1
|
Zhang Y, Duan J, Lin S, Wen J, Liao J. Single cell analysis of diverse immune cell in pneumococcal meningitis. Sci Rep 2025; 15:17795. [PMID: 40404806 DOI: 10.1038/s41598-025-02258-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 05/12/2025] [Indexed: 05/24/2025] Open
Abstract
Streptococcus pneumoniae, a Gram-positive, human-specific commensal infectious pathogen, poses a significant global health threat, especially in children under five, often resulting in fatalities. The intricacies of the immune response in pneumococcal meningitis (PM) remain elusive, necessitating a meticulous examination of immune cell subsets at the single-cell resolution. In this study, we performed single-cell RNA sequencing of peripheral blood mononuclear cells from PM patients and healthy individuals. We found significant relative changes in the compositions of immune cell subset, with significant relative increases in platelets, neutrophils, and their precursors, alongside relative decreases in natural killer (NK) cells, T cell subtypes, and plasmacytoid dendritic cells in PM patients. Functional enrichment analyses revealed an up-regulation of neutrophils-related immune genes across multiple immune cell types, including platelets, myeloid cells and B cells, suggesting excessive neutrophil activation. However, a down-regulation of genes involved in antigen processing and presentation in myeloid cells and B cells in the PM group indicated a relative dampening of the adaptive immune response in the PM patients. This was further corroborated by the reduced proportions of plasmacytoid dendritic cells and T cells. Furthermore, genes involved in cytotoxity were down-regulated in both NK cells and T cells, alongside impaired T cell activation. Notably, distinct B cell subtypes, including unique naïve B cell clusters, demonstrated differentially expressed genes associated with both innate and adaptive immune responses. In conclusion, our study provides a comprehensive single-cell transcriptomic landscape of immune responses in PM. The identified cellular and molecular signatures offer potential targets for therapeutic intervention and provide a foundation for further investigation into the immunopathogenesis of pneumococcal meningitis.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Neurology, Shenzhen Children's Hospital, No. 7019 Yitian Road, Futian District, Shenzhen, China
| | - Jing Duan
- Department of Neurology, Shenzhen Children's Hospital, No. 7019 Yitian Road, Futian District, Shenzhen, China
| | - Sufang Lin
- Department of Neurology, Shenzhen Children's Hospital, No. 7019 Yitian Road, Futian District, Shenzhen, China
| | - Jialun Wen
- Department of Neurology, Shenzhen Children's Hospital, No. 7019 Yitian Road, Futian District, Shenzhen, China
| | - Jianxiang Liao
- Department of Neurology, Shenzhen Children's Hospital, No. 7019 Yitian Road, Futian District, Shenzhen, China.
| |
Collapse
|
2
|
Koning R, van Roon MA, Brouwer MC, van de Beek D. Adjunctive treatments for pneumococcal meningitis: a systematic review of experimental animal models. Brain Commun 2024; 6:fcae131. [PMID: 38707710 PMCID: PMC11069119 DOI: 10.1093/braincomms/fcae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/22/2023] [Accepted: 04/10/2024] [Indexed: 05/07/2024] Open
Abstract
New treatments are needed to improve the prognosis of pneumococcal meningitis. We performed a systematic review on adjunctive treatments in animal models of pneumococcal meningitis in order to identify treatments with the most potential to progress to clinical trials. Studies testing therapy adjunctive to antibiotics in animal models of pneumococcal meningitis were included. A literature search was performed using Medline, Embase and Scopus for studies published from 1990 up to 17 February 2023. Two investigators screened studies for inclusion and independently extracted data. Treatment effect was assessed on the clinical parameters disease severity, hearing loss and cognitive impairment and the biological parameters inflammation, brain injury and bacterial load. Adjunctive treatments were evaluated by their effect on these outcomes and the quality, number and size of studies that investigated the treatments. Risk of bias was assessed with the SYRCLE risk of bias tool. A total of 58 of 2462 identified studies were included, which used 2703 experimental animals. Disease modelling was performed in rats (29 studies), rabbits (13 studies), mice (12 studies), gerbils (3 studies) or both rats and mice (1 study). Meningitis was induced by injection of Streptococcus pneumoniae into the subarachnoid space. Randomization of experimental groups was performed in 37 of 58 studies (64%) and 12 studies (12%) were investigator-blinded. Overall, 54 treatment regimens using 46 adjunctive drugs were evaluated: most commonly dexamethasone (16 studies), daptomycin (5 studies), complement component 5 (C5; 3 studies) antibody and Mn(III)tetrakis(4-benzoicacid)porphyrin chloride (MnTBAP; 3 studies). The most frequently evaluated outcome parameters were inflammation [32 studies (55%)] and brain injury [32 studies (55%)], followed by disease severity [30 studies (52%)], hearing loss [24 studies (41%)], bacterial load [18 studies (31%)] and cognitive impairment [9 studies (16%)]. Adjunctive therapy that improved clinical outcomes in multiple studies was dexamethasone (6 studies), C5 antibodies (3 studies) and daptomycin (3 studies). HMGB1 inhibitors, matrix metalloproteinase inhibitors, neurotrophins, antioxidants and paquinimod also improved clinical parameters but only in single or small studies. Evaluating the treatment effect of adjunctive therapy was complicated by study heterogeneity regarding the animal models used and outcomes reported. In conclusion, 24 of 54 treatment regimens (44%) tested improved clinically relevant outcomes in experimental pneumococcal meningitis but few were tested in multiple well-designed studies. The most promising new adjunctive treatments are with C5 antibodies or daptomycin, suggesting that these drugs could be tested in clinical trials.
