1
|
Liu Q, Cheng C, Huang J, Yan W, Wen Y, Liu Z, Zhou B, Guo S, Fang W. MYH9: A key protein involved in tumor progression and virus-related diseases. Biomed Pharmacother 2024; 171:116118. [PMID: 38181716 DOI: 10.1016/j.biopha.2023.116118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
The myosin heavy chain 9 (MYH9) gene encodes the heavy chain of non-muscle myosin IIA (NMIIA), which belongs to the myosin II subfamily of actin-based molecular motors. Previous studies have demonstrated that abnormal expression and mutations of MYH9 were correlated with MYH9-related diseases and tumors. Furthermore, earlier investigations identified MYH9 as a tumor suppressor. However, subsequent research revealed that MYH9 promoted tumorigenesis, progression and chemoradiotherapy resistance. Note-worthily, MYH9 has also been linked to viral infections, like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Epstein-Barr virus, and hepatitis B virus, as a receptor or co-receptor. In addition, MYH9 promotes the development of hepatocellular carcinoma by interacting with the hepatitis B virus-encoding X protein. Finally, various findings highlighted the role of MYH9 in the development of these illnesses, especially in tumors. This review summarizes the involvement of the MYH9-regulated signaling network in tumors and virus-related diseases and presents possible drug interventions on MYH9, providing insights for the use of MYH9 as a therapeutic target for tumors and virus-mediated diseases.
Collapse
Affiliation(s)
- Qing Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Chao Cheng
- Department of Otolaryngology, Shenzhen Longgang Otolaryngology hospital, Shenzhen 518000, China
| | - Jiyu Huang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Weiwei Yan
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Yinhao Wen
- Department of Oncology, Pingxiang People's Hospital, Pingxiang 337000, China
| | - Zhen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China; Key Laboratory of Protein Modification and Degradation, Basic School of Guangzhou Medical University, Guangzhou 510315, China.
| | - Beixian Zhou
- The People's Hospital of Gaozhou, Gaozhou 525200, China.
| | - Suiqun Guo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510315, China.
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China; The People's Hospital of Gaozhou, Gaozhou 525200, China; Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510315, China.
| |
Collapse
|
2
|
Mancino M, Lai G, De Grossi F, Cuomo A, Manganaro L, Butta GM, Ferrari I, Vicenzi E, Poli G, Pesce E, Oliveto S, Biffo S, Manfrini N. FAM46C Is an Interferon-Stimulated Gene That Inhibits Lentiviral Particle Production by Modulating Autophagy. Microbiol Spectr 2023; 11:e0521122. [PMID: 37358411 PMCID: PMC10434054 DOI: 10.1128/spectrum.05211-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/02/2023] [Indexed: 06/27/2023] Open
Abstract
FAM46C is a multiple myeloma (MM) tumor suppressor whose function is only starting to be elucidated. We recently showed that in MM cells FAM46C triggers apoptosis by inhibiting autophagy and altering intracellular trafficking and protein secretion. To date, both a physiological characterization of FAM46C role and an assessment of FAM46C-induced phenotypes outside of MM are lacking. Preliminary reports suggested an involvement of FAM46C with regulation of viral replication, but this was never confirmed. Here, we show that FAM46C is an interferon-stimulated gene and that the expression of wild-type FAM46C in HEK-293T cells, but not of its most frequently found mutant variants, inhibits the production of both HIV-1-derived and HIV-1 lentiviruses. We demonstrate that this effect does not require transcriptional regulation and does not depend on inhibition of either global or virus-specific translation but rather mostly relies on FAM46C-induced deregulation of autophagy, a pathway that we show to be required for efficient lentiviral particle production. These studies not only provide new insights on the physiological role of the FAM46C protein but also could help in implementing more efficient antiviral strategies on one side and lentiviral particle production approaches on the other. IMPORTANCE FAM46C role has been thoroughly investigated in MM, but studies characterizing its role outside of the tumoral environment are still lacking. Despite the success of antiretroviral therapy in suppressing HIV load to undetectable levels, there is currently no HIV cure, and treatment is lifelong. Indeed, HIV continues to be a major global public health issue. Here, we show that FAM46C expression in HEK-293T cells inhibits the production of both HIV and HIV-derived lentiviruses. We also demonstrate that such inhibitory effect relies, at least in part, on the well-established regulatory role that FAM46C exerts on autophagy. Deciphering the molecular mechanism underlying this regulation will not only facilitate the understanding of FAM46C physiological role but also give new insights on the interplay between HIV and the cellular environment.
