1
|
McMillan AS, Zhang G, Dougherty MK, McGill SK, Gulati AS, Baker ES, Theriot CM. Metagenomic, metabolomic, and lipidomic shifts associated with fecal microbiota transplantation for recurrent Clostridioides difficile infection. mSphere 2024; 9:e0070624. [PMID: 39377587 PMCID: PMC11520286 DOI: 10.1128/msphere.00706-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/08/2024] [Indexed: 10/09/2024] Open
Abstract
Recurrent C. difficile infection (rCDI) is an urgent public health threat, for which the last resort and lifesaving treatment is a fecal microbiota transplant (FMT). However, the exact mechanisms that mediate a successful FMT are not well-understood. Here, we use longitudinal stool samples collected from patients undergoing FMT to evaluate intra-individual changes in the microbiome, metabolome, and lipidome after successful FMTs relative to their baselines pre-FMT. We show changes in the abundance of many lipids, specifically a decrease in acylcarnitines post-FMT, and a shift from conjugated bile acids pre-FMT to deconjugated secondary bile acids post-FMT. These changes correlate with a decrease in Enterobacteriaceae, which encode carnitine metabolism genes, and an increase in Lachnospiraceae, which encode bile acid altering genes such as bile salt hydrolases (BSHs) and the bile acid-inducible (bai) operon, post-FMT. We also show changes in gut microbe-encoded amino acid biosynthesis genes, of which Enterobacteriaceae was the primary contributor to amino acids C. difficile is auxotrophic for. Liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) revealed a shift from microbial conjugation of primary bile acids pre-FMT to secondary bile acids post-FMT. Here, we define the structural and functional changes associated with a successful FMT and generate hypotheses that require further experimental validation. This information is meant to help guide the development of new microbiota-focused therapeutics to treat rCDI.IMPORTANCERecurrent C. difficile infection is an urgent public health threat, for which the last resort and lifesaving treatment is a fecal microbiota transplant. However, the exact mechanisms that mediate a successful FMT are not well-understood. Here, we show changes in the abundance of many lipids, specifically acylcarnitines and bile acids, in response to FMT. These changes correlate with Enterobacteriaceae pre-FMT, which encodes carnitine metabolism genes, and Lachnospiraceae post-FMT, which encodes bile salt hydrolases and baiA genes. There was also a shift from microbial conjugation of primary bile acids pre-FMT to secondary bile acids post-FMT. Here, we define the structural and functional changes associated with a successful FMT, which we hope will help aid in the development of new microbiota-focused therapeutics to treat rCDI.
Collapse
Affiliation(s)
- Arthur S. McMillan
- Genetics Program, Department of Biological Sciences, College of Science, North Carolina State University, Raleigh, North Carolina, USA
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Guozhi Zhang
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michael K. Dougherty
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Rex Digestive Healthcare, Raleigh, North Carolina, USA
| | - Sarah K. McGill
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ajay S. Gulati
- Department of Pediatrics, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Erin S. Baker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Casey M. Theriot
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
2
|
McMillan AS, Zhang G, Dougherty MK, McGill SK, Gulati AS, Baker ES, Theriot CM. Metagenomic, metabolomic, and lipidomic shifts associated with fecal microbiota transplantation for recurrent Clostridioides difficile infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.07.579219. [PMID: 38370838 PMCID: PMC10871284 DOI: 10.1101/2024.02.07.579219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Recurrent C. difficile infection (rCDI) is an urgent public health threat for which the last resort and lifesaving treatment is a fecal microbiota transplant (FMT). However, the exact mechanisms which mediate a successful FMT are not well understood. Here we use longitudinal stool samples collected from patients undergoing FMT to evaluate changes in the microbiome, metabolome, and lipidome after successful FMTs. We show changes in the abundance of many lipids, specifically acylcarnitines and bile acids, in response to FMT. These changes correlate with Enterobacteriaceae, which encode carnitine metabolism genes, and Lachnospiraceae, which encode bile salt hydrolases and baiA genes. LC-IMS-MS revealed a shift from microbial conjugation of primary bile acids pre-FMT to secondary bile acids post-FMT. Here we define the structural and functional changes in successful FMTs. This information will help guide targeted Live Biotherapeutic Product development for the treatment of rCDI and other intestinal diseases.