Collapse
Affiliation(s)
- Rutger Koning
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, 1100DD Amsterdam, The Netherlands
| | - Marian A van Roon
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, 1100DD Amsterdam, The Netherlands
| | - Matthijs C Brouwer
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, 1100DD Amsterdam, The Netherlands
| | - Diederik van de Beek
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, 1100DD Amsterdam, The Netherlands
| |
Collapse
|
3
|
Zhao W, Guo S, Xu Z, Wang Y, Kou Y, Tian S, Qi Y, Pang J, Zhou W, Wang N, Liu J, Zhai Y, Ji P, Jiao Y, Fan C, Chao M, Fan Z, Qu Y, Wang L. Nomogram for Predicting Central Nervous System Infection Following Traumatic Brain Injury in the Elderly. World Neurosurg 2024; 183:e28-e43. [PMID: 37879436 DOI: 10.1016/j.wneu.2023.10.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 10/18/2023] [Indexed: 10/27/2023]
Abstract
OBJECTIVE This study aims to identify risk factors for central nervous system (CNS) infection in elderly patients hospitalized with traumatic brain injury (TBI) and to develop a reliable predictive tool for assessing the likelihood of CNS infection in this population. METHOD We conducted a retrospective study on 742 elderly TBI patients treated at Tangdu Hospital, China. Clinical data was randomly split into training and validation sets (7:3 ratio). By conducting univariate and multivariate logistic regression analysis in the training set, we identified a list of variables to develop a nomogram for predicting the risk of CNS infection. We evaluated the performance of the predictive model in both cohorts respectively, using receiver operating characteristics curves, calibration curves, and decision curve analysis. RESULTS Results of the logistic analysis in the training set indicated that surgical intervention (P = 0.007), red blood cell count (P = 0.019), C-reactive protein concentration (P < 0.001), and cerebrospinal fluid leakage (P < 0.001) significantly predicted the occurrence of CNS infection in elderly TBI patients. The model constructed based on these variables had high predictive capability (area under the curve-training = 0.832; area under the curve-validation = 0.824) as well as clinical utility. CONCLUSIONS A nomogram constructed based on several key predictors reasonably predicts the risk of CNS infection in elderly TBI patients upon hospital admission. The model of the nanogram may contribute to timely interventions and improve health outcomes among affected individuals.
Collapse
Affiliation(s)
- Wenjian Zhao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Shaochun Guo
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China; Department of Neurosurgery, Shannxi University of Chinese Medine, Xianyang, China
| | - Zhen Xu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yuan Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yunpeng Kou
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China; Department of Neurosurgery, Shannxi University of Chinese Medine, Xianyang, China
| | - Shuai Tian
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yifan Qi
- The Third Student Brigade of Basic Medical College, Air Force Medical University, Xi'an, China
| | - Jinghui Pang
- The Third Student Brigade of Basic Medical College, Air Force Medical University, Xi'an, China
| | - Wenqian Zhou
- The Fourth Student Brigade of Basic Medical College, Air Force Medical University, Xi'an, China
| | - Na Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jinghui Liu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yulong Zhai
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Peigang Ji
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yang Jiao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Chao Fan
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Min Chao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhicheng Fan
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Liang Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
4
|
Li S, Wang P, Tian S, Zhang J. Risk factors and cerebrospinal fluid indexes analysis of intracranial infection by Acinetobacter baumannii after neurosurgery. Heliyon 2023; 9:e18525. [PMID: 37576262 PMCID: PMC10412996 DOI: 10.1016/j.heliyon.2023.e18525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 08/15/2023] Open
Abstract
Background Intracranial infection by Acinetobacter baumannii (A. baumannii) after neurosurgery has always been a difficult problem for neurosurgeons. This study analyzed risk factors that discriminated A. baumannii from other bacteria causing intracranial infection after neurosurgery. It also examined the differences in the cerebrospinal fluid (CSF) indexes to explore their value in the early diagnosis of intracranial infection by A. baumannii. Methods We retrospectively reviewed ten years (January 2011 to May 2021) of postoperative central nervous system (CNS) infections in the First Hospital of China Medical University. According to the pathogen, CNS infections were divided into A. baumannii group and other species of bacteria group. We collected clinical and laboratory information of patients, and statistical analysis was performed with SPSS 26.0. Risk factors were screened by univariate analysis, and independent risk factors were screened by multiple logistic regression analysis. Finally, CSF-Pro, CSF-Glu, CSF-Cl, CSF-monocytes (%), CSF-multinucleated cells (%) levels, and CSF multinucleated cells%/monocytes% in the different groups were analyzed. Results A total of 155 patients were included, 62 cases (40%) of intracranial infection by A. baumannii and 93 cases (60%) by other species of bacteria. The analysis showed that indwelling nasogastric tubes (P<0.001, OR = 4.231), indwelling peripherally inserted central catheters (PICCs) (P = 0.041, OR = 2.765), and CSF drainage obstruction (P = 0.003, OR = 3.765) were independent risk factors for intracranial infection by A. baumannii after neurosurgery. Indwelling ventriculoperitoneal shunt (VPS) was a protective factor (P = 0.033, OR = 0.22). In addition, compared with other bacterial groups, the A. baumannii group had higher CSF-pro and CSF- multinucleated cells (%) levels and lower CSF-Glu and CSF- monocytes (%) levels, and the difference was statistically significant (P < 0.01). Conclusions Our results elucidate risk factors and differences in CSF indexes for intracranial infection by A. baumannii after neurosurgery that could be detected and prevented early to reduce mortality.
