1
|
Ye M, Chen X, Wang Y, Zhou YH, Pang W, Zhang C, Zheng YT. HIV-1 Drug Resistance in ART-Naïve Individuals in Myanmar. Infect Drug Resist 2020; 13:1123-1132. [PMID: 32368103 PMCID: PMC7182463 DOI: 10.2147/idr.s246462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/31/2020] [Indexed: 01/29/2023] Open
Abstract
Background Estimating the prevalence and characterizing the transmission of HIV-1 drug resistance in treatment-naïve individuals are very important in the prevention and control of HIV/AIDS. As one of the areas most affected by HIV/AIDS, few data are currently available for HIV-1 drug resistance in antiretroviral therapy (ART)-naïve individuals in Myanmar, which borders Yunnan, China. Methods HIV-1 pol sequences from ART-naïve HIV-1-infected individuals during 2008 and 2014 in Myanmar were retrieved from our previous studies. HIV-1 transmitted drug resistance (TDR) and susceptibility to antiretroviral drugs were predicted using the Stanford HIVdb program. HIV-1 transmission cluster (TC) was determined by Cluster Picker. Results A total of 169 partial pol sequences from ART-naïve HIV-1 positive Burmese were analyzed. The prevalence of TDR was 20.1%. CRF01_AE and BC recombinants appeared to have a higher prevalence of TDR than other subtypes. The V179D/T was found to be very common in the China–Myanmar border region and was involved in half of the transmission clusters formed by HIV-1 drug-resistance strains in this region. Comparison showed that drug-resistance mutation profile in Myanmar was very similar to that in Dehong prefecture of Yunnan. By further phylogenetic analysis with all available sequences from the China–Myanmar border region, four HIV-1 drug-resistance-related TCs were identified. Three of them were formed by Burmese long-distance truck drivers and the Burmese staying in Yunnan, and another was formed by Burmese injection drug users staying in Myanmar and Yunnan. These results suggest a potential transmission link of HIV-1 drug resistance between Myanmar and Yunnan. Conclusion Given the high prevalence of TDR in Myanmar, and the potential risk of cross-border transmission of HIV-1 drug-resistant strains between Myanmar and Yunnan, China, ongoing monitoring of HIV-1 drug resistance in ART-naïve individuals will provide a guideline for clinical antiretroviral treatment and benefit the prevention and control of HIV/AIDS in this border region.
Collapse
Affiliation(s)
- Mei Ye
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, People's Republic of China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Xin Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, People's Republic of China.,Department of Pathogenic Biology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou 341000, People's Republic of China
| | - Yu Wang
- KIZ-SU Joint Laboratory of Animal Model and Drug Development, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215000, People's Republic of China
| | - Yan-Heng Zhou
- Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China
| | - Wei Pang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, People's Republic of China
| | - Chiyu Zhang
- Pathogen Discovery and Evolution Unit, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200025, People's Republic of China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, People's Republic of China.,KIZ-SU Joint Laboratory of Animal Model and Drug Development, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215000, People's Republic of China
| |
Collapse
|
2
|
Sun Z, Ouyang J, Zhao B, An M, Wang L, Ding H, Han X. Natural polymorphisms in HIV-1 CRF01_AE strain and profile of acquired drug resistance mutations in a long-term combination treatment cohort in northeastern China. BMC Infect Dis 2020; 20:178. [PMID: 32102660 PMCID: PMC7045473 DOI: 10.1186/s12879-020-4808-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/21/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The impacts of genetic polymorphisms on drug resistance mutations (DRMs) among various HIV-1 subtypes have long been debated. In this study, we aimed to analyze the natural polymorphisms and acquired DRM profile in HIV-1 CRF01_AE-infected patients in a large first-line antiretroviral therapy (ART) cohort in northeastern China. METHODS The natural polymorphisms of CRF01_AE were analyzed in 2034 patients from a long-term ART cohort in northeastern China. The polymorphisms in 105 treatment failure (TF) patients were compared with those in 1148 treatment success (TS) patients. The acquired DRM profile of 42 patients who experienced TF with tenofovir/lamivudine/efavirenz (TDF/3TC/EFV) treatment was analyzed by comparing the mutations at TF time point to those at baseline. The Stanford HIVdb algorithm was used to interpret the DRMs. Binomial distribution, McNemar test, Wilcoxon test and CorMut package were used to analyze the mutation rates and co-variation. Deep sequencing was used to analyze the evolutionary dynamics of co-variation. RESULTS Before ART, there were significantly more natural polymorphisms of 31 sites on reverse transcriptase (RT) in CRF01_AE than subtype B HIV-1 (|Z value| ≥ 3), including five known drug resistance-associated sites (238, 118, 179, 103, and 40). However, only the polymorphism at site 75 was associated with TF (|Z value| ≥ 3). The mutation rate at 14 sites increased significantly at TF time point compared to baseline, with the most common DRMs comprising G190S/C, K65R, K101E/N/Q, M184 V/I, and V179D/I/A/T/E, ranging from 66.7 to 45.2%. Moreover, two unknown mutations (V75 L and L228R) increased by 19.0 and 11.9% respectively, and they were under positive selection (Ka/Ks > 1, log odds ratio [LOD] > 2) and were associated with several other DRMs (cKa/Ks > 1, LOD > 2). Deep sequencing of longitudinal plasma samples showed that L228R occurred simultaneously or followed the appearance of Y181C. CONCLUSION The high levels of natural polymorphisms in CRF01_AE had little impact on treatment outcomes. The findings regarding potential new CRF01_AE-specific minor DRMs indicate the need for more studies on the drug resistance phenotype of CRF01_AE.