Collapse
|
3
|
Tekintaş Y, Temel A. Antisense oligonucleotides: a promising therapeutic option against infectious diseases. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:1-39. [PMID: 37395450 DOI: 10.1080/15257770.2023.2228841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/19/2023] [Indexed: 07/04/2023]
Abstract
Infectious diseases have been one of the biggest health problems of humanity for centuries. Nucleic acid-based therapeutics have received attention in recent years with their effectiveness in the treatment of various infectious diseases and vaccine development studies. This review aims to provide a comprehensive understanding of the basic properties underlying the mechanism of antisense oligonucleotides (ASOs), their applications, and their challenges. The efficient delivery of ASOs is the greatest challenge for their therapeutic success, but this problem is overcome with new-generation antisense molecules developed with chemical modifications. The types, carrier molecules, and gene regions targeted by sequences have been summarized in detail. Research and development of antisense therapy is still in its infancy; however, gene silencing therapies appear to have the potential for faster and longer-lasting activity than conventional treatment strategies. On the other hand, realizing the potential of antisense therapy will require a large initial economic investment to ascertain the pharmacological properties and learn how to optimize them. The ability of ASOs to be rapidly designed and synthesized to target different microbes can reduce drug discovery time from 6 years to 1 year. Since ASOs are not particularly affected by resistance mechanisms, they come to the fore in the fight against antimicrobial resistance. The design-based flexibility of ASOs has enabled it to be used for different types of microorganisms/genes and successful in vitro and in vivo results have been revealed. The current review summarized a comprehensive understanding of ASO therapy in combating bacterial and viral infections.
Collapse
Affiliation(s)
- Yamaç Tekintaş
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Türkiye
| | - Aybala Temel
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Türkiye
| |
Collapse
|
4
|
Alshrari AS, Hudu SA, Elmigdadi F, Imran M. The Urgent Threat of Clostridioides difficile Infection: A Glimpse of the Drugs of the Future, with Related Patents and Prospects. Biomedicines 2023; 11:biomedicines11020426. [PMID: 36830964 PMCID: PMC9953237 DOI: 10.3390/biomedicines11020426] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Clostridioides difficile infection (CDI) is an urgent threat and unmet medical need. The current treatments for CDI are not enough to fight the burden of CDI and recurrent CDI (r-CDI). This review aims to highlight the future drugs for CDI and their related patented applications. The non-patent literature was collected from PubMed and various authentic websites of pharmaceutical industries. The patent literature was collected from free patent databases. Many possible drugs of the future for CDI, with diverse mechanisms of action, are in development in the form of microbiota-modulating agents (e.g., ADS024, CP101, RBX2660, RBX7455, SYN-004, SER-109, VE303, DAV132, MET-2, and BB128), small molecules (e.g., ridinilazole, ibezapolstat, CRS3123, DNV3837, MGB-BP-3, alanyl-L-glutamine, and TNP-2198), antibodies (e.g., IM-01 and LMN-201), and non-toxic strains of CD (e.g., NTCD-M3). The development of some therapeutic agents (e.g., DS-2969b, OPS-2071, cadazolid, misoprostol, ramoplanin, KB109, LFF571, and Ramizol) stopped due to failed clinical trials or unknown reasons. The patent literature reveals some important inventions for the existing treatments of CDI and supports the possibility of developing more and better CDI-treatment-based inventions, including patient-compliant dosage forms, targeted drug delivery, drug combinations of anti-CDI drugs possessing diverse mechanisms of action, probiotic and enzymatic supplements, and vaccines. The current pipeline of anti-CDI medications appears promising. However, it will be fascinating to see how many of the cited are successful in gaining approval from drug regulators such as the US FDA and becoming medicines for CDI and r-CDI.