Collapse
Affiliation(s)
- Shige Li
- Department of Infectious Diseases, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Pan Wang
- Department of Infectious Diseases, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Sufei Tian
- Laboratory Department, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jingping Zhang
- Department of Infectious Diseases, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
5
|
Lu G, Liu Y, Huang Y, Ding J, Zeng Q, Zhao L, Li M, Yu H, Li Y. Prediction model of central nervous system infections in patients with severe traumatic brain injury after craniotomy. J Hosp Infect 2023; 136:90-99. [PMID: 37075818 DOI: 10.1016/j.jhin.2023.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/20/2023] [Accepted: 04/09/2023] [Indexed: 04/21/2023]
Abstract
OBJECTIVE The aim of this study was to develop and evaluate a nomogram to predict CNS infections in patients with severe traumatic brain injury (sTBI) after craniotomy. METHODS This retrospective study was conducted in consecutive adult patients with sTBI who were admitted to the neurointensive care unit (NCU) between January 2014 and September 2020. We applied the least absolute shrinkage and selection operator (LASSO) and multivariate logistic regression analysis to construct the nomogram, and k-fold cross-validation (k=10) to validate it. The receiver operator characteristic area under the curve (AUC) and calibration curve were applied to evaluate the predictive effect of the nomogram. The clinical usefulness was investigated by decision curve analysis (DCA). RESULTS A total of 471 patients with sTBI who underwent surgical treatment were included, of whom 75 patients (15.7%) were diagnosed with CNS infections. The serum level of albumin, cerebrospinal fluid (CSF) otorrhoea at admission, CSF leakage, CSF sampling, and postoperative re-bleeding were associated with CNS infections and incorporated into the nomogram. The results showed that our model yielded satisfactory prediction performance with an AUC value of 0.962 in the training set and 0.942 in the internal validation. The calibration curve exhibited satisfactory concordance between the predicted and actual outcomes. The model had good clinical use since the DCA covered a large threshold probability. CONCLUSION We established a straightforward individualized nomogram for CNS infections in sTBI patients in the NCU, which could help physicians screen high-risk patients to perform early interventions to reduce the incidence of CNS infections in sTBI patients.
Collapse
Affiliation(s)
- Guangyu Lu
- School of Public Health, Yangzhou University, Yangzhou, 225009, China
| | - Yuting Liu
- School of Nursing, Yangzhou University, Yangzhou, 225009, China
| | - Yujia Huang
- Neurosurgical Critical Care Unit, Clinical Medical College of Yangzhou University, Yangzhou, 225001, China; Department of Neurosurgery, Clinical Medical College of Yangzhou University, Yangzhou, 225009, China
| | - Jiali Ding
- School of Nursing, Yangzhou University, Yangzhou, 225009, China
| | - Qingping Zeng
- School of Nursing, Yangzhou University, Yangzhou, 225009, China
| | - Li Zhao
- School of Public Health, Yangzhou University, Yangzhou, 225009, China
| | - Mengyue Li
- School of Nursing, Yangzhou University, Yangzhou, 225009, China
| | - Hailong Yu
- Neurosurgical Critical Care Unit, Clinical Medical College of Yangzhou University, Yangzhou, 225001, China
| | - Yuping Li
- Neurosurgical Critical Care Unit, Clinical Medical College of Yangzhou University, Yangzhou, 225001, China; Department of Neurosurgery, Clinical Medical College of Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
6
|
High Concentration of Protein Oxidation Biomarker O-Tyr/Phe Predicts Better Outcome in Childhood Bacterial Meningitis. Antioxidants (Basel) 2023; 12:antiox12030621. [PMID: 36978869 PMCID: PMC10045379 DOI: 10.3390/antiox12030621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Neuronal damage in bacterial meningitis (BM) partly stems from the host´s inflammatory response and induced oxidative stress (OS). We studied the association of cerebrospinal fluid (CSF) biomarkers indicating oxidative damage to proteins with course of illness and outcome in childhood BM in Angola. Ortho-tyrosine/phenylalanine (o-Tyr/Phe), 3-chlorotyrosine/para-tyrosine (3Cl-Tyr/p-Tyr), and 3-nitrotyrosine/para-tyrosine (3NO2-Tyr/p-Tyr) concentration ratios were measured in 79 BM admission CSF samples, employing liquid chromatography coupled to tandem mass spectrometry. Besides death, disease outcomes were registered on Day 7 of treatment and one month after discharge (control visit). The outcome was graded according to the modified Glasgow Outcome Scale (GOS), which considers neurological and audiological sequelae. Children with a o-Tyr/Phe ratio below the median were more likely to present focal convulsions and secondary fever during recovery and suboptimal outcome (GOS < 5) on Day 7 and at control visit (odds ratio (OR) 2.85; 95% CI 1.14–7.14 and OR 5.23; 95% CI 1.66–16.52, respectively). Their most common sequela was ataxia on Day 7 and at control visit (OR 8.55; 95% CI 2.27–32.22 and OR 5.83; 95% CI 1.12–30.4, respectively). The association of a higher admission CSF o-Tyr/Phe ratio with a better course and outcome for pediatric BM points to a beneficial effect of OS.