Collapse
Affiliation(s)
- Marilena Mancino
- INGM, Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
| | - Giancarlo Lai
- INGM, Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
| | | | - Alessandro Cuomo
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Lara Manganaro
- INGM, Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Giacomo M. Butta
- INGM, Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Ivan Ferrari
- INGM, Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
| | - Elisa Vicenzi
- Viral Pathogenesis and Biosafety Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Guido Poli
- Viral Pathogenesis and Biosafety Unit, San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University School of Medicine, Milan, Italy
| | - Elisa Pesce
- INGM, Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
| | - Stefania Oliveto
- INGM, Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Stefano Biffo
- INGM, Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Nicola Manfrini
- INGM, Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| |
Collapse
|
3
|
Tan L, Yuan X, Liu Y, Cai X, Guo S, Wang A. Non-muscle Myosin II: Role in Microbial Infection and Its Potential as a Therapeutic Target. Front Microbiol 2019; 10:401. [PMID: 30886609 PMCID: PMC6409350 DOI: 10.3389/fmicb.2019.00401] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/15/2019] [Indexed: 01/11/2023] Open
Abstract
Currently, the major measures of preventing and controlling microbial infection are vaccinations and drugs. However, the appearance of drug resistance microbial mounts is main obstacle in current anti-microbial therapy. One of the most ubiquitous actin-binding proteins, non-muscle myosin II (NM II) plays a crucial role in a wide range of cellular physiological activities in mammals, including cell adhesion, migration, and division. Nowadays, growing evidence indicates that aberrant expression or activity of NM II can be detected in many diseases caused by microbes, including viruses and bacteria. Furthermore, an important role for NM II in the infection of some microbes is verified. Importantly, modulating the expression of NM II with small hairpin RNA (shRNA) or the activity of it by inhibitors can affect microbial-triggered phenotypes. Therefore, NM II holds the promise to be a potential target for inhibiting the infection of microbes and even treating microbial-triggered discords. In spite of these, a comprehensive view on the functions of NM II in microbial infection and the regulators which have an impact on the roles of NM II in this context, is still lacking. In this review, we summarize our current knowledge on the roles of NM II in microbial-triggered discords and provide broad insights into its regulators. In addition, the existing challenge of investigating the multiple roles of NM II in microbial infection and developing NM II inhibitors for treating these microbial-triggered discords, are also discussed.