Collapse
Affiliation(s)
- Zesong Sun
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Jinming Ouyang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Bin Zhao
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Minghui An
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Lin Wang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Haibo Ding
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Xiaoxu Han
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China. .,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China. .,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China.
| |
Collapse
|
3
|
Liu Y, Li H, Wang X, Han J, Jia L, Li T, Li J, Li L. Natural presence of V179E and rising prevalence of E138G in HIV-1 reverse transcriptase in CRF55_01B viruses. INFECTION GENETICS AND EVOLUTION 2019; 77:104098. [PMID: 31678241 DOI: 10.1016/j.meegid.2019.104098] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 10/21/2019] [Accepted: 10/27/2019] [Indexed: 12/31/2022]
Abstract
There is increasing evidence that naturally occurring HIV-1 genetic diversity can have an impact on drug resistance. Recently, our previous study has demonstrated the natural presence of the V179D and K103R/V179D mutations associated with resistance to nonnucleoside reverse transcriptase inhibitors (NNRTIs) in HIV-1 CRF65_cpx strains. The aim of this study is to investigate the presence of natural drug-resistance mutations (DRMs) in other HIV-1 subtypes or CRFs circulating in China. A total of 14,403 pol sequences from China were retrieved from the Los Alamos HIV Sequence Database, 10,041 of which were treatment naïve and presented substantial genetic diversity. Besides the natural presence of V179D and K103R/V179D in CRF65_cpx, the natural presence of V179E was found in CRF55_01B. In all but one of the 228 patients infected with CRF55_01B, NNRTI resistance mutation V179E was present and the combination of V179E and E138G was detected in 14 treatment-naïve patients, with a rate of 6.2%. A significant trend for increasing prevalence of E138G mutation in CRF55_01B strains over time was observed (p < .001). Phylogenetic analysis was conducted to clarify the epidemiological relationship of CRF55_01B strains. Most of the sequences containing E138G mutation scattered in the big CRF55_01B cluster, which indicated the rising prevalence of E138G was mainly due to multiple mutation events rather than local transmission clusters of a particular variant containing E138G mutation. Our findings highlight the importance of molecular surveillance of CRF55_01B strains and the urgent need for implementation of effective preventive measures to reduce the transmission of CRF55_01B.
Collapse
Affiliation(s)
- Yongjian Liu
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Hanping Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xiaolin Wang
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Jingwan Han
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Lei Jia
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Tianyi Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Jingyun Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Lin Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| |
Collapse
|
4
|
Weng YW, Chen IT, Tsai HC, Wu KS, Tseng YT, Sy CL, Chen JK, Lee SSJ, Chen YS. Trend of HIV transmitted drug resistance before and after implementation of HAART regimen restriction in the treatment of HIV-1 infected patients in southern Taiwan. BMC Infect Dis 2019; 19:741. [PMID: 31443633 PMCID: PMC6708193 DOI: 10.1186/s12879-019-4389-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 08/19/2019] [Indexed: 12/13/2022] Open
Abstract
Background The use of fixed combination antiretroviral therapy with a low genetic barrier for the treatment of patients infected with human immunodeficiency virus (HIV) may affect the local HIV transmitted drug resistance (TDR) pattern. The present study aimed to investigate changes in the prevalence of HIV TDR following the implementation of a fixed regimen of HIV treatment in Taiwan in 2012. Methods TDR was measured in antiretroviral treatment-naïve HIV-1-infected individuals who participated in voluntary counseling and testing between 2007 and 2015 in southern Taiwan. Antiretroviral resistance mutations were interpreted using the HIVdb program from the Stanford University HIV Drug Resistance Database. Results Sequences were obtained from 377 consecutive individuals between 2007 and 2015. The overall prevalence rates of TDR HIV among the study population from 2007 to 2011 and 2012–2015 were 10.6 and 7.9%, respectively. Among the detected mutations, K103 N and V179D + K103R were more frequently observed after 2012. Four HIV-infected patients with K103 N variants were detected after 2012, and 4 of the 5 patients with V179D + K103R variants were found after 2012. No significant differences were observed in the TDRs among nucleoside reverse transcriptase inhibitors (NRTIs), non-NRTIs (NNRTIs), protease inhibitors, multiple drug resistance, and any drug resistance between period 1 (2007–2011) and period 2 (2012–2015). Conclusions A fixed treatment regimen with zidovudine/lamivudine + efavirenz or nevirapine as first-line therapy for treatment-naïve patients infected with HIV did not significantly increase the TDR during the 4-year follow-up period. Due to the increase in NNRTI resistance associated with mutations after 2012, a longer follow-up period and larger sample size are needed in future studies.
Collapse
Affiliation(s)
- Ya-Wei Weng
- Division of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - I-Tzu Chen
- Division of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Hung-Chin Tsai
- Division of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan. .,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan. .,Department of Parasitology, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| | - Kuan-Sheng Wu
- Division of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Ting Tseng
- Division of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Cheng-Len Sy
- Division of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Jui-Kuang Chen
- Division of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Susan Shin-Jung Lee
- Division of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yao-Shen Chen
- Division of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
5
|
Bobkova MR. [Genetic diversity of human immunodeficiency viruses and antiretroviral therapy]. TERAPEVT ARKH 2018; 88:103-111. [PMID: 28005040 DOI: 10.17116/terarkh20168811103-111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The lecture is devoted to the analysis of the state-of-the-art of the impact of genetic diversity of human immunodeficiency (HIV) viruses on the pattern of infection and the efficiency of antiretroviral therapy (ART). It provides brief information on the origin and evolution of HIV and on the current classification of their genetic variants. The molecular epidemiological situation of HIV infection in Russia and nearby states and the major molecular HIV variants that are dominant in these countries, as well as their origin and prevalence trends are characterized. How the diversity of HIV can affect the efficiency of diagnosis, the transmission of the virus, and the pattern of HIV pathogenesis are briefly reviewed. The comparative data available in the world's scientific literature on these topics are given. More detailed attention is given to the possible causes of varying therapeutic effects against different HIV subtypes, as well as to the specific features of the formation and phenotyping manifestation of ART drug resistance mutations. There is evidence for the necessity of forming a unified follow-up system for treated HIV-infected patients during ART scaling, including in an effort to evaluate the impact of the specific features of the HIV genome on the efficiency of treatment regimens used in Russia.
