1
|
Grant-McAuley W, Morgenlander W, Hudelson SE, Thakar M, Piwowar-Manning E, Clarke W, Breaud A, Blankson J, Wilson E, Ayles H, Bock P, Moore A, Kosloff B, Shanaube K, Meehan SA, van Deventer A, Fidler S, Hayes R, Ruczinski I, Kammers K, Laeyendecker O, Larman HB, Eshleman SH. Comprehensive profiling of pre-infection antibodies identifies HIV targets associated with viremic control and viral load. Front Immunol 2023; 14:1178520. [PMID: 37744365 PMCID: PMC10512082 DOI: 10.3389/fimmu.2023.1178520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/15/2023] [Indexed: 09/26/2023] Open
Abstract
Background High HIV viral load (VL) is associated with increased transmission risk and faster disease progression. HIV controllers achieve viral suppression without antiretroviral (ARV) treatment. We evaluated viremic control in a community-randomized trial with >48,000 participants. Methods A massively multiplexed antibody profiling system, VirScan, was used to quantify pre- and post-infection antibody reactivity to HIV peptides in 664 samples from 429 participants (13 controllers, 135 viremic non-controllers, 64 other non-controllers, 217 uninfected persons). Controllers had VLs <2,000 copies/mL with no ARV drugs detected at the first HIV-positive visit and one year later. Viremic non-controllers had VLs 2,000 copies/mL with no ARV drugs detected at the first HIV-positive visit. Other non-controllers had either ARV drugs detected at the first HIV-positive visit (n=47) or VLs <2,000 copies/mL with no ARV drugs detected at only one HIV-positive visit (n=17). Results We identified pre-infection HIV antibody reactivities that correlated with post-infection VL. Pre-infection reactivity to an epitope in the HR2 domain of gp41 was associated with controller status and lower VL. Pre-infection reactivity to an epitope in the C2 domain of gp120 was associated with non-controller status and higher VL. Different patterns of antibody reactivity were observed over time for these two epitopes. Conclusion These studies suggest that pre-infection HIV antibodies are associated with controller status and modulation of HIV VL. These findings may inform research on antibody-based interventions for HIV treatment.
Collapse
Affiliation(s)
- Wendy Grant-McAuley
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - William Morgenlander
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sarah E. Hudelson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Manjusha Thakar
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Estelle Piwowar-Manning
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - William Clarke
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Autumn Breaud
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Joel Blankson
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ethan Wilson
- Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Helen Ayles
- Zambart, University of Zambia School of Public Health, Lusaka, Zambia
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Peter Bock
- Desmond Tutu TB Center, Department of Paediatrics and Child Health, Stellenbosch University, Western Cape, South Africa
| | | | - Barry Kosloff
- Zambart, University of Zambia School of Public Health, Lusaka, Zambia
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kwame Shanaube
- Zambart, University of Zambia School of Public Health, Lusaka, Zambia
| | - Sue-Ann Meehan
- Desmond Tutu TB Center, Department of Paediatrics and Child Health, Stellenbosch University, Western Cape, South Africa
| | - Anneen van Deventer
- Desmond Tutu TB Center, Department of Paediatrics and Child Health, Stellenbosch University, Western Cape, South Africa
| | - Sarah Fidler
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Richard Hayes
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Kai Kammers
- Quantitative Sciences Division, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Oliver Laeyendecker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, MD, United States
| | - H. Benjamin Larman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Susan H. Eshleman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
2
|
Stansfield SE, Mittler JE, Gottlieb GS, Murphy JT, Hamilton DT, Detels R, Wolinsky SM, Jacobson LP, Margolick JB, Rinaldo CR, Herbeck JT, Goodreau SM. Sexual role and HIV-1 set point viral load among men who have sex with men. Epidemics 2019; 26:68-76. [PMID: 30193771 PMCID: PMC6538391 DOI: 10.1016/j.epidem.2018.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 07/12/2018] [Accepted: 08/28/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND HIV-1 set point viral load (SPVL) is a highly variable trait that influences disease progression and transmission risk. Men who are exclusively insertive (EI) during anal intercourse require more sexual contacts to become infected than exclusively receptive (ER) men. Thus, we hypothesize that EIs are more likely to acquire their viruses from highly infectious partners (i.e., with high SPVLs) and to have higher SPVLs than infected ERs. METHODS We used a one-generation Bernoulli model, a dynamic network model, and data from the Multicenter AIDS Cohort Study (MACS) to examine whether and under what circumstances MSM differ in SPVL by sexual role. RESULTS Both models predicted higher SPVLs in EIs than role versatile (RV) or ER men, but only in scenarios where longer-term relationships predominated. ER and RV men displayed similar SPVLs. EI men remained far less likely than ER men to become infected, however. When the MACS data were limited by some estimates of lower sex partner counts (a proxy for longer relationships), EI men had higher SPVLs; these differences were clinically relevant (>0.3 log10 copies/mL) and statistically significant (p < 0.05). CONCLUSIONS Mode of acquisition may be an important aspect of SPVL evolution in MSM, with clinical implications.
