1
|
Abstract
PURPOSE OF REVIEW To analyze the possible role that the 'unconventional' T-cell populations mucosal-associated invariant T cell (MAIT) and iNKT cells play during HIV infection and following antiretroviral therapy (ART) treatment. RECENT FINDINGS A substantial body of evidence now demonstrates that both MAIT and iNKT cells are depleted in blood during HIV infection. The depletion and dysfunction of MAIT and iNKT cells are only partially restored by suppressive ART, potentially contributing to HIV-related comorbidities. SUMMARY The deficiency and dysfunction of MAIT and iNKT T-cell subsets likely impact on immunity to important coinfections including Mycobacterium tuberculosis. This underscores the importance of research on restoring these unconventional T cells during HIV infection. Future studies in this field should address the challenge of studying tissue-resident cells, particularly in the gut, and better defining the determinants of MAIT/iNKT cell dysfunction. Such studies could have a significant impact on improving the immune function of HIV-infected individuals.
Collapse
|
2
|
Paquin-Proulx D, Gibbs A, Bächle SM, Checa A, Introini A, Leeansyah E, Wheelock CE, Nixon DF, Broliden K, Tjernlund A, Moll M, Sandberg JK. Innate Invariant NKT Cell Recognition of HIV-1-Infected Dendritic Cells Is an Early Detection Mechanism Targeted by Viral Immune Evasion. THE JOURNAL OF IMMUNOLOGY 2016; 197:1843-51. [PMID: 27481843 DOI: 10.4049/jimmunol.1600556] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/01/2016] [Indexed: 12/21/2022]
Abstract
Invariant NKT (iNKT) cells are innate-like T cells that respond rapidly with a broad range of effector functions upon recognition of glycolipid Ags presented by CD1d. HIV-1 carries Nef- and Vpu-dependent mechanisms to interfere with CD1d surface expression, indirectly suggesting a role for iNKT cells in control of HIV-1 infection. In this study, we investigated whether iNKT cells can participate in the innate cell-mediated immune response to HIV-1. Infection of dendritic cells (DCs) with Nef- and Vpu-deficient HIV-1 induced upregulation of CD1d in a TLR7-dependent manner. Infection of DCs caused modulation of enzymes in the sphingolipid pathway and enhanced expression of the endogenous glucosylceramide Ag. Importantly, iNKT cells responded specifically to rare DCs productively infected with Nef- and Vpu-defective HIV-1. Transmitted founder viral isolates differed in their CD1d downregulation capacity, suggesting that diverse strains may be differentially successful in inhibiting this pathway. Furthermore, both iNKT cells and DCs expressing CD1d and HIV receptors resided in the female genital mucosa, a site where HIV-1 transmission occurs. Taken together, these findings suggest that innate iNKT cell sensing of HIV-1 infection in DCs is an early immune detection mechanism, which is independent of priming and adaptive recognition of viral Ag, and is actively targeted by Nef- and Vpu-dependent viral immune evasion mechanisms.
Collapse
Affiliation(s)
- Dominic Paquin-Proulx
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Anna Gibbs
- Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Susanna M Bächle
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Antonio Checa
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden; and
| | - Andrea Introini
- Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Edwin Leeansyah
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden; and
| | - Douglas F Nixon
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC 20037
| | - Kristina Broliden
- Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Annelie Tjernlund
- Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Markus Moll
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden;
| |
Collapse
|
3
|
Eller MA, Opollo MS, Liu M, Redd AD, Eller LA, Kityo C, Kayiwa J, Laeyendecker O, Wawer MJ, Milazzo M, Kiwanuka N, Gray RH, Serwadda D, Sewankambo NK, Quinn TC, Michael NL, Wabwire-Mangen F, Sandberg JK, Robb ML. HIV Type 1 Disease Progression to AIDS and Death in a Rural Ugandan Cohort Is Primarily Dependent on Viral Load Despite Variable Subtype and T-Cell Immune Activation Levels. J Infect Dis 2014; 211:1574-84. [PMID: 25404522 DOI: 10.1093/infdis/jiu646] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 11/05/2014] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Untreated human immunodeficiency virus type 1 (HIV) infection is associated with persistent immune activation, which is an independent driver of disease progression in European and United States cohorts. In Uganda, HIV-1 subtypes A and D and recombinant AD viruses predominate and exhibit differential rates of disease progression. METHODS HIV-1 seroconverters (n = 156) from rural Uganda were evaluated to assess the effects of T-cell activation, viral load, and viral subtype on disease progression during clinical follow-up. RESULTS The frequency of activated T cells was increased in HIV-1-infected Ugandans, compared with community matched uninfected individuals, but did not differ significantly between viral subtypes. Higher HIV-1 load, subtype D, older age, and high T-cell activation levels were associated with faster disease progression to AIDS or death. In a multivariate Cox regression analysis, HIV-1 load was the strongest predictor of progression, with subtype also contributing. T-cell activation did not emerge an independent predictor of disease progression from this particular cohort. CONCLUSIONS These findings suggest that the independent contribution of T-cell activation on morbidity and mortality observed in European and North American cohorts may not be directly translated to the HIV epidemic in East Africa. In this setting, HIV-1 load appears to be the primary determinant of disease progression.
