1
|
Balle C, Armistead B, Kiravu A, Song X, Happel AU, Hoffmann AA, Kanaan SB, Nelson JL, Gray CM, Jaspan HB, Harrington WE. Factors influencing maternal microchimerism throughout infancy and its impact on infant T cell immunity. J Clin Invest 2022; 132:e148826. [PMID: 35550376 PMCID: PMC9246390 DOI: 10.1172/jci148826] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/10/2022] [Indexed: 11/17/2022] Open
Abstract
Determinants of the acquisition and maintenance of maternal microchimerism (MMc) during infancy and the impact of MMc on infant immune responses are unknown. We examined factors that influence MMc detection and level across infancy and the effect of MMc on T cell responses to bacillus Calmette-Guérin (BCG) vaccination in a cohort of HIV-exposed, uninfected and HIV-unexposed infants in South Africa. MMc was measured in whole blood from 58 infants using a panel of quantitative PCR assays at day 1, and 7, 15, and 36 weeks of life. Infants received BCG at birth, and selected whole blood samples from infancy were stimulated in vitro with BCG and assessed for polyfunctional CD4+ T cell responses. MMc was present in most infants across infancy, with levels ranging from 0 to 1,193/100,000 genomic equivalents and was positively impacted by absence of maternal HIV, maternal and infant HLA compatibility, infant female sex, and exclusive breastfeeding. Initiation of maternal antiretroviral therapy prior to pregnancy partially restored MMc level in HIV-exposed, uninfected infants. Birth MMc was associated with an improved polyfunctional CD4+ T cell response to BCG. These data emphasize that both maternal and infant factors influence the level of MMc, which may subsequently affect infant T cell responses.
Collapse
Affiliation(s)
- Christina Balle
- Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Blair Armistead
- Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Agano Kiravu
- Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Xiaochang Song
- Seattle Children’s Research Institute, Seattle, Washington, USA
- University of Washington School of Medicine, Seattle, Washington, USA
| | - Anna-Ursula Happel
- Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Angela A. Hoffmann
- Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Sami B. Kanaan
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - J. Lee Nelson
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Clive M. Gray
- Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Heather B. Jaspan
- Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Pediatrics and
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Whitney E. Harrington
- Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Pediatrics and
| |
Collapse
|
2
|
Amin O, Powers J, Bricker KM, Chahroudi A. Understanding Viral and Immune Interplay During Vertical Transmission of HIV: Implications for Cure. Front Immunol 2021; 12:757400. [PMID: 34745130 PMCID: PMC8566974 DOI: 10.3389/fimmu.2021.757400] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Despite the significant progress that has been made to eliminate vertical HIV infection, more than 150,000 children were infected with HIV in 2019, emphasizing the continued need for sustainable HIV treatment strategies and ideally a cure for children. Mother-to-child-transmission (MTCT) remains the most important route of pediatric HIV acquisition and, in absence of prevention measures, transmission rates range from 15% to 45% via three distinct routes: in utero, intrapartum, and in the postnatal period through breastfeeding. The exact mechanisms and biological basis of these different routes of transmission are not yet fully understood. Some infants escape infection despite significant virus exposure, while others do not, suggesting possible maternal or fetal immune protective factors including the presence of HIV-specific antibodies. Here we summarize the unique aspects of HIV MTCT including the immunopathogenesis of the different routes of transmission, and how transmission in the antenatal or postnatal periods may affect early life immune responses and HIV persistence. A more refined understanding of the complex interaction between viral, maternal, and fetal/infant factors may enhance the pursuit of strategies to achieve an HIV cure for pediatric populations.