Collapse
|
7
|
Bagatella S, Haghayegh Jahromi N, Monney C, Polidori M, Gall FM, Marchionatti E, Serra F, Riedl R, Engelhardt B, Oevermann A. Bovine neutrophil chemotaxis to Listeria monocytogenes in neurolisteriosis depends on microglia-released rather than bacterial factors. J Neuroinflammation 2022; 19:304. [PMID: 36527076 PMCID: PMC9758797 DOI: 10.1186/s12974-022-02653-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Listeria monocytogenes (Lm) is a bacterial pathogen of major concern for humans and ruminants due to its neuroinvasive potential and its ability to cause deadly encephalitis (neurolisteriosis). On one hand, polymorphonuclear neutrophils (PMN) are key players in the defense against Lm, but on the other hand intracerebral infiltration with PMN is associated with significant neural tissue damage. Lm-PMN interactions in neurolisteriosis are poorly investigated, and factors inducing PMN chemotaxis to infectious foci containing Lm in the central nervous system (CNS) remain unidentified. METHODS In this study, we assessed bovine PMN chemotaxis towards Lm and supernatants of infected endogenous brain cell populations in ex vivo chemotaxis assays, to identify chemotactic stimuli for PMN chemotaxis towards Lm in the brain. In addition, microglial secretion of IL-8 was assessed both ex vivo and in situ. RESULTS Our data show that neither Lm cell wall components nor intact bacteria elicit chemotaxis of bovine PMN ex vivo. Moreover, astrocytes and neural cells fail to induce bovine PMN chemotaxis upon infection. In contrast, supernatant from Lm infected microglia readily induced chemotaxis of bovine PMN. Microglial expression and secretion of IL-8 was identified during early Lm infection in vitro and in situ, although IL-8 blocking with a specific antibody could not abrogate PMN chemotaxis towards Lm infected microglial supernatant. CONCLUSIONS These data provide evidence that host-derived rather than bacterial factors trigger PMN chemotaxis to bacterial foci in the CNS, that microglia have a primary role as initiators of bovine PMN chemotaxis into the brain during neurolisteriosis and that blockade of these factors could be a therapeutic target to limit intrathecal PMN chemotaxis and PMN associated damage in neurolisteriosis.
Collapse
Affiliation(s)
- Stefano Bagatella
- grid.5734.50000 0001 0726 5157Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, CH-3012 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Neda Haghayegh Jahromi
- grid.5734.50000 0001 0726 5157Theodor Kocher Institute (TKI), University of Bern, Bern, Switzerland
| | - Camille Monney
- grid.5734.50000 0001 0726 5157Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, CH-3012 Bern, Switzerland
| | - Margherita Polidori
- grid.5734.50000 0001 0726 5157Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, CH-3012 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Flavio Max Gall
- grid.19739.350000000122291644Institute of Chemistry and Biotechnology, Competence Center for Drug Discovery, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Emma Marchionatti
- grid.5734.50000 0001 0726 5157Clinic for Ruminants, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Rainer Riedl
- grid.19739.350000000122291644Institute of Chemistry and Biotechnology, Competence Center for Drug Discovery, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Britta Engelhardt
- grid.5734.50000 0001 0726 5157Theodor Kocher Institute (TKI), University of Bern, Bern, Switzerland
| | - Anna Oevermann
- grid.5734.50000 0001 0726 5157Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, CH-3012 Bern, Switzerland
| |
Collapse
|
8
|
Cassidy BR, Sonntag WE, Leenen PJM, Drevets DA. Systemic Listeria monocytogenes infection in aged mice induces long-term neuroinflammation: the role of miR-155. Immun Ageing 2022; 19:25. [PMID: 35614490 PMCID: PMC9130456 DOI: 10.1186/s12979-022-00281-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/12/2022] [Indexed: 01/23/2023]
Abstract
BACKGROUND Understanding mechanisms of pathologic neuroinflammation is essential for improving outcomes after central nervous system infections. Brain tissue-resident memory T cells (bTRM) are recruited during central nervous system infection and promote pathogen control as well as noxious inflammation. Our prior studies in young mice showed optimal recruitment of CD8+ bTRM during neuroinvasive Listeria monocytogenes (Lm) infection required miR-155, and was significantly inhibited by anti-miR-155 oligonucleotides. Since Lm is an important pathogen in the elderly, we hypothesized anti-miR-155 would also inhibit accumulation of CD8+ bTRM in aged mice infected with Lm. METHODS Young (2 mo) and aged (> 18 mo) male C57BL/6 mice were infected intra-peritoneally with wild-type Lm, or avirulent Lm mutants lacking the genes required for intracellular motility (ΔactA) or phagosomal escape (Δhly), then were given antibiotics. Brain leukocytes and their intracellular cytokine production were quantified by flow cytometry >28d post-infection (p.i.). The role of miR-155 was tested by injecting mice with anti-miR-155 or control oligonucleotides along with antibiotics. RESULTS Aged mice had significantly more homeostatic CD8+ bTRM than did young mice, which did not increase after infection with wild-type Lm despite 50% mortality, whereas young mice suffered no mortality after a larger inoculum. For direct comparison of post-infectious neuroinflammation after the same inoculum, young and aged mice were infected with 107 CFU ΔactA Lm. This mutant caused no mortality and significantly increased CD8+ bTRM 28d p.i. in both groups, whereas bone marrow-derived myeloid cells, particularly neutrophils, increased only in aged mice. Notably, anti-miR-155 reduced accumulation of brain myeloid cells in aged mice after infection, whereas CD8+ bTRM were unaffected. CONCLUSIONS Systemic infection with Lm ΔactA is a novel model for studying infection-induced brain inflammation in aged mice without excessive mortality. CD8+ bTRM increase in both young and aged mice after infection, whereas only in aged mice bone marrow-derived myeloid cells increase long-term. In aged mice, anti-miR-155 inhibits brain accumulation of myeloid cells, but not CD8+ bTRM. These results suggest young and aged mice differ in manifestations and mechanisms of infection-induced neuroinflammation and give insight for developing therapies to ameliorate brain inflammation following severe infection in the elderly.