Collapse
Affiliation(s)
- Ahmed S. Alshrari
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia
| | - Shuaibu Abdullahi Hudu
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
- Correspondence: (S.A.H.); (M.I.)
| | - Fayig Elmigdadi
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Mohd. Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
- Correspondence: (S.A.H.); (M.I.)
| |
Collapse
|
5
|
Bassotti G, Fruganti A, Stracci F, Marconi P, Fettucciari K. Cytotoxic synergism of Clostridioides difficile toxin B with proinflammatory cytokines in subjects with inflammatory bowel diseases. World J Gastroenterol 2023; 29:582-596. [PMID: 36742168 PMCID: PMC9896618 DOI: 10.3748/wjg.v29.i4.582] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/03/2022] [Accepted: 12/27/2022] [Indexed: 01/20/2023] Open
Abstract
Clostridioides difficile (C. difficile) is progressively colonizing humans and animals living with humans. During this process, hypervirulent strains and mutated toxin A and B of C. difficile (TcdA and TcdB) are originating and developing. While in healthy subjects colonization by C. difficile becomes a risk after the use of antibiotics that alter the microbiome, other categories of people are more susceptible to infection and at risk of relapse, such as those with inflammatory bowel disease (IBD). Recent in vitro studies suggest that this increased susceptibility could be due to the strong cytotoxic synergism between TcdB and proinflammatory cytokines the tumor necrosis factor-alpha and interferon-gamma (CKs). Therefore, in subjects with IBD the presence of an inflammatory state in the colon could be the driver that increases the susceptibility to C. difficile infection and its progression and relapses. TcdB is internalized in the cell via three receptors: chondroitin sulphate proteoglycan 4; poliovirus receptor-like 3; and Wnt receptor frizzled family. Chondroitin sulphate proteoglycan 4 and Wnt receptor frizzled family are involved in cell death by apoptosis or necrosis depending on the concentration of TcdB and cell types, while poliovirus receptor-like 3 induces only necrosis. It is possible that cytokines could also induce a greater expression of receptors for TcdB that are more involved in necrosis than in apoptosis. Therefore, in subjects with IBD there are the conditions: (1) For greater susceptibility to C. difficile infection, such as the inflammatory state, and abnormalities of the microbiome and of the immune system; (2) for the enhancement of the cytotoxic activity of TcdB +Cks; and (3) for a greater expression of TcdB receptors stimulated by cytokines that induce cell death by necrosis rather than apoptosis. The only therapeutic approach currently possible in IBD patients is monitoring of C. difficile colonization for interventions aimed at reducing tumor necrosis factor-alpha and interferon-gamma levels when the infection begins. The future perspective is to generate bacteriophages against C. difficile for targeted therapy.
Collapse
Affiliation(s)
- Gabrio Bassotti
- Department of Medicine and Surgery, Gastroenterology, Hepatology & Digestive Endoscopy Section University of Perugia Medical School, Piazza Lucio Severi, Perugia 06132, Italy, and Santa Maria della Misericordia Hospital, Gastroenterology & Hepatology Unit Perugia 06156, Italy
| | - Alessandro Fruganti
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica 62024, Italy
| | - Fabrizio Stracci
- Medicine and Surgery, Hygiene and Public Health Section, University of Perugia, Perugia 06123, Italy
| | - Pierfrancesco Marconi
- Medicine and Surgery, Biosciences & Medical Embryology Section, University of Perugia, Perugia 06132, Italy
| | - Katia Fettucciari
- Medicine and Surgery, Biosciences & Medical Embryology Section, University of Perugia, Perugia 06132, Italy
| |
Collapse
|
6
|
Influence of Binary Toxin Gene Detection and Decreased Susceptibility to Antibiotics among Clostridioides difficile Strains on Disease Severity: a Single-Center Study. Antimicrob Agents Chemother 2022; 66:e0048922. [PMID: 35861541 PMCID: PMC9380565 DOI: 10.1128/aac.00489-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Clostridioides difficile infection (CDI) is the fifth leading cause of death from nonmalignant gastrointestinal disease in the United States. The contribution of resistance to C. difficile-active antibiotics to the outcomes of CDI is unclear. We evaluated the antimicrobial susceptibility of C. difficile isolates in a U.S. hospital and determined associations of clinical variables and binary toxin positivity with antibiotic resistance. C. difficile spores were cultured from fecal specimens of adult patients with CDI for genotyping and antimicrobial susceptibility assay (for clindamycin [CLI], fidaxomicin [FDX], metronidazole [MTZ], moxifloxacin [MXF], tigecycline [TGC], and vancomycin [VAN]). Electronic medical records were reviewed for clinical data extraction. Ninety-seven of 130 (75%) fecal samples grew toxigenic C. difficile in culture. Most of the isolates were tcdA+ tcdB+ cdtB- (80.4%), and 18.6% and 1% were tcdA+ tcdB+ cdtB+ and tcdA-tcdB+ cdtB+, respectively. Susceptibility to VAN, MTZ, FDX, TGC, MXF, and CLI was 96%, 94%, 100%, 100%, 8%, and 79%, respectively. Six isolates, all cdtB positive and belonging to the 027 ribotype, were resistant to VAN and/or MTZ. Higher MICs were found in isolates with a mutation in the VAN-related resistance gene vanR, but not vanS. In addition, cdtB+ isolates exhibited higher MICs of VAN, MTZ, TGC, CLI, and MXF compared to cdtB- strains. Patients with greater intestinal inflammation or severe disease were more likely to be infected with cdtB+ strains. Decreased susceptibility to antibiotics is not directly associated with either severe or recurrent CDI. However, antimicrobial susceptibility of C. difficile is decreased in strains positive for the binary toxin gene.