Collapse
Affiliation(s)
- Lei Tan
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research and Development Center for Animal Reverse Vaccinology of Hunan Province, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Xiaomin Yuan
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research and Development Center for Animal Reverse Vaccinology of Hunan Province, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Yisong Liu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research and Development Center for Animal Reverse Vaccinology of Hunan Province, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Xiong Cai
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Shiyin Guo
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Aibing Wang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research and Development Center for Animal Reverse Vaccinology of Hunan Province, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| |
Collapse
|
4
|
Embry AE, Liu Z, Henderson JM, Byfield FJ, Liu L, Yoon J, Wu Z, Cruz K, Moradi S, Gillombardo CB, Hussain RZ, Doelger R, Stuve O, Chang AN, Janmey PA, Bruggeman LA, Miller RT. Similar Biophysical Abnormalities in Glomeruli and Podocytes from Two Distinct Models. J Am Soc Nephrol 2018; 29:1501-1512. [PMID: 29572404 DOI: 10.1681/asn.2017050475] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 02/21/2018] [Indexed: 01/19/2023] Open
Abstract
Background FSGS is a pattern of podocyte injury that leads to loss of glomerular function. Podocytes support other podocytes and glomerular capillary structure, oppose hemodynamic forces, form the slit diaphragm, and have mechanical properties that permit these functions. However, the biophysical characteristics of glomeruli and podocytes in disease remain unclear.Methods Using microindentation, atomic force microscopy, immunofluorescence microscopy, quantitative RT-PCR, and a three-dimensional collagen gel contraction assay, we studied the biophysical and structural properties of glomeruli and podocytes in chronic (Tg26 mice [HIV protein expression]) and acute (protamine administration [cytoskeletal rearrangement]) models of podocyte injury.Results Compared with wild-type glomeruli, Tg26 glomeruli became progressively more deformable with disease progression, despite increased collagen content. Tg26 podocytes had disordered cytoskeletons, markedly abnormal focal adhesions, and weaker adhesion; they failed to respond to mechanical signals and exerted minimal traction force in three-dimensional collagen gels. Protamine treatment had similar but milder effects on glomeruli and podocytes.Conclusions Reduced structural integrity of Tg26 podocytes causes increased deformability of glomerular capillaries and limits the ability of capillaries to counter hemodynamic force, possibly leading to further podocyte injury. Loss of normal podocyte mechanical integrity could injure neighboring podocytes due to the absence of normal biophysical signals required for podocyte maintenance. The severe defects in podocyte mechanical behavior in the Tg26 model may explain why Tg26 glomeruli soften progressively, despite increased collagen deposition, and may be the basis for the rapid course of glomerular diseases associated with severe podocyte injury. In milder injury (protamine), similar processes occur but over a longer time.
Collapse
Affiliation(s)
- Addie E Embry
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Zhenan Liu
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Joel M Henderson
- Department of Pathology, Boston University School of Medicine, Boston, Massachusetts
| | - F Jefferson Byfield
- Department of Physiology and Biophysics, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Liping Liu
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Medicine, Dallas Veterans Affairs Medical Center, Dallas, Texas
| | - Joonho Yoon
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Zhenzhen Wu
- Department of Medicine, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Katrina Cruz
- Department of Pathology, Boston University School of Medicine, Boston, Massachusetts
| | - Sara Moradi
- Department of Pathology, Boston University School of Medicine, Boston, Massachusetts
| | | | - Rihanna Z Hussain
- Department of Neurology, University of Texas Southwestern Medical School, Dallas, Texas; and
| | - Richard Doelger
- Department of Neurology, University of Texas Southwestern Medical School, Dallas, Texas; and
| | - Olaf Stuve
- Department of Neurology, University of Texas Southwestern Medical School, Dallas, Texas; and
| | - Audrey N Chang
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Paul A Janmey
- Department of Physiology and Biophysics, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Leslie A Bruggeman
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - R Tyler Miller
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas; .,Department of Medicine, Dallas Veterans Affairs Medical Center, Dallas, Texas
| |
Collapse
|
5
|
Chen Y, Yuan J, Han X, Liu X, Han X, Ye H. Coexpression Analysis of Transcriptome on AIDS and Other Human Disease Pathways by Canonical Correlation Analysis. Int J Genomics 2017; 2017:9163719. [PMID: 28695125 PMCID: PMC5488239 DOI: 10.1155/2017/9163719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 02/24/2017] [Accepted: 03/08/2017] [Indexed: 11/17/2022] Open
Abstract
Acquired immune deficiency syndrome is a severe disease in humans caused by human immunodeficiency virus. Several human genes were characterized as host genetic factors that impact the processes of AIDS disease. Recent studies on AIDS patients revealed a series disease is complicating with AIDS. To resolve gene interaction between AIDS and complicating diseases, a canonical correlation analysis was used to identify the global correlation between AIDS and other disease pathway genes expression. The results showed that HLA-B, HLA-A, MH9, ZNED1, IRF1, TLR8, TSG101, NCOR2, and GML are the key AIDS-restricted genes highly correlated with other disease pathway genes. Furthermore, pathway genes in several diseases such as asthma, autoimmune thyroid disease, and malaria were globally correlated with ARGs. It suggests that these diseases are a high risk in AIDS patients as complicating diseases.