Collapse
Affiliation(s)
- Benjamin R. Cassidy
- Infectious Diseases, Department of Internal Medicine, 800 Stanton L. Young, Suite 7300, Oklahoma City, OK 73104 USA
| | - William E. Sonntag
- grid.266902.90000 0001 2179 3618Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Pieter J. M. Leenen
- grid.5645.2000000040459992XDepartment of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Douglas A. Drevets
- Infectious Diseases, Department of Internal Medicine, 800 Stanton L. Young, Suite 7300, Oklahoma City, OK 73104 USA
| |
Collapse
|
9
|
Joseph SK, M A A, Thomas S, Nair SC. Nanomedicine as a future therapeutic approach for treating meningitis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Jiménez-Munguía I, Tomečková Z, Mochnáčová E, Bhide K, Majerová P, Bhide M. Transcriptomic analysis of human brain microvascular endothelial cells exposed to laminin binding protein (adhesion lipoprotein) and Streptococcus pneumoniae. Sci Rep 2021; 11:7970. [PMID: 33846455 PMCID: PMC8041795 DOI: 10.1038/s41598-021-87021-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/23/2021] [Indexed: 01/28/2023] Open
Abstract
Streptococcus pneumoniae invades the CNS and triggers a strong cellular response. To date, signaling events that occur in the human brain microvascular endothelial cells (hBMECs), in response to pneumococci or its surface adhesins are not mapped comprehensively. We evaluated the response of hBMECs to the adhesion lipoprotein (a laminin binding protein—Lbp) or live pneumococci. Lbp is a surface adhesin recently identified as a potential ligand, which binds to the hBMECs. Transcriptomic analysis was performed by RNA-seq of three independent biological replicates and validated with qRT-PCR using 11 genes. In total 350 differentially expressed genes (DEGs) were identified after infection with S. pneumoniae, whereas 443 DEGs when challenged with Lbp. Total 231 DEGs were common in both treatments. Integrative functional analysis revealed participation of DEGs in cytokine, chemokine, TNF signaling pathways and phagosome formation. Moreover, Lbp induced cell senescence and breakdown, and remodeling of ECM. This is the first report which maps complete picture of cell signaling events in the hBMECs triggered against S. pneumoniae and Lbp. The data obtained here could contribute in a better understanding of the invasion of pneumococci across BBB and underscores role of Lbp adhesin in evoking the gene expression in neurovascular unit.
Collapse
Affiliation(s)
- Irene Jiménez-Munguía
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, Kosice, 04181, Slovak Republic
| | - Zuzana Tomečková
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, Kosice, 04181, Slovak Republic
| | - Evelína Mochnáčová
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, Kosice, 04181, Slovak Republic
| | - Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, Kosice, 04181, Slovak Republic
| | - Petra Majerová
- Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, Kosice, 04181, Slovak Republic. .,Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovak Republic.
| |
Collapse
|
11
|
Agarkova A, Pokrovskii M, Kolesnichenko P, Gureev V, Gudyrev O, Peresypkina A, Soldatov V, Nesterov A, Denisyuk T, Korokin M. Cerebroprotective Effects of 2-Ethyl-6-methyl-3-hydroxypyridine-2,6-dichlorophenyl(amino)phenylethanoic Acid in the Treatment of Purulent Meningitis. Biomedicines 2021; 9:biomedicines9030285. [PMID: 33799578 PMCID: PMC7998598 DOI: 10.3390/biomedicines9030285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 11/20/2022] Open
Abstract
Purulent meningitis (PM) is a severe disease, characterized by high mortality and a formation of a residual neurological deficit. Loss of treatment of PM leads to the lethal outcome in 100% of cases. In addition, death and the development of residual neurological complications are possible despite adequate therapy. The aim of the study was to evaluate the cerebroprotective effects of a new pharmacological compound 2-ethyl-6-methyl-3-hydroxypyridine-2,6-dichlorophenyl(amino)phenylethanoic acid (EMHDPA) on the bacterial purulent meningitis in a model of experimental pneumococcal meningitis. Meningitis was simulated by intrathecal injection of the suspension containing Streptococcus pneumoniae at the concentration of 5 × 109 CFU/mL. The cerebroprotective effect was evaluated by survival rates, the severity of neurological deficit, investigatory behaviors, and results of short-term and long-term memory tests. The group administered with EMHDPA showed high survival rates, 80%. Animals treated with the studied compound showed a higher clinical assessment of the rat health status and specific force, and a lesser intensity of neurological deficit compared to the control group (p < 0.05). Locomotor activity of the animals treated with EMHDPA was significantly higher compared to the control group (p < 0.05). There is a decrease in the activity of all estimated indicators of oxidative stress in the group administered with 2-ethyl-6-methyl-3-hydroxypyridine-2,6-dichlorophenyl(amino)phenylethanoic acid relative to the control group: a decrease in the activity of catalase—17%, superoxide dismutase—34%, malondialdehyde and acetylhydroperoxides—50%, and nitric oxide—85% (p < 0.05). Analysis of the data obtained during the experiment leads to the conclusion about the effectiveness of 2-ethyl-6-methyl-3-hydroxypyridine-2,6-dichlorophenyl(amino)phenylethanoic acid in the treatment of the experimental PM.