Collapse
|
7
|
Wuethrich I, W. Pelzer B, Khodamoradi Y, Vehreschild MJGT. The role of the human gut microbiota in colonization and infection with multidrug-resistant bacteria. Gut Microbes 2022; 13:1-13. [PMID: 33870869 PMCID: PMC8078746 DOI: 10.1080/19490976.2021.1911279] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
About 100 years ago, the first antibiotic drug was introduced into health care. Since then, antibiotics have made an outstanding impact on human medicine. However, our society increasingly suffers from collateral damage exerted by these highly effective drugs. The rise of resistant pathogen strains, combined with a reduction of microbiota diversity upon antibiotic treatment, has become a significant obstacle in the fight against invasive infections worldwide.Alternative and complementary strategies to classical "Fleming antibiotics" comprise microbiota-based treatments such as fecal microbiota transfer and administration of probiotics, live-biotherapeutics, prebiotics, and postbiotics. Other promising interventions, whose efficacy may also be influenced by the human microbiota, are phages and vaccines. They will facilitate antimicrobial stewardship, to date the only globally applied antibiotic resistance mitigation strategy.In this review, we present the available evidence on these nontraditional interventions, highlight their interaction with the human microbiota, and discuss their clinical applicability.
Collapse
Affiliation(s)
- Irene Wuethrich
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Benedikt W. Pelzer
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Department I of Internal Medicine, University of Cologne, Cologne, Germany
| | - Yascha Khodamoradi
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt Am Main, Germany
| | - Maria J. G. T. Vehreschild
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt Am Main, Germany,CONTACT Maria J. G. T. Vehreschild Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt Am Main, Germany
| |
Collapse
|
8
|
Fettucciari K, Marconi P, Marchegiani A, Fruganti A, Spaterna A, Bassotti G. Invisible steps for a global endemy: molecular strategies adopted by Clostridioides difficile. Therap Adv Gastroenterol 2021; 14:17562848211032797. [PMID: 34413901 PMCID: PMC8369858 DOI: 10.1177/17562848211032797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 06/26/2021] [Indexed: 02/06/2023] Open
Abstract
Clostridioides difficile infection (CDI) is on the rise worldwide and is associated with an increase in deaths and socio-health burden. C. difficile has become ubiquitous in anthropized environments because of the extreme resistance of its spores. Based on the epidemiological data and knowledge of molecular pathogenesis of C. difficile, it is possible to predict its progressive colonization of the human population for the following reasons: first, its global spread is unstoppable; second, the toxins (Tcds) produced by C. difficile, TcdA and TcdB, mainly cause cell death by apoptosis, but the surviving cells acquire a senescence state that favours persistence of C. difficile in the intestine; third, proinflammatory cytokines, tumour necrosis factor-α and interferon-γ, induced during CDI, enhance the cytotoxicity of Tcds and can increase the survival of senescent cells; fourth, Tcds block mobility and induce apoptosis in immune cells recruited at the infection site; and finally, after remission from primary infection or relapse, C. difficile causes functional abnormalities in the enteric glial cell (EGC) network that can result in irritable bowel syndrome, characterized by a latent inflammatory response that contributes to C. difficile survival and enhances the cytotoxic activity of low doses of TcdB, thus favouring further relapses. Since a 'global endemy' of C. difficile seems inevitable, it is necessary to develop an effective vaccine against Tcds for at-risk individuals, and to perform a prophylaxis/selective therapy with bacteriophages highly specific for C. difficile. We must be aware that CDI will become a global health problem in the forthcoming years, and we must be prepared to face this menace.