Collapse
Affiliation(s)
- Sarah E Stansfield
- Departments of Anthropology & Epidemiology, University of Washington, 314 Denny Hall, Box 353100, Seattle, WA 98195-3100, USA.
| | - John E Mittler
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Geoffrey S Gottlieb
- Departments of Medicine & Global Health, University of Washington, Seattle, WA 98195, USA
| | - James T Murphy
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Deven T Hamilton
- Center for Studies in Demography and Ecology, University of Washington, Seattle, WA 98195, USA
| | - Roger Detels
- Department of Epidemiology, University of California School of Public Health, Los Angeles, CA, 90024, USA
| | - Steven M Wolinsky
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Lisa P Jacobson
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Joseph B Margolick
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Charles R Rinaldo
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, 15261, USA
| | - Joshua T Herbeck
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| | - Steven M Goodreau
- Department of Anthropology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
3
|
Cervantes CAC, Oliveira LMS, Manfrere KCG, Lima JF, Pereira NZ, Duarte AJS, Sato MN. Antiviral factors and type I/III interferon expression associated with regulatory factors in the oral epithelial cells from HIV-1-serodiscordant couples. Sci Rep 2016; 6:25875. [PMID: 27168019 PMCID: PMC4863167 DOI: 10.1038/srep25875] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/22/2016] [Indexed: 12/29/2022] Open
Abstract
Individuals who remain HIV-seronegative despite repeated unprotected exposure to the virus are defined as exposed seronegative (ESN) individuals. Innate and adaptive immunity, as well as genetic factors, provide ESNs with important advantages that allow for low infection susceptibility. The majority of HIV-1-infected individuals undergo antiretroviral therapy, which can decrease the level of HIV-1 exposure in ESNs. We analyzed type I interferon (IFN)-related antiviral and regulatory factors in peripheral blood mononuclear cells (PBMCs) and oral epithelial cells from serodiscordant couples. Our findings revealed that ESNs did not induce the expression of antiviral factors (APOBEC-3G, TRIM5-α, SAMDH1, STING, TBk1) or regulatory factors (Trex, Foxo3, Socs3, IL-10) in PBMCs, unlike their HIV-1-infected partners. In contrast, ESNs upregulated APOBEC-3G and type I/III IFNs (IFNs-α,-β/-λ) in oral mucosal epithelial cells similar to their HIV-infected partners. The serodiscordant groups exhibited an increased expression of type I IFN-induced regulators, such as Trex and Foxo3, in oral epithelial cells. TLR7, TLR8 and TLR9 were expressed in oral epithelial cells of both ESNs and HIV-1-infected subjects. These findings revealed evidence of antiviral factors, type I/III interferon and regulatory factor expression only in the oral mucosal compartment of ESNs, while HIV-1-infected partners systemically and oral mucosal expressed the antiviral profile.