Collapse
Affiliation(s)
- Alina Agarkova
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, 308015 Belgorod, Russia; (M.P.); (P.K.); (V.G.); (O.G.); (A.P.); (V.S.); (M.K.)
- Correspondence: ; Tel.: +8-904-535-10-58
| | - Mikhail Pokrovskii
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, 308015 Belgorod, Russia; (M.P.); (P.K.); (V.G.); (O.G.); (A.P.); (V.S.); (M.K.)
| | - Pavel Kolesnichenko
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, 308015 Belgorod, Russia; (M.P.); (P.K.); (V.G.); (O.G.); (A.P.); (V.S.); (M.K.)
| | - Vladimir Gureev
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, 308015 Belgorod, Russia; (M.P.); (P.K.); (V.G.); (O.G.); (A.P.); (V.S.); (M.K.)
| | - Oleg Gudyrev
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, 308015 Belgorod, Russia; (M.P.); (P.K.); (V.G.); (O.G.); (A.P.); (V.S.); (M.K.)
| | - Anna Peresypkina
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, 308015 Belgorod, Russia; (M.P.); (P.K.); (V.G.); (O.G.); (A.P.); (V.S.); (M.K.)
| | - Vladislav Soldatov
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, 308015 Belgorod, Russia; (M.P.); (P.K.); (V.G.); (O.G.); (A.P.); (V.S.); (M.K.)
| | - Arkadii Nesterov
- Department of Pathology, Belgorod State National Research University, 308015 Belgorod, Russia;
| | - Tatyana Denisyuk
- Department of Pharmacology, Kursk State Medical University, 305000 Kursk, Russia;
| | - Mikhail Korokin
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, 308015 Belgorod, Russia; (M.P.); (P.K.); (V.G.); (O.G.); (A.P.); (V.S.); (M.K.)
| |
Collapse
|
12
|
Bacterial Meningitis in Children: Neurological Complications, Associated Risk Factors, and Prevention. Microorganisms 2021; 9:microorganisms9030535. [PMID: 33807653 PMCID: PMC8001510 DOI: 10.3390/microorganisms9030535] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 01/07/2023] Open
Abstract
Bacterial meningitis is a devastating infection, with a case fatality rate of up to 30% and 50% of survivors developing neurological complications. These include short-term complications such as focal neurological deficit and subdural effusion, and long-term complications such as hearing loss, seizures, cognitive impairment and hydrocephalus. Complications develop due to bacterial toxin release and the host immune response, which lead to neuronal damage. Factors associated with increased risk of developing neurological complications include young age, delayed presentation and Streptococcus pneumoniae as an etiologic agent. Vaccination is the primary method of preventing bacterial meningitis and therefore its complications. There are three vaccine preventable causes: Haemophilus influenzae type b (Hib), S. pneumoniae, and Neisseria meningitidis. Starting antibiotics without delay is also critical to reduce the risk of neurological complications. Additionally, early adjuvant corticosteroid use in Hib meningitis reduces the risk of hearing loss and severe neurological complications.
Collapse
|
13
|
Ricci S, Grandgirard D, Masouris I, Braccini T, Pozzi G, Oggioni MR, Koedel U, Leib SL. Combined therapy with ceftriaxone and doxycycline does not improve the outcome of meningococcal meningitis in mice compared to ceftriaxone monotherapy. BMC Infect Dis 2020; 20:505. [PMID: 32660552 PMCID: PMC7359289 DOI: 10.1186/s12879-020-05226-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/03/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Meningococcal meningitis (MM) is a life-threatening disease associated with approximately 10% case fatality rates and neurological sequelae in 10-20% of the cases. Recently, we have shown that the matrix metalloproteinase (MMP) inhibitor BB-94 reduced brain injury in a mouse model of MM. The present study aimed to assess whether doxycycline (DOX), a tetracycline that showed a neuroprotective effect as adjuvant therapy in experimental pneumococcal meningitis (PM), would also exert a beneficial effect when given as adjunctive therapy to ceftriaxone (CRO) in experimental MM. METHODS BALB/c mice were infected by the intracisternal route with a group C Neisseria meningitidis strain. Eighteen h post infection (hpi), animals were randomised for treatment with CRO [100 mg/kg subcutaneously (s.c.)], CRO plus DOX (30 mg/kg s.c.) or saline (control s.c.). Antibiotic treatment was repeated 24 and 40 hpi. Mouse survival and clinical signs, bacterial counts in cerebella, brain damage, MMP-9 and cyto/chemokine levels were assessed 48 hpi. RESULTS Analysis of bacterial load in cerebella indicated that CRO and CRO + DOX were equally effective at controlling meningococcal replication. No differences in survival were observed between mice treated with CRO (94.4%) or CRO + DOX (95.5%), (p > 0.05). Treatment with CRO + DOX significantly diminished both the number of cerebral hemorrhages (p = 0.029) and the amount of MMP-9 in the brain (p = 0.046) compared to untreated controls, but not to CRO-treated animals (p > 0.05). Levels of inflammatory markers in the brain of mice that received CRO or CRO + DOX were not significantly different (p > 0.05). Overall, there were no significant differences in the parameters assessed between the groups treated with CRO alone or CRO + DOX. CONCLUSIONS Treatment with CRO + DOX showed similar bactericidal activity to CRO in vivo, suggesting no antagonist effect of DOX on CRO. Combined therapy significantly improved mouse survival and disease severity compared to untreated animals, but addition of DOX to CRO did not offer significant benefits over CRO monotherapy. In contrast to experimental PM, DOX has no adjunctive activity in experimental MM.
