1
|
Gillespie SW, Reddy AS, Burris DM, Naqvi SH, Byrareddy SN, Lorson CL, Singh K. Islatravir: evaluation of clinical development for HIV and HBV. Expert Opin Investig Drugs 2024; 33:85-93. [PMID: 38235744 DOI: 10.1080/13543784.2024.2305130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
INTRODUCTION Islatravir (ISL) is a nucleoside reverse transcriptase translocation inhibitor (NRTTI) that inhibits HIV RT through multiple mechanisms. Contrary to all approved NtRTIs, islatravir retains a 3'OH group. In vitro and clinical data show that ISL is an ultrapotent investigational drug with high tolerability. AREAS COVERED The historical development of islatravir and its mechanisms of HIV and HBV inhibition and resistance are covered. Additionally, the outcomes of Phase I and Phase II clinical trials are discussed. EXPERT OPINION Current first-line antiretroviral therapy, preexposure, and postexposure prophylactic interventions are highly effective in maintaining low or undetectable viral load. Despite these measures, an unusually high rate of new infections every year warrants developing novel antivirals that can suppress drug-resistant HIV and improve compliance. ISL, an NRTTI once deemed a long-acting drug, was placed on a clinical hold. The outcome of ongoing clinical trials with a reduced ISL dose will decide its future clinical application. Additionally, MK-8527, which inhibits HIV via same mechanism as that of ISL may supersede ISL. Data on ISL inhibition of HBV are scarce, and preclinical data show dramatically lower ISL efficacy against HBV than currently preferred nucleos(t)ide drugs, indicating that ISL may not be a potent anti-HBV drug.
Collapse
Affiliation(s)
| | - Athreya S Reddy
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Dana M Burris
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - S Hasan Naqvi
- Department of Medicine, University of Missouri, Columbia, MO, USA
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Christian L Lorson
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Kamal Singh
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
2
|
Mansouri M, Rumrill S, Dawson S, Johnson A, Pinson JA, Gunzburg MJ, Latham CF, Barlow N, Mbogo GW, Ellenberg P, Headey SJ, Sluis-Cremer N, Tyssen D, Bauman JD, Ruiz FX, Arnold E, Chalmers DK, Tachedjian G. Targeting HIV-1 Reverse Transcriptase Using a Fragment-Based Approach. Molecules 2023; 28:3103. [PMID: 37049868 PMCID: PMC10095864 DOI: 10.3390/molecules28073103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
Human immunodeficiency virus type I (HIV-1) is a retrovirus that infects cells of the host's immune system leading to acquired immunodeficiency syndrome and potentially death. Although treatments are available to prevent its progression, HIV-1 remains a major burden on health resources worldwide. Continued emergence of drug-resistance mutations drives the need for novel drugs that can inhibit HIV-1 replication through new pathways. The viral protein reverse transcriptase (RT) plays a fundamental role in the HIV-1 replication cycle, and multiple approved medications target this enzyme. In this study, fragment-based drug discovery was used to optimize a previously identified hit fragment (compound B-1), which bound RT at a novel site. Three series of compounds were synthesized and evaluated for their HIV-1 RT binding and inhibition. These series were designed to investigate different vectors around the initial hit in an attempt to improve inhibitory activity against RT. Our results show that the 4-position of the core scaffold is important for binding of the fragment to RT, and a lead compound with a cyclopropyl substitution was selected and further investigated. Requirements for binding to the NNRTI-binding pocket (NNIBP) and a novel adjacent site were investigated, with lead compound 27-a minimal but efficient NNRTI-offering a starting site for the development of novel dual NNIBP-Adjacent site inhibitors.