Collapse
Affiliation(s)
- Cesar A C Cervantes
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Luanda M S Oliveira
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Kelly C G Manfrere
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Josenilson F Lima
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Natalli Z Pereira
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Alberto J S Duarte
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Maria N Sato
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Detection of HIV-1-specific T-cell immune responses in highly HIV-exposed uninfected individuals by in-vitro dendritic cell co-culture. AIDS 2015; 29:1309-18. [PMID: 26091301 DOI: 10.1097/qad.0000000000000728] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Although virus-specific responses are rarely detected by conventional approaches, we report here the detection of T-cell responses in HIV-exposed seronegative (HESN) patients by two distinct assays. METHODS HIV-specific T-cell responses were analyzed by enzyme-linked immunospot in peripheral blood mononuclear cells from HESN patients after a 48-h co-culture with boosted dendritic cells. Additionally, a boosted flow cytometry approach was used to capture antiviral T-cell responses. Host genetic factors and T-cell activation were also analyzed to assess their implication on HIV exposure. RESULTS Of the 45 HESN individuals tested, up to 11 (24.4%) showed at least one response to peptide pools covering HIV Gag and Nef. A positive correlation was observed between the intensity (P = 0.0022) and magnitude (P = 0.0174) of the response detected in the HESN, and the viral load of the HIV-positive partner. Moreover, the result from the boosted flow and cytomix analyses showed a dominant Th1-like response pattern against HIV antigens, especially in CD8 T-cell populations. CONCLUSIONS The combined use of our boosted dendritic cell technique with a boosted flow cytometric approach allows us both to detect specific HIV-positive responses in a higher percentage of HESN patients and to define specific effector function profiles. This study contributes to a better understanding of resistance to HIV infection.
Collapse
|
5
|
Romas LM, Hasselrot K, Aboud LG, Birse KD, Ball TB, Broliden K, Burgener AD. A comparative proteomic analysis of the soluble immune factor environment of rectal and oral mucosa. PLoS One 2014; 9:e100820. [PMID: 24978053 PMCID: PMC4076261 DOI: 10.1371/journal.pone.0100820] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 05/30/2014] [Indexed: 02/04/2023] Open
Abstract
Objective Sexual transmission of HIV occurs across a mucosal surface, which contains many soluble immune factors important for HIV immunity. Although the composition of mucosal fluids in the vaginal and oral compartments has been studied extensively, the knowledge of the expression of these factors in the rectal mucosa has been understudied and is very limited. This has particular relevance given that the highest rates of HIV acquisition occur via the rectal tract. To further our understanding of rectal mucosa, this study uses a proteomics approach to characterize immune factor components of rectal fluid, using saliva as a comparison, and evaluates its antiviral activity against HIV. Methods Paired salivary fluid (n = 10) and rectal lavage fluid (n = 10) samples were collected from healthy, HIV seronegative individuals. Samples were analyzed by label-free tandem mass spectrometry to comprehensively identify and quantify mucosal immune protein abundance differences between saliva and rectal fluids. The HIV inhibitory capacity of these fluids was further assessed using a TZM-bl reporter cell line. Results Of the 315 proteins identified in rectal lavage fluid, 72 had known immune functions, many of which have described anti-HIV activity, including cathelicidin, serpins, cystatins and antileukoproteinase. The majority of immune factors were similarly expressed between fluids, with only 21 differentially abundant (p<0.05, multiple comparison corrected). Notably, rectal mucosa had a high abundance of mucosal immunoglobulins and antiproteases relative to saliva, Rectal lavage limited HIV infection by 40–50% in vitro (p<0.05), which is lower than the potent anti-HIV effect of oral mucosal fluid (70–80% inhibition, p<0.005). Conclusions This study reveals that rectal mucosa contains many innate immune factors important for host immunity to HIV and can limit viral replication in vitro. This indicates an important role for this fluid as the first line of defense against HIV.