Collapse
Affiliation(s)
- M R Bobkova
- D.I. Ivanovsky Institute of Virology, Honorary Acad. N.F. Gamaleya Federal Research Centre for Epidemiology and Microbiology, Ministry of Health of Russia, Moscow, Russia
| |
Collapse
|
6
|
Trends in Drug Resistance Prevalence, HIV-1 Variants and Clinical Status in HIV-1-infected Pediatric Population in Madrid: 1993 to 2015 Analysis. Pediatr Infect Dis J 2018; 37:e48-e57. [PMID: 28991889 DOI: 10.1097/inf.0000000000001760] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The expanded use of long-term antiretroviral treatments in infected children may exacerbate the problem of drug resistance mutations selection, which can compromise treatment efficiency. OBJECTIVE We describe the temporal trends of HIV drug resistance mutations and the HIV-1 variants during 23 years (1993 to March 2016) in the Madrid cohort of HIV-infected children and adolescents. METHODS We selected patients with at least one available HIV-1 pol sequence/genotypic resistance profile, establishing different groups according to the sampling year of first resistance data. We determined the prevalence of transmitted drug resistance mutations or acquired drug resistance mutations (DRM), the drug susceptibility among resistant viruses and HIV-1 variants characterized by phylogeny across time. RESULTS A total of 245 pediatric patients were selected, being mainly female, Spanish native, perinatally infected and carrying HIV-1 subtype B. At first sampling, most pediatric patients were on antiretroviral therapy and heavily pretreated. During 1993 to 2016, transmitted drug resistance mutations was found in 13 (26%) of 50 naive children [non-nucleoside reverse transcriptase inhibitors (NNRTI), 14.6%; nucleoside reverse transcriptase inhibitors (NRTI), 10.4%; protease inhibitors, 8.7%]. DRM appeared in 139 (73.2%) of 190 pretreated patients (NRTI, 64.5%; NNRTI, 36%; protease inhibitors, 35.1%). DRM to NNRTI was higher in last 5 years. Non-B variants infected 14.5% of children and adolescents of the Madrid Cohort, being mainly intersubtype recombinants (76.5%), including complex unique recombinant strains. They caused 3.4% infections before 2000, rising to 85.7% during 2011 to 2016. CONCLUSIONS Periodic surveillance resistance and molecular epidemiology studies in long-term pretreated HIV-infected pediatric populations are required to optimize treatment regimens. Results will permit a better understanding of long-time dynamics of viral resistance and HIV-1 variants in Spain.
Collapse
|
7
|
Yebra G, Frampton D, Gallo Cassarino T, Raffle J, Hubb J, Ferns RB, Waters L, Tong CYW, Kozlakidis Z, Hayward A, Kellam P, Pillay D, Clark D, Nastouli E, Leigh Brown AJ, on behalf of the ICONIC Consortium. A high HIV-1 strain variability in London, UK, revealed by full-genome analysis: Results from the ICONIC project. PLoS One 2018; 13:e0192081. [PMID: 29389981 PMCID: PMC5794160 DOI: 10.1371/journal.pone.0192081] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/28/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND & METHODS The ICONIC project has developed an automated high-throughput pipeline to generate HIV nearly full-length genomes (NFLG, i.e. from gag to nef) from next-generation sequencing (NGS) data. The pipeline was applied to 420 HIV samples collected at University College London Hospitals NHS Trust and Barts Health NHS Trust (London) and sequenced using an Illumina MiSeq at the Wellcome Trust Sanger Institute (Cambridge). Consensus genomes were generated and subtyped using COMET, and unique recombinants were studied with jpHMM and SimPlot. Maximum-likelihood phylogenetic trees were constructed using RAxML to identify transmission networks using the Cluster Picker. RESULTS The pipeline generated sequences of at least 1Kb of length (median = 7.46Kb, IQR = 4.01Kb) for 375 out of the 420 samples (89%), with 174 (46.4%) being NFLG. A total of 365 sequences (169 of them NFLG) corresponded to unique subjects and were included in the down-stream analyses. The most frequent HIV subtypes were B (n = 149, 40.8%) and C (n = 77, 21.1%) and the circulating recombinant form CRF02_AG (n = 32, 8.8%). We found 14 different CRFs (n = 66, 18.1%) and multiple URFs (n = 32, 8.8%) that involved recombination between 12 different subtypes/CRFs. The most frequent URFs were B/CRF01_AE (4 cases) and A1/D, B/C, and B/CRF02_AG (3 cases each). Most URFs (19/26, 73%) lacked breakpoints in the PR+RT pol region, rendering them undetectable if only that was sequenced. Twelve (37.5%) of the URFs could have emerged within the UK, whereas the rest were probably imported from sub-Saharan Africa, South East Asia and South America. For 2 URFs we found highly similar pol sequences circulating in the UK. We detected 31 phylogenetic clusters using the full dataset: 25 pairs (mostly subtypes B and C), 4 triplets and 2 quadruplets. Some of these were not consistent across different genes due to inter- and intra-subtype recombination. Clusters involved 70 sequences, 19.2% of the dataset. CONCLUSIONS The initial analysis of genome sequences detected substantial hidden variability in the London HIV epidemic. Analysing full genome sequences, as opposed to only PR+RT, identified previously undetected recombinants. It provided a more reliable description of CRFs (that would be otherwise misclassified) and transmission clusters.
Collapse
Affiliation(s)
- Gonzalo Yebra
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Dan Frampton
- UCL Division of Infection and Immunity, Faculty of Medical Sciences, London, United Kingdom
| | | | - Jade Raffle
- UCL Division of Infection and Immunity, Faculty of Medical Sciences, London, United Kingdom
- Department of Clinical Virology, UCL Hospital NHS Foundation Trust, London, United Kingdom
| | - Jonathan Hubb
- Department of Virology, Barts Health NHS Trust, London, United Kingdom
| | - R. Bridget Ferns
- Department of Clinical Virology, UCL Hospital NHS Foundation Trust, London, United Kingdom
- NIHR UCLH/UCL Biomedical Research Centre, London, United Kingdom
| | - Laura Waters
- Department of HIV Medicine, Mortimer Market Centre, Central & North West London NHS Trust, London, United Kingdom
| | - C. Y. William Tong
- Department of Virology, Barts Health NHS Trust, London, United Kingdom
- Queen Mary University, London, United Kingdom
| | - Zisis Kozlakidis
- UCL Division of Infection and Immunity, Faculty of Medical Sciences, London, United Kingdom
- UCL Institute of Disease Informatics, Farr Institute of Health Informatics Research, London, United Kingdom
| | - Andrew Hayward
- UCL Institute of Epidemiology and Health Care, London, United Kingdom
| | - Paul Kellam
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London, United Kingdom
| | - Deenan Pillay
- UCL Division of Infection and Immunity, Faculty of Medical Sciences, London, United Kingdom
| | - Duncan Clark
- Department of Virology, Barts Health NHS Trust, London, United Kingdom
- School of Life Sciences, University of Glasgow. Glasgow, United Kingdom
| | - Eleni Nastouli
- Department of Clinical Virology, UCL Hospital NHS Foundation Trust, London, United Kingdom
- Department of Population, Policy and Practice, UCL GOS Institute of Child Health, London, United Kingdom
| | - Andrew J. Leigh Brown
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | | |
Collapse
|
8
|
Bertagnolio S, Beanland RL, Jordan MR, Doherty M, Hirnschall G. The World Health Organization's Response to Emerging Human Immunodeficiency Virus Drug Resistance and a Call for Global Action. J Infect Dis 2017; 216:S801-S804. [PMID: 29040686 PMCID: PMC5853942 DOI: 10.1093/infdis/jix402] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The global community, including the World Health Organization (WHO), has committed to ending the AIDS epidemic and to ensuring that 90% of people living with human immunodeficiency virus (HIV) are diagnosed, 90% start treatment, and 90% achieve and maintain virological suppression. The emergence of HIV drug resistance (HIVDR) as antiretroviral treatment programs expand could preclude the 90-90-90 targets adopted by the United Nations General Assembly at the High-Level Meeting on Ending AIDS from being achieved. The Global Action Plan on HIVDR is a call for collective action grounded on normative guidance providing a standardized and robust approach to monitoring, preventing, and responding to HIVDR over the next 5 years (2017-2021). WHO is committed to supporting country, global, regional, and national partners to implement and monitor the progress of the Global Action Plan. This article outlines the key components of WHO's strategy to tackle HIVDR and the role the organization takes in leading the global response to HIVDR.