Collapse
Affiliation(s)
- Omayma Amin
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Jenna Powers
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Katherine M. Bricker
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta and Emory University, Atlanta, GA, United States
| |
Collapse
|
3
|
|
4
|
Strategies for screening cord blood for a public cord blood bank in high HIV prevalence regions. GLOBAL HEALTH EPIDEMIOLOGY AND GENOMICS 2018; 3:e9. [PMID: 30263133 PMCID: PMC6152491 DOI: 10.1017/gheg.2018.6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/01/2018] [Accepted: 03/13/2018] [Indexed: 02/08/2023]
Abstract
assay suggest that it could be used for the routine screening of CB units in conjunction with currently recommended maternal screening to reduce the risk of transplant transmissible infection.
Collapse
Key Words
- ART, anti-retroviral therapy
- Africa
- CMV, cytomegalovirus
- DNA, deoxyribonucleic acid
- ELISA, enzyme-linked immunosorbent assay
- EPI, Expanded Programme of Immunisation
- FDA, Food and Drug Administration
- HBV, hepatitis B virus
- HCV, hepatitis C virus
- HIV
- HIV, human immunodeficiency virus
- HLA, human leukocyte antigen
- HSCT, haematopoietic stem cell transplantation
- MTCT, mother-to-child transmission
- NAT, nucleic acid test
- PCR, polymerase chain reaction
- PMTCT, prevention of mother-to-child transmission
- RNA, ribonucleic acid
- SABMR, South African Bone Marrow Registry
- SANBS, South African National Blood Service
- TNC, total nucleated cell
- UCB, umbilical cord blood
- WMDA, World Marrow Donor Association
- cord blood
- stem cell
- transplantation
Collapse
|
5
|
Milligan C, Overbaugh J. The role of cell-associated virus in mother-to-child HIV transmission. J Infect Dis 2015; 210 Suppl 3:S631-40. [PMID: 25414417 DOI: 10.1093/infdis/jiu344] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mother-to-child transmission (MTCT) of human immunodeficiency virus (HIV) continues to contribute to the global burden of disease despite great advances in antiretroviral (ARV) treatment and prophylaxis. In this review, we discuss the proposed mechanisms of MTCT, evidence for cell-free and cell-associated transmission in different routes of MTCT, and the impact of ARVs on virus levels and transmission. Many population-based studies support a role for cell-associated virus in transmission and in vitro studies also provide some support for this mode of transmission. However, animal model studies provide proof-of-principle that cell-free virus can establish infection in infants, and studies of ARVs in HIV-infected pregnant women show a strong correlation with reduction in cell-free virus levels and protection. ARV treatment in MTCT potentially provides opportunities to better define the infectious form of virus, but these studies will require better tools to measure the infectious cell reservoir.
Collapse
Affiliation(s)
- Caitlin Milligan
- Division of Human Biology, Fred Hutchinson Cancer Research Center Medical Scientist Training Program, University of Washington School of Medicine Graduate Program in Pathobiology, Department of Global Health, University of Washington, Seattle, Washington
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Research Center Medical Scientist Training Program, University of Washington School of Medicine
| |
Collapse
|
6
|
Abstract
Most infants born to human immunodeficiency virus (HIV)-infected women escape HIV infection. Infants evade infection despite an immature immune system and, in the case of breastfeeding, prolonged repetitive exposure. If infants become infected, the course of their infection and response to treatment differs dramatically depending upon the timing (in utero, intrapartum, or during breastfeeding) and potentially the route of their infection. Perinatally acquired HIV infection occurs during a critical window of immune development. HIV's perturbation of this dynamic process may account for the striking age-dependent differences in HIV disease progression. HIV infection also profoundly disrupts the maternal immune system upon which infants rely for protection and immune instruction. Therefore, it is not surprising that infants who escape HIV infection still suffer adverse effects. In this review, we highlight the unique aspects of pediatric HIV transmission and pathogenesis with a focus on mechanisms by which HIV infection during immune ontogeny may allow discovery of key elements for protection and control from HIV.