Collapse
Affiliation(s)
- Susanna Ricci
- Department of Medical Biotechnologies, Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Ospedale Santa Maria alle Scotte, University of Siena, Siena, Italy. .,ESCMID Study Group for Infectious Diseases of the Brain (ESGIB), Basel, Switzerland.
| | - Denis Grandgirard
- ESCMID Study Group for Infectious Diseases of the Brain (ESGIB), Basel, Switzerland.,Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Ilias Masouris
- Department of Neurology, Ludwig-Maximilians University, Munich, Germany
| | - Tiziana Braccini
- Department of Medical Biotechnologies, Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Ospedale Santa Maria alle Scotte, University of Siena, Siena, Italy
| | - Gianni Pozzi
- Department of Medical Biotechnologies, Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Ospedale Santa Maria alle Scotte, University of Siena, Siena, Italy
| | - Marco R Oggioni
- ESCMID Study Group for Infectious Diseases of the Brain (ESGIB), Basel, Switzerland.,Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Uwe Koedel
- ESCMID Study Group for Infectious Diseases of the Brain (ESGIB), Basel, Switzerland.,Department of Neurology, Ludwig-Maximilians University, Munich, Germany
| | - Stephen L Leib
- ESCMID Study Group for Infectious Diseases of the Brain (ESGIB), Basel, Switzerland.,Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
14
|
Isaiah S, Loots DT, Solomons R, van der Kuip M, Tutu Van Furth AM, Mason S. Overview of Brain-to-Gut Axis Exposed to Chronic CNS Bacterial Infection(s) and a Predictive Urinary Metabolic Profile of a Brain Infected by Mycobacterium tuberculosis. Front Neurosci 2020; 14:296. [PMID: 32372900 PMCID: PMC7186443 DOI: 10.3389/fnins.2020.00296] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
A new paradigm in neuroscience has recently emerged - the brain-gut axis (BGA). The contemporary focus in this paradigm has been gut → brain ("bottom-up"), in which the gut-microbiome, and its perturbations, affects one's psychological state-of-mind and behavior, and is pivotal in neurodegenerative disorders. The emerging brain → gut ("top-down") concept, the subject of this review, proposes that dysfunctional brain health can alter the gut-microbiome. Feedback of this alternative bidirectional highway subsequently aggravates the neurological pathology. This paradigm shift, however, focuses upon non-communicable neurological diseases (progressive neuroinflammation). What of infectious diseases, in which pathogenic bacteria penetrate the blood-brain barrier and interact with the brain, and what is this effect on the BGA in bacterial infection(s) that cause chronic neuroinflammation? Persistent immune activity in the CNS due to chronic neuroinflammation can lead to irreversible neurodegeneration and neuronal death. The properties of cerebrospinal fluid (CSF), such as immunological markers, are used to diagnose brain disorders. But what of metabolic markers for such purposes? If a BGA exists, then chronic CNS bacterial infection(s) should theoretically be reflected in the urine. The premise here is that chronic CNS bacterial infection(s) will affect the gut-microbiome and that perturbed metabolism in both the CNS and gut will release metabolites into the blood that are filtered (kidneys) and excreted in the urine. Here we assess the literature on the effects of chronic neuroinflammatory diseases on the gut-microbiome caused by bacterial infection(s) of the CNS, in the context of information attained via metabolomics-based studies of urine. Furthermore, we take a severe chronic neuroinflammatory infectious disease - tuberculous meningitis (TBM), caused by Mycobacterium tuberculosis, and examine three previously validated CSF immunological biomarkers - vascular endothelial growth factor, interferon-gamma and myeloperoxidase - in terms of the expected changes in normal brain metabolism. We then model the downstream metabolic effects expected, predicting pivotal altered metabolic pathways that would be reflected in the urinary profiles of TBM subjects. Our cascading metabolic model should be adjustable to account for other types of CNS bacterial infection(s) associated with chronic neuroinflammation, typically prevalent, and difficult to distinguish from TBM, in the resource-constrained settings of poor communities.