Collapse
Affiliation(s)
- Laura M. Romas
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Klara Hasselrot
- Karolinska Institutet, Department of Medicine Solna, Unit of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Lindsay G. Aboud
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Kenzie D. Birse
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - T. Blake Ball
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
- National Laboratory for HIV Immunology, Public Health Agency of Canada, Winnipeg, Canada
- Department of Immunology, University of Manitoba, Winnipeg, Canada
| | - Kristina Broliden
- National Laboratory for HIV Immunology, Public Health Agency of Canada, Winnipeg, Canada
| | - Adam D. Burgener
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
- National Laboratory for HIV Immunology, Public Health Agency of Canada, Winnipeg, Canada
- * E-mail:
| |
Collapse
|
6
|
Nilsson C, Godoy-Ramirez K, Hejdeman B, Bråve A, Gudmundsdotter L, Hallengärd D, Currier JR, Wieczorek L, Hasselrot K, Earl PL, Polonis VR, Marovich MA, Robb ML, Sandström E, Wahren B, Biberfeld G. Broad and potent cellular and humoral immune responses after a second late HIV-modified vaccinia virus ankara vaccination in HIV-DNA-primed and HIV-modified vaccinia virus Ankara-boosted Swedish vaccinees. AIDS Res Hum Retroviruses 2014; 30:299-311. [PMID: 24090081 PMCID: PMC3938943 DOI: 10.1089/aid.2013.0149] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We have previously shown that an HIV vaccine regimen including three HIV-DNA immunizations and a single HIV-modified vaccinia virus Ankara (MVA) boost was safe and highly immunogenic in Swedish volunteers. A median 38 months after the first HIV-MVA vaccination, 24 volunteers received 10(8) plaque-forming units of HIV-MVA. The vaccine was well tolerated. Two weeks after this HIV-MVA vaccination, 18 (82%) of 22 evaluable vaccinees were interferon (IFN)-γ enzyme-linked immunospot (ELISpot) reactive: 18 to Gag and 10 (45%) to Env. A median minimal epitope count of 4 to Gag or Env was found in a subset of 10 vaccinees. Intracellular cytokine staining revealed CD4(+) and/or CD8(+) T cell responses in 23 (95%) of 24 vaccinees, 19 to Gag and 19 to Env. The frequency of HIV-specific CD4(+) and CD8(+) T cell responses was equally high (75%). A high proportion of CD4(+) and CD8(+) T cell responses to Gag was polyfunctional with production of three or more cytokines (40% and 60%, respectively). Of the Env-specific CD4(+) T cells 40% were polyfunctional. Strong lymphoproliferative responses to Aldrithiol-2 (AT-2)-treated subtype A, B, C, and A_E virus were demonstrable in 21 (95%) of 22 vaccinees. All vaccinees developed binding antibodies to Env and Gag. Neutralizing antibodies were detected in a peripheral blood mononuclear cell (PBMC)-based assay against subtype B and CRF01_AE viruses. The neutralizing antibody response rates were influenced by the vaccine dose and/or mode of delivery used at the previous HIV-MVA vaccination. Thus, a second late HIV-MVA boost induced strong and broad cellular immune responses and improved antibody responses. The data support further exploration of this vaccine concept.