Collapse
|
7
|
Carlier Y, Truyens C, Deloron P, Peyron F. Congenital parasitic infections: a review. Acta Trop 2012; 121:55-70. [PMID: 22085916 DOI: 10.1016/j.actatropica.2011.10.018] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 10/27/2011] [Accepted: 10/29/2011] [Indexed: 12/11/2022]
Abstract
This review defines the concepts of maternal-fetal (congenital) and vertical transmissions (mother-to-child) of pathogens and specifies the human parasites susceptible to be congenitally transferred. It highlights the epidemiological features of this transmission mode for the three main congenital parasitic infections due to Toxoplasma gondii, Trypanosoma cruzi and Plasmodium sp. Information on the possible maternal-fetal routes of transmission, the placental responses to infection and timing of parasite transmission are synthesized and compared. The factors susceptible to be involved in parasite transmission and development of congenital parasitic diseases, such as the parasite genotypes, the maternal co-infections and parasitic load, the immunological features of pregnant women and the capacity of some fetuses/neonates to overcome their immunological immaturity to mount an immune response against the transmitted parasites are also discussed and compared. Analysis of clinical data indicates that parasitic congenital infections are often asymptomatic, whereas symptomatic newborns generally display non-specific symptoms. The long-term consequences of congenital infections are also mentioned, such as the imprinting of neonatal immune system and the possible trans-generational transmission. The detection of infection in pregnant women is mainly based on standard serological or parasitological investigations. Amniocentesis and cordocentesis can be used for the detection of some fetal infections. The neonatal infection can be assessed using parasitological, molecular or immunological methods; the place of PCR in such neonatal diagnosis is discussed. When such laboratory diagnosis is not possible at birth or in the first weeks of life, standard serological investigations can also be performed 8-10 months after birth, to avoid detection of maternal transmitted antibodies. The specific aspects of treatment of T. gondii, T. cruzi and Plasmodium congenital infections are mentioned. The possibilities of primary and secondary prophylaxes, as well as the available WHO corresponding recommendations are also presented.
Collapse
|
8
|
The role of transplacental microtransfusions of maternal lymphocytes in in utero HIV transmission. J Acquir Immune Defic Syndr 2010; 55:143-7. [PMID: 20683195 DOI: 10.1097/qai.0b013e3181eb301e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The mechanisms of HIV transmission from mothers to infants are poorly understood. A possible mechanism of in utero transmission is transplacental transfer of HIV-infected maternal leukocytes into the fetal circulation during pregnancy. OBJECTIVE To determine if the frequency of in utero HIV infection correlates with presence or levels of maternal cells (MCs) in placenta-derived cord blood. METHODS DNA was extracted from dried cord blood spots (DBS) from newborns born to HIV+ mothers and corresponding maternal DBS specimens. Paired mother-infant samples were probed to identify unique maternal sequences targeted by 24 allele-specific real-time polymerase chain reaction assays. Infant DBS-derived DNA was then probed in replicate analyses for noninherited maternal allelic sequences. Rates of detection and levels of MCs in DBS samples of HIV(+) and HIV(-) newborns were compared. RESULTS Of 114 mother-infant pairs with informative alleles, 38 newborns were HIV(+) and 76 HIV(-), based on detection of HIV DNA/RNA at birth. MC were detected in 23 of 38 HIV(+) newborns (60.5%) and in 47 of 76 HIV(-) newborns (61.8%). The mean and median concentrations of nucleated MCs in DBS for the HIV(+)/MC(+) newborns (n = 23) were 0.33% and 0.27%, respectively, compared with 0.09% and 0.10% for the HIV(-)/MC(+) newborns (n = 47) (2-sample T test for means: P = 0.78). CONCLUSIONS There was no significant difference in rates of detection or concentrations of MC in DBS between HIV(+) and HIV(-) newborns. Therefore, we could not demonstrate a correlation between MC in DBS, assumed to reflect levels of in utero maternal-fetal cell trafficking, and the risk of in utero HIV transmission.
Collapse
|