Collapse
Affiliation(s)
- Yahong Chen
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China
- Infectious Diseases Hospital of Fuzhou, Fuzhou 350025, China
| | - Jinjin Yuan
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China
- Infectious Diseases Hospital of Fuzhou, Fuzhou 350025, China
| | - Xianlin Han
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China
- Infectious Diseases Hospital of Fuzhou, Fuzhou 350025, China
| | - Xiao Han
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hanhui Ye
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China
- Infectious Diseases Hospital of Fuzhou, Fuzhou 350025, China
| |
Collapse
|
6
|
Yuan Y, Zhao C, An X, Wu L, Wang H, Zhao M, Bai M, Duan S, Zhang B, Zhang A, Xing C. A vital role for myosin-9 in puromycin aminonucleoside-induced podocyte injury by affecting actin cytoskeleton. Free Radic Res 2016; 50:627-37. [PMID: 26902808 DOI: 10.3109/10715762.2016.1155706] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Yanggang Yuan
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Chuanyan Zhao
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Xiaofei An
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Lin Wu
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Hui Wang
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Min Zhao
- Department of Nephrology, Nanjing Children’s Hospital, Nanjing Medical University, Nanjing, China
| | - Mi Bai
- Department of Nephrology, Nanjing Children’s Hospital, Nanjing Medical University, Nanjing, China
| | - Suyan Duan
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Bo Zhang
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Nanjing Children’s Hospital, Nanjing Medical University, Nanjing, China
- Institute of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Changying Xing
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| |
Collapse
|
7
|
Betapudi V. Life without double-headed non-muscle myosin II motor proteins. Front Chem 2014; 2:45. [PMID: 25072053 PMCID: PMC4083560 DOI: 10.3389/fchem.2014.00045] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 06/19/2014] [Indexed: 11/20/2022] Open
Abstract
Non-muscle myosin II motor proteins (myosin IIA, myosin IIB, and myosin IIC) belong to a class of molecular motor proteins that are known to transduce cellular free-energy into biological work more efficiently than man-made combustion engines. Nature has given a single myosin II motor protein for lower eukaryotes and multiple for mammals but none for plants in order to provide impetus for their life. These specialized nanomachines drive cellular activities necessary for embryogenesis, organogenesis, and immunity. However, these multifunctional myosin II motor proteins are believed to go awry due to unknown reasons and contribute for the onset and progression of many autosomal-dominant disorders, cataract, deafness, infertility, cancer, kidney, neuronal, and inflammatory diseases. Many pathogens like HIV, Dengue, hepatitis C, and Lymphoma viruses as well as Salmonella and Mycobacteria are now known to take hostage of these dedicated myosin II motor proteins for their efficient pathogenesis. Even after four decades since their discovery, we still have a limited knowledge of how these motor proteins drive cell migration and cytokinesis. We need to enrich our current knowledge on these fundamental cellular processes and develop novel therapeutic strategies to fix mutated myosin II motor proteins in pathological conditions. This is the time to think how to relieve the hijacked myosins from pathogens in order to provide a renewed impetus for patients' life. Understanding how to steer these molecular motors in proliferating and differentiating stem cells will improve stem cell based-therapeutics development. Given the plethora of cellular activities non-muscle myosin motor proteins are involved in, their importance is apparent for human life.