Collapse
Affiliation(s)
- Charlotta Nilsson
- Swedish Institute for Communicable Disease Control, Solna, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | | | - Bo Hejdeman
- Venhälsan, Department of Education and Clinical Research, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - Andreas Bråve
- Swedish Institute for Communicable Disease Control, Solna, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Lindvi Gudmundsdotter
- Swedish Institute for Communicable Disease Control, Solna, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - David Hallengärd
- Swedish Institute for Communicable Disease Control, Solna, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jeffrey R. Currier
- Walter Reed Army Institute of Research, Department of Retrovirology, Rockville, Maryland
| | - Lindsay Wieczorek
- Walter Reed Army Institute of Research, Department of Retrovirology, Rockville, Maryland
| | - Klara Hasselrot
- Department of Medicine, Infectious Disease Unit, Center for Molecular Medicine (CMM) and Karolinska University Hospital, Solna, Sweden
| | - Patricia L. Earl
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Victoria R. Polonis
- Walter Reed Army Institute of Research, Department of Retrovirology, Rockville, Maryland
| | - Mary A. Marovich
- Walter Reed Army Institute of Research, Department of Retrovirology, Rockville, Maryland
| | - Merlin L. Robb
- Walter Reed Army Institute of Research, Department of Retrovirology, Rockville, Maryland
| | - Eric Sandström
- Venhälsan, Department of Education and Clinical Research, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - Britta Wahren
- Swedish Institute for Communicable Disease Control, Solna, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Gunnel Biberfeld
- Swedish Institute for Communicable Disease Control, Solna, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Major advances have been made in the delineation of HIV-specific immune response and in the mechanisms of virus escape. The kinetics of the immunological and virological events occurring during primary HIV infection indicate that the establishment of the latent HIV reservoir, the major obstacle to HIV eradication likely occurs during the very early stages of primary infection, that is, the 'eclipse phase', prior to the development of the HIV-specific immune response which has limited efficacy in the control of the early events of infection. Therefore, the window of opportunity to develop effective interventions either to clear HIV during primary infection or to prevent rebound of HIV in patients successfully treated who stop antiretroviral therapy is very narrow. RECENT FINDINGS Genetic factors most strongly associated with nonprogressive infection are human leukocyte antigen (HLA) class I alleles and particularly HLA-B5701. CD4 and CD8 T-cell responses with polyfunctional profile are associated with nonprogressive infection. Broader neutralizing antibodies are detected 3-4 years after infection, generated only in 20% of individuals but show no efficacy in the control of HIV replication. SUMMARY In the present review, we shall discuss the different components of the HIV-specific immune response elicited by the infection, the kinetics of these responses during primary infection and the changes following transition to the chronic phase of infection, and the functional profile of 'effective' versus 'noneffective' HIV-specific immune responses.
Collapse
|
8
|
HIV exposed seronegative individuals show antibodies specifically recognizing native HIV envelope glycoprotein. AIDS 2013; 27:1375-85. [PMID: 23945502 DOI: 10.1097/qad.0b013e32835fac08] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Susceptibility to HIV transmission by sexual intercourse has been associated with cellular anti-HIV responses. We aimed to also evaluate potential systemic humoral responses against HIV in a group of HIV-exposed seronegative individuals (HESN) in stable relationship with HIV-infected partners. METHODS We recruited 27 serodiscordant couples. HESN were classified according to HIV exposure into very low/low and moderate/high risk. Plasma from HESN and HIV partners were tested for neutralizing capacity and for the recognition of cell-surface expressed and recombinant forms of HIV envelope glycoproteins (Env). Healthy individuals (healthy control, n=11) were used as controls. RESULTS Recognition of cell-surface expressed Env by both immunoglobulin (Ig)G and IgA was higher in plasma samples from HESN than in healthy controls (P=0.0062 and P=0.0144, respectively). IgG binding to Env was significantly increased in HESN after unmasking CD4-induced epitopes (P=0.001), suggesting a wide range of targeted epitopes. Remarkably, ELISA assays using trimeric gp140 or monomeric gp120 failed to detect significant differences in reactivity between groups. Neutralization analysis showed residual activity in only three HESN samples (11%), whereas 70% of HIV-infected partners showed neutralizing activity. Although anti-Env humoral responses were found in 85% of HESN, their magnitude was not associated with the estimated level of exposure or the detection of HIV-specific cellular immune responses. CONCLUSION A high proportion of HESN show detectable plasma IgG or IgA recognizing different exposed and cryptic Env native epitopes unrelated to neutralizing capacity. Therefore, low but persistent HIV exposure induces new virus-specific systemic humoral responses or boosts preexisting natural antibodies.