Collapse
|
9
|
Li T, Qian F, Yuan T, Xu W, Zhu L, Huang J, Wang H, Zhu Y, Wang Y, Li X, Gu S, Tan Z, Chen H, Luo X, Zhu W, Lu W, Xu P, Li M, Chen Y, Gao Y, Yang R, Zhu C, Sun B. Drug resistance mutation profiles of the drug-naïve and first-line regimen-treated HIV-1-infected population of Suzhou, China. Virol Sin 2017; 32:271-279. [PMID: 28795354 DOI: 10.1007/s12250-017-4002-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/05/2017] [Indexed: 01/09/2023] Open
Abstract
Little is known about the prevalence of drug-resistant mutations in HIV-1-positive individuals in Suzhou, China. To elucidate the transmitted drug resistance (TDR) and acquired drug resistance mutation (ADR) profiles, we collected blood specimens from 127 drug-naïve and 117 first-line drug-treated HIV-1-infected individuals sampled from 2014 to 2016 in Suzhou. We successfully amplified pol fragments from 100 drug-naïve and 20 drug-treated samples. We then determined the drug-resistant mutations to protease (PR) and reverse-transcriptase (RT) inhibitors according to the Stanford drug resistance database. Overall, 11 and 13 individuals had transmitted (drug-naïve group) and acquired (treated group) resistance mutations, respectively. Six transmitted drug-resistant mutations were found, including two mutations (L33F and L76V) in the protease region and four (K70N/E and V179D/E) in the RT region. Only L76V was a major mutation, and K70N/E and V179D/E are known to cause low-level resistance to RT inhibitors. All 13 treated participants who had major drug resistance mutations demonstrated intermediate to high resistance to efavirenz and nevirapine, and six had a treatment duration of less than three months. No major mutations to RT inhibitors were found, implying that the epidemic of transmitted resistance mutations was not significant in this area. Our results suggest that more frequent virus load and drug resistance mutation tests should be conducted for individuals receiving antiretroviral treatment, especially for newly treated patients. Our research provides insights into the occurrence of HIV-1 drug resistance in Suzhou and will help to optimize the treatment strategy for this population.
Collapse
Affiliation(s)
- Tingting Li
- Research Group of HIV-1 Molecular Epidemiology and Virology, The State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100000, China
| | - Feng Qian
- Division of HIV-1/AIDS, the Fifth People's Hospital of Suzhou, Suzhou, 215000, China
| | - Ting Yuan
- Research Group of HIV-1 Molecular Epidemiology and Virology, The State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Weilu Xu
- Division of HIV-1/AIDS, the Fifth People's Hospital of Suzhou, Suzhou, 215000, China
| | - Li Zhu
- Division of HIV-1/AIDS, the Fifth People's Hospital of Suzhou, Suzhou, 215000, China
| | - Jinlong Huang
- Division of HIV-1/AIDS, the Fifth People's Hospital of Suzhou, Suzhou, 215000, China
| | - Haiyan Wang
- Division of HIV-1/AIDS, the Fifth People's Hospital of Suzhou, Suzhou, 215000, China
| | - Yueping Zhu
- Division of HIV-1/AIDS, the Fifth People's Hospital of Suzhou, Suzhou, 215000, China
| | - Yinling Wang
- Division of HIV-1/AIDS, the Fifth People's Hospital of Suzhou, Suzhou, 215000, China
| | - Xiaohong Li
- Division of HIV-1/AIDS, the Fifth People's Hospital of Suzhou, Suzhou, 215000, China
| | - Saihong Gu
- Division of HIV-1/AIDS, the Fifth People's Hospital of Suzhou, Suzhou, 215000, China
| | - Zhuqing Tan
- Division of HIV-1/AIDS, the Fifth People's Hospital of Suzhou, Suzhou, 215000, China
| | - Hui Chen
- Division of HIV-1/AIDS, the Fifth People's Hospital of Suzhou, Suzhou, 215000, China
| | - Xiangrong Luo
- Division of HIV-1/AIDS, the Fifth People's Hospital of Suzhou, Suzhou, 215000, China
| | - Wei Zhu
- Division of HIV-1/AIDS, the Fifth People's Hospital of Suzhou, Suzhou, 215000, China
| | - Wenjuan Lu
- Division of HIV-1/AIDS, the Fifth People's Hospital of Suzhou, Suzhou, 215000, China
| | - Ping Xu
- Division of HIV-1/AIDS, the Fifth People's Hospital of Suzhou, Suzhou, 215000, China
| | - Ming Li
- Division of HIV-1/AIDS, the Fifth People's Hospital of Suzhou, Suzhou, 215000, China
| | - Yuying Chen
- Research Group of HIV-1 Molecular Epidemiology and Virology, The State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100000, China
| | - Yong Gao
- Department of Microbiology and Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, N6A 5C1, Canada
| | - Rongge Yang
- Research Group of HIV-1 Molecular Epidemiology and Virology, The State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Chuanwu Zhu
- Division of HIV-1/AIDS, the Fifth People's Hospital of Suzhou, Suzhou, 215000, China.