Collapse
Affiliation(s)
- Venkaiah Betapudi
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Cleveland, OH, USA ; Department of Physiology and Biophysics, Case Western Reserve University Cleveland, OH, USA
| |
Collapse
|
8
|
Hays T, Ma’ayan A, Clark NR, Tan CM, Teixeira A, Teixeira A, Choi JW, Burdis N, Jung SY, Bajaj AO, O’Malley BW, He JC, Hyink DP, Klotman PE. Proteomics analysis of the non-muscle myosin heavy chain IIa-enriched actin-myosin complex reveals multiple functions within the podocyte. PLoS One 2014; 9:e100660. [PMID: 24949636 PMCID: PMC4065073 DOI: 10.1371/journal.pone.0100660] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 05/29/2014] [Indexed: 12/12/2022] Open
Abstract
MYH9 encodes non-muscle myosin heavy chain IIA (NMMHCIIA), the predominant force-generating ATPase in non-muscle cells. Several lines of evidence implicate a role for MYH9 in podocytopathies. However, NMMHCIIA‘s function in podocytes remains unknown. To better understand this function, we performed immuno-precipitation followed by mass-spectrometry proteomics to identify proteins interacting with the NMMHCIIA-enriched actin-myosin complexes. Computational analyses revealed that these proteins belong to functional networks including regulators of cytoskeletal organization, metabolism and networks regulated by the HIV-1 gene nef. We further characterized the subcellular localization of NMMHCIIA within podocytes in vivo, and found it to be present within the podocyte major foot processes. Finally, we tested the effect of loss of MYH9 expression in podocytes in vitro, and found that it was necessary for cytoskeletal organization. Our results provide the first survey of NMMHCIIA-enriched actin-myosin-interacting proteins within the podocyte, demonstrating the important role of NMMHCIIA in organizing the elaborate cytoskeleton structure of podocytes. Our characterization of NMMHCIIA’s functions goes beyond the podocyte, providing important insights into its general molecular role.
Collapse
Affiliation(s)
- Thomas Hays
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of Americ
- * E-mail:
| | - Avi Ma’ayan
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Neil R. Clark
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Christopher M. Tan
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Avelino Teixeira
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of Americ
| | - Angela Teixeira
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of Americ
| | - Jae W. Choi
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Nora Burdis
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Sung Yun Jung
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Amol O. Bajaj
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Bert W. O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - John C. He
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of Americ
| | - Deborah P. Hyink
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Paul E. Klotman
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
9
|
Advances in the pathogenesis of HIV-associated kidney diseases. Kidney Int 2014; 86:266-74. [PMID: 24827777 DOI: 10.1038/ki.2014.167] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/03/2014] [Accepted: 02/06/2014] [Indexed: 12/17/2022]
Abstract
Despite improved outcomes among persons living with HIV who are treated with antiretroviral therapy, they remain at increased risk for acute and chronic kidney diseases. Moreover, since HIV can infect renal epithelial cells, the kidney might serve as a viral reservoir that would need to be eradicated when attempting to achieve full virologic cure. In recent years, much progress has been made in elucidating the mechanism by which HIV infects renal epithelial cells and the viral and host factors that promote development of kidney disease. Polymorphisms in APOL1 confer markedly increased risk of HIV-associated nephropathy; however, the mechanism by which ApoL1 variants may promote kidney disease remains unclear. HIV-positive persons are at increased risk of acute kidney injury, which may be a result of a high burden of subclinical kidney disease and/or viral factors and frequent exposure to nephrotoxins. Despite the beneficial effect of antiretroviral therapy in preventing and treating HIVAN, and possibly other forms of kidney disease in persons living with HIV, some of these medications, including tenofovir, indinavir, and atazanavir can induce acute and/or chronic kidney injury via mitochondrial toxicity or intratubular crystallization. Further research is needed to better understand factors that contribute to acute and chronic kidney injury in HIV-positive patients and to develop more effective strategies to prevent and treat kidney disease in this vulnerable population.
