainte-Justine, Montréal, Québec, Canada
| | - Naglaa H. Shoukry
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Département de médecine, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
6
|
TCR clonotypes: molecular determinants of T-cell efficacy against HIV. Curr Opin Virol 2016; 16:77-85. [PMID: 26874617 DOI: 10.1016/j.coviro.2016.01.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 01/02/2023]
Abstract
Because of the enormous complexity and breadth of the overall HIV-specific CD8(+) T-cell response, invaluable information regarding important aspects of T-cell efficacy against HIV can be sourced from studies performed on individual clonotypes. Data gathered from ex vivo and in vitro analyses of T-cell responses and viral evolution bring us one step closer towards deciphering the correlates of protection against HIV. HIV-responsive CD8(+) T-cell populations are characterized by specific clonotypic immunodominance patterns and public TCRs. The TCR endows T-cells with two key features, important for the effective control of HIV: avidity and crossreactivity. While TCR avidity is a major determinant of CD8(+) T-cell functional efficacy against the virus, crossreactivity towards wildtype and mutant viral epitopes is crucial for adaptation to HIV evolution. The properties of CD4(+) T-cell responses in HIV controllers appear also to be shaped by high avidity public TCR clonotypes. The molecular nature of the TCR, together with the clonotypic composition of the HIV-specific T-cell response, emerge as major determinants of anti-viral efficacy.
Collapse
|
7
|
A robust and scalable TCR-based reporter cell assay to measure HIV-1 Nef-mediated T cell immune evasion. J Immunol Methods 2015; 426:104-13. [PMID: 26319395 DOI: 10.1016/j.jim.2015.08.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/20/2015] [Accepted: 08/20/2015] [Indexed: 11/24/2022]
Abstract
HIV-1 evades cytotoxic T cell responses through Nef-mediated downregulation of HLA class I molecules from the infected cell surface. Methods to quantify the impact of Nef on T cell recognition typically employ patient-derived T cell clones; however, these assays are limited by the cost and effort required to isolate and maintain primary cell lines. The variable activity of different T cell clones and the limited number of cells generated by re-stimulation can also hinder assay reproducibility and scalability. Here, we describe a heterologous T cell receptor reporter assay and use it to study immune evasion by Nef. Induction of NFAT-driven luciferase following co-culture with peptide-pulsed or virus-infected target cells serves as a rapid, quantitative and antigen-specific measure of T cell recognition of its cognate peptide/HLA complex. We demonstrate that Nef-mediated downregulation of HLA on target cells correlates inversely with T cell receptor-dependent luminescent signal generated by effector cells. This method provides a robust, flexible and scalable platform that is suitable for studies to measure Nef function in the context of different viral peptide/HLA antigens, to assess the function of patient-derived Nef alleles, or to screen small molecule libraries to identify novel Nef inhibitors.
Collapse
|
8
|
Boyd A, Almeida JR, Darrah PA, Sauce D, Seder RA, Appay V, Gorochov G, Larsen M. Pathogen-Specific T Cell Polyfunctionality Is a Correlate of T Cell Efficacy and Immune Protection. PLoS One 2015; 10:e0128714. [PMID: 26046523 PMCID: PMC4457486 DOI: 10.1371/journal.pone.0128714] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/29/2015] [Indexed: 12/31/2022] Open
Abstract
Introduction Understanding the factors that delineate the efficacy of T cell responses towards pathogens is crucial for our ability to develop potent therapies against infectious diseases. Multidimensional evaluation of T cell functionality at the single-cell level enables exhaustive analysis of combinatorial functional properties, hence polyfunctionality. We have recently invented an algorithm that quantifies polyfunctionality, the Polyfunctionality Index (Larsen et al. PLoS One 2012). Here we demonstrate that quantitative assessment of T cell polyfunctionality correlates with T cell efficacy measured as the capacity to kill target cells in vitro and control infection in vivo. Methods We employed the polyfunctionality index on two datasets selected for their unique ability to evaluate the polyfunctional imprint on T cell efficacy. 1) HIV-specific CD8+ T cells and 2) Leishmania major-specific CD4+ T cells were analysed for their capacity to secrete multiple effector molecules, kill target cells and control infection. Briefly, employing the Polyfunctionality Index algorithm we determined the parameter estimates resulting in optimal correlation between T cell polyfunctionality and T cell efficacy. Results T cell polyfunctionality is correlated with T cell efficacy measured as 1) target killing (r=0.807, P<0.0001) and 2) lesion size upon challenge with Leishmania major (r=-0.50, P=0.004). Contrary to an approach relying on the Polyfunctionality Index algorithm, quantitative evaluation of T cell polyfunctionality traditionally ignores the gradual contribution of more or less polyfunctional T cells. Indeed, comparing both approaches we show that optimal description of T cell efficacy is obtained when gradually integrating all levels of polyfunctionality in accordance with the Polyfunctionality Index. Conclusions Our study presents a generalizable methodology to objectively evaluate the impact of polyfunctionality on T cell efficacy. We show that T cell polyfunctionality is a superior correlate of T cell efficacy both in vitro and in vivo as compared with response size. Therefore, future immunotherapies should aim to increase T cell polyfunctionality.
Collapse
Affiliation(s)
- Anders Boyd
- Inserm UMR-S1136, Institut Pierre Louis d’Epidémiologie et de Santé Publique, Paris, France
| | - Jorge R. Almeida
- Inserm UMR-S1135, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Patricia A. Darrah
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States of America
| | - Delphine Sauce
- Inserm UMR-S1135, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Robert A. Seder
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States of America
| | - Victor Appay
- Inserm UMR-S1135, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Guy Gorochov
- Inserm UMR-S1135, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
- AP-HP, Groupement Hospitalier Pitié-Salpêtrière, Département d’Immunologie, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, CR7, CIMI-Paris, Paris, France
| | - Martin Larsen
- Inserm UMR-S1135, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
- AP-HP, Groupement Hospitalier Pitié-Salpêtrière, Département d’Immunologie, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, CR7, CIMI-Paris, Paris, France
- * E-mail:
| |
Collapse
|
9
|
The link between CD8+ T-cell antigen-sensitivity and HIV-suppressive capacity depends on HLA restriction, target epitope and viral isolate. AIDS 2014. [DOI: 10.1097/01.aids.0000453915.17205.9f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|