Collapse
|
9
|
|
10
|
Functional avidity: a measure to predict the efficacy of effector T cells? Clin Dev Immunol 2012; 2012:153863. [PMID: 23227083 PMCID: PMC3511839 DOI: 10.1155/2012/153863] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 10/22/2012] [Indexed: 01/30/2023]
Abstract
The functional avidity is determined by exposing T-cell populations in vitro to different amounts of cognate antigen. T-cells with high functional avidity respond to low antigen doses. This in vitro measure is thought to correlate well with the in vivo effector capacity of T-cells. We here present the multifaceted factors determining and influencing the functional avidity of T-cells. We outline how changes in the functional avidity can occur over the course of an infection. This process, known as avidity maturation, can occur despite the fact that T-cells express a fixed TCR. Furthermore, examples are provided illustrating the importance of generating T-cell populations that exhibit a high functional avidity when responding to an infection or tumors. Furthermore, we discuss whether criteria based on which we evaluate an effective T-cell response to acute infections can also be applied to chronic infections such as HIV. Finally, we also focus on observations that high-avidity T-cells show higher signs of exhaustion and facilitate the emergence of virus escape variants. The review summarizes our current understanding of how this may occur as well as how T-cells of different functional avidity contribute to antiviral and anti-tumor immunity. Enhancing our knowledge in this field is relevant for tumor immunotherapy and vaccines design.
Collapse
|
11
|
|
12
|
Salivary basic proline-rich proteins are elevated in HIV-exposed seronegative men who have sex with men. AIDS 2012; 26:1857-67. [PMID: 22824632 DOI: 10.1097/qad.0b013e328357f79c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Innate mucosal factors are associated with protection in HIV-exposed seronegative (HESN) individuals, but studies of MSM have been very limited. We performed proteomic analysis of saliva from a cohort of HESN MSM who have regular unprotected oral receptive intercourse with their HIV-infected partner. METHODS Saliva samples from HESN (n = 25) and non-exposed male controls (n = 22) were analyzed by 2D-LC mass spectrometry. An overexpressed innate protein factor was further characterized by immunoblot, and compared with CC-chemokine expression, HIV-neutralizing activity, clinical factors, and sexual behavior. RESULTS Of 337 total proteins, seven were identified as differentially abundant in the HESN group. The five overabundant proteins (Basic salivary proline-rich proteins (bPRP) 2 and 3, Histatin-3, Lysozyme C, and SLPI) have known antimicrobial activity. bPRP2 showed the highest overabundance (>six-fold) in HESN individuals compared with controls (P = 0.009), including multiple isoforms. Salivary bPRP2 correlated with CC-chemokine levels in HESN individuals including RANTES (P = 0.02), MIP-1-alpha (P = 0.01), MIP-1-beta (P = 0.0002), MCP-1 (P = 0.005) and Eotaxin (P = 0.003) but not with frequency of HIV neutralizing activity, oral sexual practices, or viral load of the sexual partner. CONCLUSION This study identifies salivary bPRP2 as a novel soluble factor elevated in the oral compartment of HIV-exposed MSM.
Collapse
|
13
|
Response to letters on Bignami et al. Blood 2012. [DOI: 10.1182/blood-2012-04-422238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
14
|
Lohman-Payne B, Slyker J, Rowland-Jones SL. Immune approaches for the prevention of breast milk transmission of HIV-1. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 743:185-95. [PMID: 22454350 DOI: 10.1007/978-1-4614-2251-8_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Barbara Lohman-Payne
- Department of Pediatrics and Child Health, University of Nairobi, Nairobi, Kenya, 00202.
| | | | | |
Collapse
|
15
|
Taborda-Vanegas N, Zapata W, Rugeles MT. Genetic and Immunological Factors Involved in Natural Resistance to HIV-1 Infection. Open Virol J 2011; 5:35-43. [PMID: 21660188 PMCID: PMC3109745 DOI: 10.2174/1874357901105010035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 02/24/2011] [Accepted: 03/08/2011] [Indexed: 11/22/2022] Open
Abstract
Infection with Human immunodeficiency virus type-1 (HIV-1) induces severe alterations of the immune system leading to an increased susceptibility to opportunistic infections and malignancies. However, exposure to the virus does not always results in infection. Indeed, there exist individuals who have been repeatedly exposed to HIV-1 but do not exhibit clinical or serological evidence of infection, known as exposed seronegative individuals. Many studies have focused on the different mechanisms involved in natural resistance to HIV-1 infection, and have reported several factors associated with this phenomenon, including the presence of genetic polymorphisms in the viral coreceptors, innate and adaptive immune cells with particular phenotypic and functional features, and molecules such as antibodies and soluble factors that play an important role in defense against infection by HIV-1. The study of these factors could be the key for controlling this viral infection. This review summarizes the main mechanisms involved in resistance to HIV-1 infection.