| | - Binlian Sun
- Research Group of HIV-1 Molecular Epidemiology and Virology, The State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
10
|
Paredes R, Tzou PL, van Zyl G, Barrow G, Camacho R, Carmona S, Grant PM, Gupta RK, Hamers RL, Harrigan PR, Jordan MR, Kantor R, Katzenstein DA, Kuritzkes DR, Maldarelli F, Otelea D, Wallis CL, Schapiro JM, Shafer RW. Collaborative update of a rule-based expert system for HIV-1 genotypic resistance test interpretation. PLoS One 2017; 12:e0181357. [PMID: 28753637 PMCID: PMC5533429 DOI: 10.1371/journal.pone.0181357] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 06/27/2017] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION HIV-1 genotypic resistance test (GRT) interpretation systems (IS) require updates as new studies on HIV-1 drug resistance are published and as treatment guidelines evolve. METHODS An expert panel was created to provide recommendations for the update of the Stanford HIV Drug Resistance Database (HIVDB) GRT-IS. The panel was polled on the ARVs to be included in a GRT report, and the drug-resistance interpretations associated with 160 drug-resistance mutation (DRM) pattern-ARV combinations. The DRM pattern-ARV combinations included 52 nucleoside RT inhibitor (NRTI) DRM pattern-ARV combinations (13 patterns x 4 NRTIs), 27 nonnucleoside RT inhibitor (NNRTI) DRM pattern-ARV combinations (9 patterns x 3 NNRTIs), 39 protease inhibitor (PI) DRM pattern-ARV combinations (13 patterns x 3 PIs) and 42 integrase strand transfer inhibitor (INSTI) DRM pattern-ARV combinations (14 patterns x 3 INSTIs). RESULTS There was universal agreement that a GRT report should include the NRTIs lamivudine, abacavir, zidovudine, emtricitabine, and tenofovir disoproxil fumarate; the NNRTIs efavirenz, etravirine, nevirapine, and rilpivirine; the PIs atazanavir/r, darunavir/r, and lopinavir/r (with "/r" indicating pharmacological boosting with ritonavir or cobicistat); and the INSTIs dolutegravir, elvitegravir, and raltegravir. There was a range of opinion as to whether the NRTIs stavudine and didanosine and the PIs nelfinavir, indinavir/r, saquinavir/r, fosamprenavir/r, and tipranavir/r should be included. The expert panel members provided highly concordant DRM pattern-ARV interpretations with only 6% of NRTI, 6% of NNRTI, 5% of PI, and 3% of INSTI individual expert interpretations differing from the expert panel median by more than one resistance level. The expert panel median differed from the HIVDB 7.0 GRT-IS for 20 (12.5%) of the 160 DRM pattern-ARV combinations including 12 NRTI, two NNRTI, and six INSTI pattern-ARV combinations. Eighteen of these differences were updated in HIVDB 8.1 GRT-IS to reflect the expert panel median. Additionally, HIVDB users are now provided with the option to exclude those ARVs not considered to be universally required. CONCLUSIONS The HIVDB GRT-IS was updated through a collaborative process to reflect changes in HIV drug resistance knowledge, treatment guidelines, and expert opinion. Such a process broadens consensus among experts and identifies areas requiring further study.
Collapse
Affiliation(s)
| | - Philip L. Tzou
- Division of Infectious Diseases, Stanford University, Stanford, CA, United States of America
| | - Gert van Zyl
- Division of Medical Virology, Stellenbosch University and NHLS Tygerberg, Cape Town, South Africa
| | - Geoff Barrow
- Centre for HIV/AIDS Research, Education and Services (CHARES), Department of Medicine, University of the West Indies, Kingston Jamaica
| | - Ricardo Camacho
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Sergio Carmona
- Department of Molecular Medicine and Haematology, University of the Witwatersrand, Johannesburg, South Africa
| | - Philip M. Grant
- Division of Infectious Diseases, Stanford University, Stanford, CA, United States of America
| | | | - Raph L. Hamers
- Amsterdam Institute for Global Health and Development, Department of Global Health, Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | | | - Michael R. Jordan
- Tufts University School of Medicine, Boston, MA, United States of America
| | - Rami Kantor
- Division of Infectious Diseases, Alpert Medical School, Brown University, Providence, RI, United States of America
| | - David A. Katzenstein
- Division of Infectious Diseases, Stanford University, Stanford, CA, United States of America
| | - Daniel R. Kuritzkes
- Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Frank Maldarelli
- HIV Dynamics and Replication Program, CCR, National Cancer Institute, NIH, Translational Research Unit, Frederick, MD, United States of America
| | - Dan Otelea
- Molecular Diagnostics Laboratory, National Institute for Infectious Diseases, Bucharest, Romania
| | | | | | - Robert W. Shafer
- Division of Infectious Diseases, Stanford University, Stanford, CA, United States of America
| |
Collapse
|
11
|
Pironti A, Pfeifer N, Walter H, Jensen BEO, Zazzi M, Gomes P, Kaiser R, Lengauer T. Using drug exposure for predicting drug resistance - A data-driven genotypic interpretation tool. PLoS One 2017; 12:e0174992. [PMID: 28394945 PMCID: PMC5386274 DOI: 10.1371/journal.pone.0174992] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/17/2017] [Indexed: 01/31/2023] Open
Abstract
Antiretroviral treatment history and past HIV-1 genotypes have been shown to be useful predictors for the success of antiretroviral therapy. However, this information may be unavailable or inaccurate, particularly for patients with multiple treatment lines often attending different clinics. We trained statistical models for predicting drug exposure from current HIV-1 genotype. These models were trained on 63,742 HIV-1 nucleotide sequences derived from patients with known therapeutic history, and on 6,836 genotype-phenotype pairs (GPPs). The mean performance regarding prediction of drug exposure on two test sets was 0.78 and 0.76 (ROC-AUC), respectively. The mean correlation to phenotypic resistance in GPPs was 0.51 (PhenoSense) and 0.46 (Antivirogram). Performance on prediction of therapy-success on two test sets based on genetic susceptibility scores was 0.71 and 0.63 (ROC-AUC), respectively. Compared to geno2pheno[resistance], our novel models display a similar or superior performance. Our models are freely available on the internet via www.geno2pheno.org. They can be used for inferring which drug compounds have previously been used by an HIV-1-infected patient, for predicting drug resistance, and for selecting an optimal antiretroviral therapy. Our data-driven models can be periodically retrained without expert intervention as clinical HIV-1 databases are updated and therefore reduce our dependency on hard-to-obtain GPPs.