Collapse
Affiliation(s)
- Mahta Mansouri
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Shawn Rumrill
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Shane Dawson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Adam Johnson
- Retroviral Biology and Antivirals Laboratory, Disease Elimination Program, Life Sciences Discipline, Burnet Institute, Melbourne, VIC 3004, Australia
| | - Jo-Anne Pinson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Menachem J. Gunzburg
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Catherine F. Latham
- Retroviral Biology and Antivirals Laboratory, Disease Elimination Program, Life Sciences Discipline, Burnet Institute, Melbourne, VIC 3004, Australia
| | - Nicholas Barlow
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - George W. Mbogo
- Retroviral Biology and Antivirals Laboratory, Disease Elimination Program, Life Sciences Discipline, Burnet Institute, Melbourne, VIC 3004, Australia
| | - Paula Ellenberg
- Retroviral Biology and Antivirals Laboratory, Disease Elimination Program, Life Sciences Discipline, Burnet Institute, Melbourne, VIC 3004, Australia
| | - Stephen J. Headey
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Nicolas Sluis-Cremer
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - David Tyssen
- Retroviral Biology and Antivirals Laboratory, Disease Elimination Program, Life Sciences Discipline, Burnet Institute, Melbourne, VIC 3004, Australia
| | - Joseph D. Bauman
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Francesc X. Ruiz
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - David K. Chalmers
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Gilda Tachedjian
- Retroviral Biology and Antivirals Laboratory, Disease Elimination Program, Life Sciences Discipline, Burnet Institute, Melbourne, VIC 3004, Australia
- Department of Microbiology, Monash University, Clayton, VIC 3168, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| |
Collapse
|
3
|
Gao P, Yu F, Yang X, Li D, Shi Y, Wang Y, Zhang F. Evaluation of a novel in-house HIV-1 genotype drug resistance assay using clinical samples in China. Curr HIV Res 2021; 20:32-41. [PMID: 34515004 PMCID: PMC9127726 DOI: 10.2174/1570162x19666210910144433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 07/08/2021] [Accepted: 08/04/2021] [Indexed: 11/22/2022]
Abstract
Background HIV drug resistance poses a major challenge for anti-retroviral treatment (ART) and the prevention and control of HIV epidemic. Objective The study aims to establish a novel in-house assay with high efficiency, named AP in- house method, that would be suitable for HIV-1 drug resistance detection in China. Methods An in-house HIV-1 genotyping method was used to sequence the partial pol gene from 60 clinical plasma samples; the results of our test were compared with a commercial ViroSeq HIV-1 genotyping system. Results Among sixty samples, 58(96.7%) were successfully amplified by AP in-house method, five of them harbored viral load below 1,000 copies/ml. The genotype distribution was 43.1% CRF07_BC (25/58), 39.7% CRF01_AE (23/58), 6.9% CRF55_01B (4/58), 5.2% subtype B (3/58) and 5.2% CRF08_BC (3/58). Compared with that of the ViroSeq system, the consistent rate of these nucleotides and amino acids obtained by AP in-house method was up to 99.5 ± 0.4% and 99.5 ± 0.4%, respectively. A total of 290 HIV-1 drug resistance mutations were identified by two methods, including 126 nucleoside reverse transcriptase inhibitors (NRTIs), 145 non-nucleoside reverse transcriptase inhibitors (NNRTIs) and 19 protease inhibitors (PIs) resistance mutations. Out of them, 94.1% (273/290) were completely concordant between the AP in-house method and the ViroSeq system. Conclusion Overall, the evaluation of AP in-house method provided comparable results to those of the ViroSeq system on diversified HIV-1 subtypes in China.
Collapse
Affiliation(s)
- Peijie Gao
- Beijing Anapure Bioscitific Co. Ltd. Beijing. China
| | - Fengting Yu
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital. China
| | | | - Dan Li
- Beijing Anapure Bioscitific Co. Ltd. Beijing. China
| | - Yalun Shi
- Beijing Anapure Bioscitific Co. Ltd. Beijing. China
| | - Yan Wang
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital. China
| | - Fujie Zhang
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital. China
| |
Collapse
|
6
|
Transient kinetic analyses of the ribonuclease H cleavage activity of HIV-1 reverse transcriptase in complex with efavirenz and/or a β-thujaplicinol analogue. Biochem J 2013; 455:179-84. [PMID: 23927736 DOI: 10.1042/bj20130850] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
EFV (efavirenz) and β-thujaplicinol [2,7-dihydroxy-4-1(methylethyl)-2,4,6-cycloheptatrien-1-one] have contrasting effects on the RNase H activity of HIV-1 RT (reverse transcriptase). EFV binds in the non-nucleoside inhibitor-binding pocket and accelerates this activity, whereas β-thujaplicinol binds in the RNase H active site and inhibits it. We have used pre-steady-state kinetic analyses to gain an insight into the mechanism by which EFV and a β-thujaplicinol analogue [19616 (2,7-dihydroxy-2,4,6-cyclo-heptatrien-1-one)] modulate RT RNase H activity. Our data show that EFV and 19616 have no effect on polymerase-dependent RNase H cleavages. However, both compounds significantly affected the rates of polymerase-independent RNase H cleavages. In regard to the latter, we found no evidence that the bound RNA/DNA template/primer substrate restricted 19616 from interacting with RT. In light of these data, we propose a model in which 19616 binds to the RNase H active site of RT after the primary polymerase-dependent RNase H cleavage has occurred and stabilizes the 3'-end of the DNA primer in the polymerase active site thus blocking the enzyme's ability to carry out the polymerase-independent cleavages. By contrast, EFV destabilizes the 3'-end of the DNA primer in the DNA polymerase active site and promotes RT-mediated polymerase-independent cleavages. Consistent with this model, we show antagonism between EFV and 19616.
Collapse
|