Collapse
Affiliation(s)
- Katia Fettucciari
- Biosciences & Medical Embryology Section, Department of Medicine and Surgery, University of Perugia, Medical School -Piazza Lucio Severi 1, Edificio B - IV piano; Sant’Andrea delle Fratte, Perugia, 06132, Italy
| | - Pierfrancesco Marconi
- Biosciences & Medical Embryology Section, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Andrea Marchegiani
- School of Biosciences and Veterinary Medicine, University of Camerino, Macerata, Italy
| | - Alessandro Fruganti
- School of Biosciences and Veterinary Medicine, University of Camerino, Macerata, Italy
| | - Andrea Spaterna
- School of Biosciences and Veterinary Medicine, University of Camerino, Macerata, Italy
| | - Gabrio Bassotti
- Gastroenterology, Hepatology & Digestive Endoscopy Section, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Gastroenterology & Hepatology Unit, Santa Maria della Misericordia Hospital, Perugia, Italy
| |
Collapse
|
9
|
Henson MA. Computational modeling of the gut microbiota reveals putative metabolic mechanisms of recurrent Clostridioides difficile infection. PLoS Comput Biol 2021; 17:e1008782. [PMID: 33617526 PMCID: PMC7932513 DOI: 10.1371/journal.pcbi.1008782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 03/04/2021] [Accepted: 02/05/2021] [Indexed: 12/16/2022] Open
Abstract
Approximately 30% of patients who have Clostridioides difficile infection (CDI) will suffer at least one incident of reinfection. While the underlying causes of CDI recurrence are poorly understood, interactions between C. difficile and commensal gut bacteria are thought to play an important role. In this study, an in silico pipeline was used to process 16S rRNA gene amplicon sequence data of 225 stool samples from 93 CDI patients into sample-specific models of bacterial community metabolism. Clustered metabolite production rates generated from post-diagnosis samples generated a high Enterobacteriaceae abundance cluster containing disproportionately large numbers of recurrent samples and patients. This cluster was predicted to have significantly reduced capabilities for secondary bile acid synthesis but elevated capabilities for aromatic amino acid catabolism. When applied to 16S sequence data of 40 samples from fecal microbiota transplantation (FMT) patients suffering from recurrent CDI and their stool donors, the community modeling method generated a high Enterobacteriaceae abundance cluster with a disproportionate large number of pre-FMT samples. This cluster also was predicted to exhibit reduced secondary bile acid synthesis and elevated aromatic amino acid catabolism. Collectively, these in silico predictions suggest that Enterobacteriaceae may create a gut environment favorable for C. difficile spore germination and/or toxin synthesis.
Collapse
Affiliation(s)
- Michael A. Henson
- Department of Chemical Engineering and Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts, United States of America
| |
Collapse
|
10
|
Shin JH, Pawlowski SW, Warren CA. Teaching old mice new tricks: the utility of aged mouse models of C. difficile infection to study pathogenesis and rejuvenate immune response. Gut Microbes 2021; 13:1966255. [PMID: 34432545 PMCID: PMC8405153 DOI: 10.1080/19490976.2021.1966255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Clostridioides difficile is a serious problem for the aging population. Aged mouse model of C. difficile infection (CDI) has emerged as a valuable tool to evaluate the mechanism of aging in CDI. METHODS We reviewed five published studies utilizing aged mice (7-28 months) for CDI model for findings that may advance our understanding of how aging influences outcome from CDI. RESULTS Aged mouse models of CDI uniformly demonstrated more severe disease in the old compared to young mice. Diminished neutrophil recruitment to intestinal tissue in aged mice is the most consistent finding. Differences in innate and humoral immune responses were also observed. The effects of aging on the outcome of infection were reversed by pharmacologic or microbiota-targeted interventions. CONCLUSION The aged mouse presents an important in vivo model to study CDI and elucidate the mechanisms underlying advanced age as an important risk factor for severe disease.
Collapse
Affiliation(s)
- Jae Hyun Shin
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | | | - Cirle A. Warren
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|