Collapse
Affiliation(s)
- Alejandro Pironti
- Department of Computational Biology and Applied Algorithmics, Max-Planck-Institut für Informatik, Saarbrücken, Germany
- * E-mail:
| | - Nico Pfeifer
- Department of Computational Biology and Applied Algorithmics, Max-Planck-Institut für Informatik, Saarbrücken, Germany
| | - Hauke Walter
- Medizinisches Infektiologiezentrum Berlin, Berlin, Germany
- Medizinisches Labor Stendal, Stendal, Germany
| | - Björn-Erik O. Jensen
- Clinic for Gastroenterology, Hepatology, and Infectiology, University Clinic of Düsseldorf, Düsseldorf, Germany
| | - Maurizio Zazzi
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Perpétua Gomes
- Laboratorio de Biologia Molecular, LMCBM, SPC, HEM - Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
- Centro de Investigacao Interdisciplinar Egas Moniz (CiiEM), Instituto Superior de Ciencias da Saude Sul, Caparica, Portugal
| | - Rolf Kaiser
- Institute for Virology, University Clinic of Cologne, Cologne, Germany
| | - Thomas Lengauer
- Department of Computational Biology and Applied Algorithmics, Max-Planck-Institut für Informatik, Saarbrücken, Germany
| |
Collapse
|
12
|
Smoleń-Dzirba J, Rosińska M, Kruszyński P, Bratosiewicz-Wąsik J, Wojtyczka R, Janiec J, Szetela B, Beniowski M, Bociąga-Jasik M, Jabłonowska E, Wąsik TJ, The Cascade Collaboration In EuroCoord A. Prevalence of Transmitted Drug-Resistance Mutations and Polymorphisms in HIV-1 Reverse Transcriptase, Protease, and gp41 Sequences Among Recent Seroconverters in Southern Poland. Med Sci Monit 2017; 23:682-694. [PMID: 28167814 PMCID: PMC5310230 DOI: 10.12659/msm.898656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Monitoring of drug resistance-related mutations among patients with recent HIV-1 infection offers an opportunity to describe current patterns of transmitted drug resistance (TDR) mutations. Material/Methods Of 298 individuals newly diagnosed from March 2008 to February 2014 in southern Poland, 47 were deemed to have recent HIV-1 infection by the limiting antigen avidity immunoassay. Proviral DNA was amplified and sequenced in the reverse transcriptase, protease, and gp41 coding regions. Mutations were interpreted according to the Stanford Database algorithm and/or the International Antiviral Society USA guidelines. TDR mutations were defined according to the WHO surveillance list. Results Among 47 patients with recent HIV-1 infection only 1 (2%) had evidence of TDR mutation. No major resistance mutations were found, but the frequency of strains with ≥1 accessory resistance-associated mutations was high, at 98%. Accessory mutations were present in 11% of reverse transcriptase, 96% of protease, and 27% of gp41 sequences. Mean number of accessory resistance mutations in the reverse transcriptase and protease sequences was higher in viruses with no compensatory mutations in the gp41 HR2 domain than in strains with such mutations (p=0.031). Conclusions Despite the low prevalence of strains with TDR mutations, the frequency of accessory mutations was considerable, which may reflect the history of drug pressure among transmitters or natural viral genetic diversity, and may be relevant for future clinical outcomes. The accumulation of the accessory resistance mutations within the pol gene may restrict the occurrence of compensatory mutations related to enfuvirtide resistance or vice versa.
Collapse
Affiliation(s)
- Joanna Smoleń-Dzirba
- Department of Microbiology and Virology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Magdalena Rosińska
- Department of Epidemiology, National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland
| | - Piotr Kruszyński
- Department of Microbiology and Virology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Jolanta Bratosiewicz-Wąsik
- Department of Biopharmacy, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Robert Wojtyczka
- Department of Microbiology and Virology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Janusz Janiec
- Department of Epidemiology, National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland
| | - Bartosz Szetela
- Department of Infectious Diseases, Hepatology, and Acquired Immune Deficiencies, Wrocław Medical University, Wrocław, Poland
| | - Marek Beniowski
- Outpatient Clinic for AIDS Diagnostics and Therapy, Specialistic Hospital in Chorzów, Chorzów, Poland
| | - Monika Bociąga-Jasik
- Department of Infectious Diseases, Jagiellonian University Medical College, Cracow, Poland
| | - Elżbieta Jabłonowska
- Department of Infectious Diseases and Hepatology, Medical University of Łódź, Łódź, Poland
| | - Tomasz J Wąsik
- Department of Microbiology and Virology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | | |
Collapse
|
13
|
Alvarez P, Fernández McPhee C, Prieto L, Martín L, Obiang J, Avedillo P, Vargas A, Rojo P, Benito A, Ramos JT, Holguín Á. HIV-1 Variants and Drug Resistance in Pregnant Women from Bata (Equatorial Guinea): 2012-2013. PLoS One 2016; 11:e0165333. [PMID: 27798676 PMCID: PMC5087953 DOI: 10.1371/journal.pone.0165333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/10/2016] [Indexed: 12/16/2022] Open
Abstract
Objectives This is the first study describing drug resistance mutations (DRM) and HIV-1 variants among infected pregnant women in Equatorial Guinea (GQ), a country with high (6.2%) and increasing HIV prevalence. Methods Dried blood spots (DBS) were collected from November 2012 to December 2013 from 69 HIV-1 infected women participating in a prevention of mother-to-child transmission program in the Hospital Regional of Bata and Primary Health Care Centre María Rafols, Bata, GQ. The transmitted (TDR) or acquired (ADR) antiretroviral drug resistance mutations at partial pol sequence among naive or antiretroviral therapy (ART)-exposed women were defined following WHO or IAS USA 2015 lists, respectively. HIV-1 variants were identified by phylogenetic analyses. Results A total of 38 of 69 HIV-1 specimens were successfully amplified and sequenced. Thirty (79%) belonged to ART-experienced women: 15 exposed to nucleoside reverse transcriptase inhibitors (NRTI) monotherapy, and 15 to combined ART (cART) as first regimen including two NRTI and one non-NRTI (NNRTI) or one protease inhibitor (PI). The TDR rate was only found for PI (3.4%). The ADR rate was 37.5% for NNRTI, 8.7% for NRTI and absent for PI or NRTI+NNRTI. HIV-1 group M non-B variants caused most (97.4%) infections, mainly (78.9%) recombinants: CRF02_AG (55.2%), CRF22_A101 (10.5%), subtype C (10.5%), unique recombinants (5.3%), and A3, D, F2, G, CRF06_cpx and CRF11_cpx (2.6% each). Conclusions The high rate of ADR to retrotranscriptase inhibitors (mainly to NNRTIs) observed among pretreated pregnant women reinforces the importance of systematic DRM monitoring in GQ to reduce HIV-1 resistance transmission and to optimize first and second-line ART regimens when DRM are present.