Collapse
Affiliation(s)
- Michael A Eller
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring Henry M. Jackson Foundation for the Advancement of Military Medicine
| | | | - Michelle Liu
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring Henry M. Jackson Foundation for the Advancement of Military Medicine
| | - Andrew D Redd
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda
| | - Leigh Anne Eller
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring Henry M. Jackson Foundation for the Advancement of Military Medicine
| | | | | | - Oliver Laeyendecker
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda School of Medicine
| | - Maria J Wawer
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Mark Milazzo
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring Henry M. Jackson Foundation for the Advancement of Military Medicine
| | - Noah Kiwanuka
- School of Public Health Rakai Health Sciences Program, Uganda Virus Research Institute, Entebbe
| | - Ronald H Gray
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - David Serwadda
- School of Public Health Rakai Health Sciences Program, Uganda Virus Research Institute, Entebbe
| | - Nelson K Sewankambo
- Faculty of Medicine, Makerere University College of Health Sciences, Kampala Rakai Health Sciences Program, Uganda Virus Research Institute, Entebbe
| | - Thomas C Quinn
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda School of Medicine
| | - Nelson L Michael
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring
| | | | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Merlin L Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring Henry M. Jackson Foundation for the Advancement of Military Medicine
| |
Collapse
|
4
|
Impaired natural killer cell responses are associated with loss of the highly activated NKG2A(+)CD57(+)CD56(dim) subset in HIV-1 subtype D infection in Uganda. AIDS 2014; 28:1273-8. [PMID: 24959961 PMCID: PMC4032214 DOI: 10.1097/qad.0000000000000286] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Objective: Of the predominant HIV-1 subtypes in Uganda, subtype D infection confers a worse prognosis. HIV-1 infection causes perturbations to natural killer (NK) cells, and yet these cells can exert immune pressure on the virus and influence clinical outcome. Here, we studied NK cell activation and function in Ugandans with chronic untreated HIV-1 subtype D infection in comparison to uninfected community matched controls. Methods: Cryopreserved peripheral blood mononuclear cells (PBMCs) from 42 HIV-infected individuals and 28 HIV-negative controls were analysed using eight-colour flow cytometry. NK cell surface expression of CD16, CD56, CD57, HLA-DR and NKG2A were used to investigate activation, maturation and differentiation status. NK cell function was evaluated by measuring interferon-gamma (IFNγ) production in response to K562 cells, or interleukin (IL)-12 and IL-18. Results: CD56dim NK cells from HIV-infected individuals produced less IFNγ in response to IL-12 and IL-18 than did CD56dim NK cells from uninfected controls. Infected individuals had lower levels of CD56dim NK cells coexpressing the differentiation markers NKG2A and CD57 than controls. In addition, their NKG2A+CD57+ CD56dim NK cells displayed elevated activation levels as assessed by HLA-DR expression. Cytokine-induced IFNγ production correlated directly with coexpression of CD57 and NKG2A on CD56dim NK cells. Conclusion: HIV-1 subtype D infection is associated with impaired NK cell responsiveness to cytokines, decline of the NKG2A+CD57+ CD56dim NK cell subset, as well as elevated activation in this subset. These alterations within the NK cell compartment may contribute to immunopathogenesis of HIV-1 subtype D infection in Ugandans.
Collapse
|