Collapse
|
10
|
Colares VS, Titan SMDO, Pereira ADC, Malafronte P, Cardena MM, Santos S, Santos PC, Fridman C, Barros RT, Woronik V. MYH9 and APOL1 gene polymorphisms and the risk of CKD in patients with lupus nephritis from an admixture population. PLoS One 2014; 9:e87716. [PMID: 24658608 PMCID: PMC3962338 DOI: 10.1371/journal.pone.0087716] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 01/02/2014] [Indexed: 02/07/2023] Open
Abstract
MYH9 polymorphisms have been described to be associated with the risk of CKD in non-diabetic nephropathy, HIV nephropathy and FSGS. Predominating in black descendants, MHY9 genetic variants could partially explain the excess risk of CKD associated with African ancestry. However, recent data suggests that APOL1 gene co-segregate with MYH9, and could be the gene truly associated with CKD risk. In this study, we evaluated the role of MYH9 and APOL1 gene polymorphisms in the risk of CKD in Brazilian patients with lupus nephritis (LN). A retrospective analysis of 196 LN patients was done. MYH9 rs4821480, rs2032487, rs4821481 and rs3752462, APOL 1rs73885319, rs16996616, rs60910145, rs71785313, and APOL3 rs11089781 gene polymorphisms were determined. Genetic ancestry was ascertained both by autossomal ancestry and mitochondrial haplogroup. Primary outcome was defined as doubling of serum creatinine (DC) or end stage renal disease (ESRD). Sixty-two patients presented the PO. In our population, MYH9 and APOL1 were not in LD. None APOL polymorphism was associated with the PO, whereas rs3752462 MYH9 polymorphism showed a positive association (HR3.72, 95%CI 1.47–9.38, p = 0.005). When we analyzed the MYH9 E1 haplotype, the GCCT carriers (1 or 2 alelles present in 29.7% in the PO group vs. 18.5% in controls) showed a significant association to the risk of PO, even after adjustments for baseline estimated creatinine clearance and autossomal ancestry (HR 2.0, 95%CI 1.2–3.4, p = 0.01). Our results show that in our population MYH9, but not APOL1, gene polymorphisms confer an increased risk of CKD in LN patients, independently of race.
Collapse
Affiliation(s)
- Vinícius Sardão Colares
- Nephrology Division, Hospital das Clínicas, Sao Paulo University Medical School, Sao Paulo, Sao Paulo, Brazil
| | | | - Alexandre da Costa Pereira
- Molecular Cardiology Laboratory, Heart Institute (InCor), Sao Paulo University Medical School, Sao Paulo, Sao Paulo, Brazil
| | - Patrícia Malafronte
- Nephrology Division, Hospital das Clínicas, Sao Paulo University Medical School, Sao Paulo, Sao Paulo, Brazil
| | - Mari M. Cardena
- Department of Legal Medicine, Ethics and Occupational Health, Medical School, University of São Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Sidney Santos
- Laboratory of Human Genetics and Medicine, Federal University of Pará, Belém, Pará, Brazil
| | - Paulo C. Santos
- Molecular Cardiology Laboratory, Heart Institute (InCor), Sao Paulo University Medical School, Sao Paulo, Sao Paulo, Brazil
| | - Cíntia Fridman
- Department of Legal Medicine, Ethics and Occupational Health, Medical School, University of São Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Rui Toledo Barros
- Nephrology Division, Hospital das Clínicas, Sao Paulo University Medical School, Sao Paulo, Sao Paulo, Brazil
| | - Viktória Woronik
- Nephrology Division, Hospital das Clínicas, Sao Paulo University Medical School, Sao Paulo, Sao Paulo, Brazil
- * E-mail:
| |
Collapse
|
11
|
Abstract
Considerable attention has been focused on how the APOL1/MYH9 locus determines susceptibility to focal segmental glomerulosclerosis, including HIV-associated nephropathy (HIVAN). Atta and colleagues found that homozygosity for APOL1 risk alleles was associated with many, but not all, HIVAN cases, and that APOL1 variation failed to predict characteristics of disease. Their work gives important impetus to identify other genetic and environmental factors that may provide a 'second hit' linking HIV infection to HIVAN.