Collapse
Affiliation(s)
- Patricia Alvarez
- HIV-1 Molecular Epidemiology Laboratory, Microbiology and Parasitology Department, Hospital Universitario Ramón y Cajal, IRYCIS and CIBERESP, Madrid, Spain
| | | | - Luis Prieto
- Pediatrics Department, Hospital Universitario de Getafe, Madrid, Spain
| | - Leticia Martín
- HIV-1 Molecular Epidemiology Laboratory, Microbiology and Parasitology Department, Hospital Universitario Ramón y Cajal, IRYCIS and CIBERESP, Madrid, Spain
| | - Jacinta Obiang
- Pediatrics Department, Hospital Regional de Bata, Ministerio de Sanidad y Bienestar Social, Bata, Equatorial Guinea
| | - Pedro Avedillo
- Centro Nacional de Medicina Tropical, Instituto de Salud Carlos III-Madrid, RICET, Madrid, Spain
| | - Antonio Vargas
- Centro Nacional de Medicina Tropical, Instituto de Salud Carlos III-Madrid, RICET, Madrid, Spain
| | - Pablo Rojo
- Pediatrics Department, Hospital Universitario Doce de Octubre, Madrid, Spain
| | - Agustín Benito
- Centro Nacional de Medicina Tropical, Instituto de Salud Carlos III-Madrid, RICET, Madrid, Spain
| | - José Tomás Ramos
- Pediatrics Department, Hospital Universitario Clínico San Carlos, Madrid, Spain
| | - África Holguín
- HIV-1 Molecular Epidemiology Laboratory, Microbiology and Parasitology Department, Hospital Universitario Ramón y Cajal, IRYCIS and CIBERESP, Madrid, Spain
- * E-mail:
| |
Collapse
|
14
|
The HIV-1 reverse transcriptase polymorphism A98S improves the response to tenofovir disoproxil fumarate+emtricitabine-containing HAART both in vivo and in vitro. J Glob Antimicrob Resist 2016; 7:1-7. [PMID: 27530997 DOI: 10.1016/j.jgar.2016.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/19/2016] [Accepted: 06/15/2016] [Indexed: 11/21/2022] Open
Abstract
The impact of baseline HIV-1 reverse transcriptase (RT) polymorphisms on response to first-line modern HAART containing tenofovir disoproxil fumarate (TDF) and emtricitabine (FTC) was evaluated. The impact of each RT polymorphism on virological success (VS) was evaluated in 604 HIV-1 subtype B-infected patients starting TDF+FTC-containing HAART. TDF and FTC antiviral activity was also tested in PBMCs infected by mutagenised HIV. Structural analysis based on docking simulations was performed. A98S was the only mutation significantly correlated with an increased proportion of patients achieving VS at 24 weeks (94.0% vs. 84.3%; P=0.03). Multivariate regression and Cox model analyses confirmed this result. At concentrations close to the minimal concentration achieved in patient plasma, TDF and FTC exhibited higher potency in the presence of A98S-mutated virus compared with wild-type (IC90,TDF, 8.6±1.1 vs. 19.3±3.5nM; and IC90,FTC, 12.4±7.7 vs. 16.8±9.8nM, respectively). The efficacy of FTC, abrogated by M184V, was partially restored by A98S (IC90,FTC, 5169±5931nM for A98S+M184V vs. 18477±12478nM for M184V alone). Docking analysis showed the higher potency of TDF and FTC in the presence of A98S-mutated virus was mainly due to higher binding affinity between drugs and mutated RT compared with wild-type. In the presence of FTC, A98S also partially restored the RT binding affinity impaired by M184V alone. A98S polymorphism improves virological response to TDF+FTC-containing HAART. This may help clinicians in the choice of the optimal NRTI backbone aimed at achieving maximal virological inhibition.
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW The review discusses new technologies for the sensitive detection of HIV drug resistance, with a focus on applications in antiretroviral treatment (ART)-naïve populations. RECENT FINDINGS Conventional sequencing is well established for detecting HIV drug resistance in routine care and guides optimal treatment selection in patients starting ART. Access to conventional sequencing is nearly universal in Western countries, but remains limited in Asia, Latin America, and Africa. Technological advances now allow detection of resistance with greatly improved sensitivity compared with conventional sequencing, variably increasing the yield of resistance testing in ART-naïve populations. There is strong cumulative evidence from retrospective studies that sensitive detection of resistant mutants in baseline plasma samples lacking resistance by conventional sequencing more than doubles the risk of virological failure after starting efavirenz-based or nevirapine-based ART. SUMMARY Sensitive resistance testing methods are mainly confined to research applications and in this context have provided great insight into the dynamics of drug resistance development, persistence, and transmission. Adoption in care settings is becoming increasingly possible, although important challenges remain. Platforms for diagnostic use must undergo technical improvements to ensure good performance and ease of use, and clinical validation is required to ensure utility.
Collapse
|
16
|
Cozzi-Lepri A, Noguera-Julian M, Di Giallonardo F, Schuurman R, Däumer M, Aitken S, Ceccherini-Silberstein F, D'Arminio Monforte A, Geretti AM, Booth CL, Kaiser R, Michalik C, Jansen K, Masquelier B, Bellecave P, Kouyos RD, Castro E, Furrer H, Schultze A, Günthard HF, Brun-Vezinet F, Paredes R, Metzner KJ. Low-frequency drug-resistant HIV-1 and risk of virological failure to first-line NNRTI-based ART: a multicohort European case-control study using centralized ultrasensitive 454 pyrosequencing. J Antimicrob Chemother 2014; 70:930-40. [PMID: 25336166 PMCID: PMC4319483 DOI: 10.1093/jac/dku426] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Objectives It is still debated if pre-existing minority drug-resistant HIV-1 variants (MVs) affect the virological outcomes of first-line NNRTI-containing ART. Methods This Europe-wide case–control study included ART-naive subjects infected with drug-susceptible HIV-1 as revealed by population sequencing, who achieved virological suppression on first-line ART including one NNRTI. Cases experienced virological failure and controls were subjects from the same cohort whose viraemia remained suppressed at a matched time since initiation of ART. Blinded, centralized 454 pyrosequencing with parallel bioinformatic analysis in two laboratories was used to identify MVs in the 1%–25% frequency range. ORs of virological failure according to MV detection were estimated by logistic regression. Results Two hundred and sixty samples (76 cases and 184 controls), mostly subtype B (73.5%), were used for the analysis. Identical MVs were detected in the two laboratories. 31.6% of cases and 16.8% of controls harboured pre-existing MVs. Detection of at least one MV versus no MVs was associated with an increased risk of virological failure (OR = 2.75, 95% CI = 1.35–5.60, P = 0.005); similar associations were observed for at least one MV versus no NRTI MVs (OR = 2.27, 95% CI = 0.76–6.77, P = 0.140) and at least one MV versus no NNRTI MVs (OR = 2.41, 95% CI = 1.12–5.18, P = 0.024). A dose–effect relationship between virological failure and mutational load was found. Conclusions Pre-existing MVs more than double the risk of virological failure to first-line NNRTI-based ART.