Collapse
|
16
|
Restrepo C, Rallón NI, Benito JM. [Factors involved in resistance to human immunodeficiency virus infection]. Med Clin (Barc) 2011; 137:600-4. [PMID: 21382628 DOI: 10.1016/j.medcli.2010.11.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 10/28/2010] [Accepted: 11/09/2010] [Indexed: 10/18/2022]
Abstract
Repeated exposure to human immunodeficiency virus (HIV) is not always associated with infection and a subset of individuals remains persistently as HIV-seronegative despite multiple episodes of HIV exposure. These individuals are called HIV-exposed seronegatives (ESN). Several genetic and immunological factors have been involved in this resistance to HIV acquisition. Genetic factors have been linked to genes encoding chemokine receptors and their natural ligands as well as genes of the major histocompatibility complex. Immunological factors include both innate and adaptive immunity. The study of ESN provides a unique opportunity to unveil the mechanisms of natural protection against viral infection. Their better understanding may lead to novel preventive and immune-therapeutic approaches, including vaccines.
Collapse
Affiliation(s)
- Clara Restrepo
- Laboratorio de Biología Molecular, Servicio de Enfermedades Infecciosas, Hospital Carlos III, Madrid, España
| | | | | |
Collapse
|
17
|
Mohr EL, Xiang J, McLinden JH, Kaufman TM, Chang Q, Montefiori DC, Klinzman D, Stapleton JT. GB virus type C envelope protein E2 elicits antibodies that react with a cellular antigen on HIV-1 particles and neutralize diverse HIV-1 isolates. THE JOURNAL OF IMMUNOLOGY 2010; 185:4496-505. [PMID: 20826757 DOI: 10.4049/jimmunol.1001980] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Broadly neutralizing Abs to HIV-1 are well described; however, identification of Ags that elicit these Abs has proven difficult. Persistent infection with GB virus type C (GBV-C) is associated with prolonged survival in HIV-1-infected individuals, and among those without HIV-1 viremia, the presence of Ab to GBV-C glycoprotein E2 is also associated with survival. GBV-C E2 protein inhibits HIV-1 entry, and an antigenic peptide within E2 interferes with gp41-induced membrane perturbations in vitro, suggesting the possibility of structural mimicry between GBV-C E2 protein and HIV-1 particles. Naturally occurring human and experimentally induced GBV-C E2 Abs were examined for their ability to neutralize infectious HIV-1 particles and HIV-1-enveloped pseudovirus particles. All GBV-C E2 Abs neutralized diverse isolates of HIV-1 with the exception of rabbit anti-peptide Abs raised against a synthetic GBV-C E2 peptide. Rabbit anti-GBV-C E2 Abs neutralized HIV-1-pseudotyped retrovirus particles but not HIV-1-pseudotyped vesicular stomatitis virus particles, and E2 Abs immune-precipitated HIV-1 gag particles containing the vesicular stomatitis virus type G envelope, HIV-1 envelope, GBV-C envelope, or no viral envelope. The Abs did not neutralize or immune-precipitate mumps or yellow fever viruses. Rabbit GBV-C E2 Abs inhibited HIV attachment to cells but did not inhibit entry following attachment. Taken together, these data indicate that the GBV-C E2 protein has a structural motif that elicits Abs that cross-react with a cellular Ag present on retrovirus particles, independent of HIV-1 envelope glycoproteins. The data provide evidence that a heterologous viral protein can induce HIV-1-neutralizing Abs.