Collapse
|
12
|
Next-generation sequencing of small RNAs from HIV-infected cells identifies phased microrna expression patterns and candidate novel microRNAs differentially expressed upon infection. mBio 2013; 4:e00549-12. [PMID: 23386435 PMCID: PMC3560529 DOI: 10.1128/mbio.00549-12] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
HIV infection of CD4+ T cells induces a range of host transcriptional changes in mRNAs as well as microRNAs that may coordinate changes in mRNAs. To survey these dynamic changes, we applied next-generation sequencing, analyzing the small RNA fraction of HIV-infected cells at 5, 12, and 24 h postinfection (RNA-Seq). These time points afforded a view of the transcriptomic changes occurring both before and during viral replication. In the resulting small RNA-Seq data set, we detected a phased pattern of microRNA expression. Largely distinct sets of microRNAs were found to be suppressed at 5 and 12 h postinfection, and both sets of changes rebounded later in infection. A larger set of microRNA changes was observed at 24 h postinfection. When integrated with mRNA expression data, the small RNA-Seq data indicated a role for microRNAs in transcriptional regulation, T cell activation, and cell cycle during HIV infection. As a unique benefit of next-generation sequencing, we also detected candidate novel host microRNAs differentially expressed during infection, including one whose downregulation at 24 h postinfection may allow full replication of HIV to proceed. Collectively, our data provide a uniquely comprehensive view of the changes in host microRNAs induced by HIV during cellular infection. New sequencing technologies allow unprecedented views into changes occurring in virus-infected cells, including comprehensive and largely unbiased measurements of different types of RNA. In this study, we used next-generation sequencing to profile dynamic changes in cellular microRNAs occurring in HIV-infected cells. The sensitivity afforded by sequencing allowed us to detect changes in microRNA expression early in infection, before the onset of viral replication. A phased pattern of expression was evident among these microRNAs, and many that were initially suppressed were later overexpressed at the height of infection, providing unique signatures of infection. By integrating additional mRNA data with the microRNA data, we identified a role for microRNAs in transcriptional regulation during infection and specifically a network of microRNAs involved in the expression of a known HIV cofactor. Finally, as a distinct benefit of sequencing, we identified candidate nonannotated microRNAs, including one whose downregulation may allow HIV-1 replication to proceed fully.
Collapse
|
13
|
Progress in pathogenesis of proteinuria. Int J Nephrol 2012; 2012:314251. [PMID: 22693670 PMCID: PMC3368192 DOI: 10.1155/2012/314251] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 03/24/2012] [Accepted: 03/26/2012] [Indexed: 02/06/2023] Open
Abstract
Aims. Proteinuria not only is a sign of kidney damage, but also is involved in the progression of renal diseases as an independent pathologic factor. Clinically, glomerular proteinuria is most commonly observed, which relates to structural and functional anomalies in the glomerular filtration barrier. The aim of this paper was to describe the pathogenesis of glomerular proteinuria. Data Sources. Articles on glomerular proteinuria retrieved from Pubmed and MEDLINE in the recent 5 years were reviewed. Results. The new understanding of the roles of glomerular endothelial cells and the glomerular basement membrane (GBM) in the pathogenesis of glomerular proteinuria was gained. The close relationships of slit diaphragm (SD) molecules such as nephrin, podocin, CD2-associated protein (CD2AP), a-actinin-4, transient receptor potential cation channel 6 (TRPC6), Densin and membrane-associated guanylate kinase inverted 1 (MAGI-1), α3β1 integrin, WT1, phospholipase C epsilon-1 (PLCE1), Lmx1b, and MYH9, and mitochondrial disorders and circulating factors in the pathogenesis of glomerular proteinuria were also gradually discovered. Conclusion. Renal proteinuria is a manifestation of glomerular filtration barrier dysfunction. Not only glomerular endothelial cells and GBM, but also the glomerular podocytes and their SDs play an important role in the pathogenesis of glomerular proteinuria.
Collapse
|