Collapse
Affiliation(s)
| | - Marc Noguera-Julian
- Institut de Recerca de la SIDA IrsiCaixa i Unitat VIH, Universitat Autònoma de Barcelona, Universitat de Vic, Catalonia, Spain
| | - Francesca Di Giallonardo
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Rob Schuurman
- Department of Virology, University Medical Centre, Utrecht, The Netherlands
| | - Martin Däumer
- Institut für Immunologie und Genetik, Kaiserslautern, Germany
| | - Sue Aitken
- Department of Virology, University Medical Centre, Utrecht, The Netherlands
| | | | - Antonella D'Arminio Monforte
- Department of Health Sciences, Clinic of Infectious Diseases, 'San Paolo' Hospital, University of Milan, Milan, Italy
| | - Anna Maria Geretti
- Institute of Infection & Global Health, University of Liverpool, Liverpool, UK
| | - Clare L Booth
- Department of Virology, Royal Free London NHS Foundation Trust, London, UK
| | - Rolf Kaiser
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Claudia Michalik
- Competence Network for HIV/AIDS, Bochum, Germany and Clinic for Dermatology, Venerology and Allergology of the Ruhr-Universität, Bochum, Germany Clinical Trial Centre (ZKS), University of Cologne, Cologne, Germany
| | - Klaus Jansen
- Competence Network for HIV/AIDS, Bochum, Germany and Clinic for Dermatology, Venerology and Allergology of the Ruhr-Universität, Bochum, Germany
| | - Bernard Masquelier
- Laboratoire de Virologie, CHU de Bordeaux and MFP-UMR5234, Université Bordeaux 2, Bordeaux, France
| | - Pantxika Bellecave
- Laboratoire de Virologie, CHU de Bordeaux and MFP-UMR5234, Université Bordeaux 2, Bordeaux, France
| | - Roger D Kouyos
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Erika Castro
- Addiction Medicine, Service of Community Psychiatry, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Hansjakob Furrer
- Department of Infectious Diseases, Bern University Hospital and University of Bern, Bern, Switzerland
| | | | - Huldrych F Günthard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Roger Paredes
- Institut de Recerca de la SIDA IrsiCaixa i Unitat VIH, Universitat Autònoma de Barcelona, Universitat de Vic, Catalonia, Spain
| | - Karin J Metzner
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
17
|
Impact of human immunodeficiency virus type-1 sequence diversity on antiretroviral therapy outcomes. Viruses 2014; 6:3855-72. [PMID: 25333465 PMCID: PMC4213566 DOI: 10.3390/v6103855] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/09/2014] [Accepted: 10/13/2014] [Indexed: 12/04/2022] Open
Abstract
Worldwide circulating HIV-1 genomes show extensive variation represented by different subtypes, polymorphisms and drug-resistant strains. Reports on the impact of sequence variation on antiretroviral therapy (ART) outcomes are mixed. In this review, we summarize relevant published data from both resource-rich and resource-limited countries in the last 10 years on the impact of HIV-1 sequence diversity on treatment outcomes. The prevalence of transmission of drug resistant mutations (DRMs) varies considerably, ranging from 0% to 27% worldwide. Factors such as geographic location, access and availability to ART, duration since inception of treatment programs, quality of care, risk-taking behaviors, mode of transmission, and viral subtype all dictate the prevalence in a particular geographical region. Although HIV-1 subtype may not be a good predictor of treatment outcome, review of emerging evidence supports the fact that HIV-1 genome sequence-resulting from natural polymorphisms or drug-associated mutations-matters when it comes to treatment outcomes. Therefore, continued surveillance of drug resistant variants in both treatment-naïve and treatment-experienced populations is needed to reduce the transmission of DRMs and to optimize the efficacy of the current ART armamentarium.
Collapse
|
18
|
Prevalence and associated factors for HIV-1 transmitted drug resistance in voluntary clients for counseling and testing in Southern Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2014; 49:487-93. [PMID: 25315212 DOI: 10.1016/j.jmii.2014.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/15/2014] [Accepted: 08/07/2014] [Indexed: 11/23/2022]
Abstract
BACKGROUND According to the World Health Organization, HIV-transmitted drug resistance (TDR) is increasing. We analyzed voluntary counseling test data from a hospital in Southern Taiwan to investigate the TDR pattern in Southern Taiwan, the potential relationship between sexual behavior and HIV transmission, and HIV drug-resistant strain transmission. METHODS Genotypic resistance assays were performed on treatment-naïve HIV patients recruited from voluntary counseling testing (VCT) in Southern Taiwan from 2007 to 2011. Drug resistance-associated mutations were interpreted with Stanford University HIV Drug Resistance Database HIVdb program. Socio-demographics and sexual activity were recorded from the VCT questionnaire. Logistic regression analysis was used to analyze the risk factors for TDR, and a phylogenetic tree was constructed to elucidate the pattern of HIV drug-resistant strains. RESULTS Among the 161 treatment-naïve HIV-infected patients, most were men who reported having sex with men. The overall TDR rate was 10.6%. Patients with a history of sexually transmitted diseases had a 7.8-fold higher risk of becoming infected with genotypic resistant strains. CONCLUSION In Southern Taiwan, the HIV TDR rate was 10.6% among those receiving VCT. Our findings suggest that sexual behavior may play an important role in HIV drug-resistant strain transmission.
Collapse
|