Collapse
Affiliation(s)
- Emma L Mohr
- Division of Infectious Diseases, Department of Internal Medicine, Iowa City Veterans Affairs Medical Center, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
HIV-1 exposed uninfected men who have sex with men have increased levels of salivary CC-chemokines associated with sexual behavior. AIDS 2010; 24:1569-75. [PMID: 20549845 DOI: 10.1097/qad.0b013e32833ac646] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To determine whether soluble molecules with known anti-HIV-1 activity are increased in saliva of HIV-1 exposed uninfected individuals of discordant couples of men who have sex with men (MSM), and whether the levels of these molecules are associated with genetic polymorphisms, sexual behavior and/or HIV-1 neutralizing capacity. METHODS Saliva and PBMC were collected from exposed uninfected individuals (n=25), and low-risk controls (n=22). Levels of CCL2, CCL3, CCL4, CCL5 and CCL11 were detected by Luminex, and SLPI, LL-37, alpha-defensins and IgA2 were detected by ELISA. Single nucleotide polymorphisms (SNPs) were investigated using mass spectrometry or PCR-sequencing. HIV-1 neutralizing activity was assessed using PBMCbased neutralization assays. Self-reported questionnaires described sexual behavior. RESULTS Exposed uninfected individuals had significantly higher levels of salivary CCL2, CCL4, CCL5 and CCL11 as compared with controls although genetic polymorphisms within the corresponding regions were equally distributed. IgA2 was also increased in exposed uninfected individuals, whereas neither CCL3, SLPI, LL-37 nor alpha-defensins differed between exposed uninfected individuals and controls. The HIV-1 neutralizing capacity of saliva was associated with higher levels of CC-chemokines (but not SLPI, LL-37, alpha-defensins or IgA2) in both exposed uninfected individuals and controls. The increased levels of CC-chemokines were associated with a higher frequency of unprotected oral sex and/or additional casual sex partners. CONCLUSION HIV-1 exposed uninfected MSM had higher levels of salivary CC-chemokines compared with controls, this finding associated with sexual behavior rather than with genetic polymorphisms. The increased levels of CC-chemokines associated with HIV-1 neutralizing capacity in saliva.
Collapse
|
19
|
Induction of systemic HIV-1-specific cellular immune responses by oral exposure in the uninfected partner of discordant couples. AIDS 2010; 24:969-74. [PMID: 20397304 DOI: 10.1097/qad.0b013e328337aff8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Previous studies have identified HIV-specific T-cell responses in HIV-exposed uninfected individuals (EUI). However, so far no study has investigated exposure through oral sex. Our aim was to investigate whether oral exposure is enough to induce a systemic HIV-specific T-cell response. DESIGN Peripheral blood mononuclear cells were collected from 25 EUI living with a HIV-positive partner. Sexual behavior was described by the EUI in self-reported questionnaires. All clinical data of the infected partners were well documented. METHODS Peripheral blood mononuclear cells were stimulated with five different HIV peptide pools and HIV-specific T-cell responses were detected using the interferon-[gamma] enzyme-linked immunospot assay. Multiple cytokine production was studied longitudinally using flow cytometry intracellular cytokine assay. RESULTS The majority of the discordant couples reported having protected anal intercourse but unprotected oral sex. Three of the 23 tested EUI with evaluable results had HIV-Gag or Nef-specific T-cell responses. Two of the responders reported unprotected oral sex as the only route of exposure. The HIV-specific CD4+ and CD8+ T cells in the Gag-responder showed production of multiple cytokines. The magnitude of the responses decreased over time when the level of exposure, determined by the viral load in the partner, declined. CONCLUSION HIV exposure through oral sex is sufficient to induce systemic HIV-specific CD4+ and CD8+ T-cell immune responses in some uninfected individuals. Further investigation is needed to determine whether these responses have any protective role against HIV infection, or are merely evidence of exposure.
Collapse
|