Collapse
Affiliation(s)
- Simon Isaiah
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Du Toit Loots
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Regan Solomons
- Department of Pediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Martijn van der Kuip
- Pediatric Infectious Diseases and Immunology, Amsterdam University Medical Center, Academic Medical Center, Emma Children’s Hospital, Amsterdam, Netherlands
| | - A. Marceline Tutu Van Furth
- Pediatric Infectious Diseases and Immunology, Amsterdam University Medical Center, Academic Medical Center, Emma Children’s Hospital, Amsterdam, Netherlands
| | - Shayne Mason
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
15
|
Karimy JK, Reeves BC, Damisah E, Duy PQ, Antwi P, David W, Wang K, Schiff SJ, Limbrick DD, Alper SL, Warf BC, Nedergaard M, Simard JM, Kahle KT. Inflammation in acquired hydrocephalus: pathogenic mechanisms and therapeutic targets. Nat Rev Neurol 2020; 16:285-296. [PMID: 32152460 DOI: 10.1038/s41582-020-0321-y] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2020] [Indexed: 12/11/2022]
Abstract
Hydrocephalus is the most common neurosurgical disorder worldwide and is characterized by enlargement of the cerebrospinal fluid (CSF)-filled brain ventricles resulting from failed CSF homeostasis. Since the 1840s, physicians have observed inflammation in the brain and the CSF spaces in both posthaemorrhagic hydrocephalus (PHH) and postinfectious hydrocephalus (PIH). Reparative inflammation is an important protective response that eliminates foreign organisms, damaged cells and physical irritants; however, inappropriately triggered or sustained inflammation can respectively initiate or propagate disease. Recent data have begun to uncover the molecular mechanisms by which inflammation - driven by Toll-like receptor 4-regulated cytokines, immune cells and signalling pathways - contributes to the pathogenesis of hydrocephalus. We propose that therapeutic approaches that target inflammatory mediators in both PHH and PIH could address the multiple drivers of disease, including choroid plexus CSF hypersecretion, ependymal denudation, and damage and scarring of intraventricular and parenchymal (glia-lymphatic) CSF pathways. Here, we review the evidence for a prominent role of inflammation in the pathogenic mechanism of PHH and PIH and highlight promising targets for therapeutic intervention. Focusing research efforts on inflammation could shift our view of hydrocephalus from that of a lifelong neurosurgical disorder to that of a preventable neuroinflammatory condition.
Collapse
Affiliation(s)
- Jason K Karimy
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Benjamin C Reeves
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Eyiyemisi Damisah
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Phan Q Duy
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Prince Antwi
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Wyatt David
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Kevin Wang
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Steven J Schiff
- Departments of Neurosurgery, Engineering Science & Mechanics, and Physics; Center for Neural Engineering, The Pennsylvania State University, University Park, PA, USA
| | - David D Limbrick
- Departments of Neurosurgery and Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Seth L Alper
- Division of Nephrology and Vascular Biology Research Center, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Benjamin C Warf
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA.,Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristopher T Kahle
- Departments of Neurosurgery, Pediatrics, and Cellular & Molecular Physiology and Yale-Rockefeller NIH Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
16
|
Vilnits AA, Skripchenko NV, Gorelik EY, Egorova ES, Markova KV. [Possibilities for optimizing the pathogenetic therapy of purulent meningitis in children]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 119:46-50. [PMID: 31994513 DOI: 10.17116/jnevro201911912146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AIM To assess an effect of the combined use of Cytoflavin and Sulodexide on the course and outcomes of purulent meningitis in children. MATERIAL AND METHODS Fifty children with purulent meningitis, aged from 5 to 17 years 11 month, were studied. Thirty patients of the treatment group (n=30; mean age 6,8 ± 2,2 years) received Cytoflavin (0,6 mcg/kg once a day) during 5 days with the following treatment with Sulodexide (250 LSU/day in children 5-12 years, 500 LSU/day in children above 12 years). Patients of the comparison group (n=20), aged 5,9±1,8 years, received standard antibacterial treatment. Duration and persistent of fever, cerebral, meningeal symptoms, the recovery period of CSF, the normalization of the number of desquamated epithelial cells (DEC), D-dimer were estimated. Outcomes of purulent meningitis were assessed using a working scale representing a modification of Rankin's, Fisher's, and Glasgow scales. RESULTS AND CONCLUSION The combination of drugs reduces the duration of cerebral and meningeal symptoms, leads to the normalization of hematological parameters (the level of leukocytes, desquamous epithelial cells, D-dimer) and improves outcomes.
Collapse
Affiliation(s)
- A A Vilnits
- Pediatric Research and Clinical Center for Infectious Diseases, St. Petersburg, Russia; Saint-Petersburg State Pediatric Medical University, St. Petersburg, Russia
| | - N V Skripchenko
- Pediatric Research and Clinical Center for Infectious Diseases, St. Petersburg, Russia; Saint-Petersburg State Pediatric Medical University, St. Petersburg, Russia
| | - E Yu Gorelik
- Pediatric Research and Clinical Center for Infectious Diseases, St. Petersburg, Russia
| | - E S Egorova
- Pediatric Research and Clinical Center for Infectious Diseases, St. Petersburg, Russia
| | - K V Markova
- Pediatric Research and Clinical Center for Infectious Diseases, St. Petersburg, Russia
| |
Collapse
|
17
|
Too LK, Yau B, Baxter AG, McGregor IS, Hunt NH. Double deficiency of toll-like receptors 2 and 4 alters long-term neurological sequelae in mice cured of pneumococcal meningitis. Sci Rep 2019; 9:16189. [PMID: 31700009 PMCID: PMC6838097 DOI: 10.1038/s41598-019-52212-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/08/2019] [Indexed: 01/03/2023] Open
Abstract
Toll-like receptor (TLR) 2 and 4 signalling pathways are central to the body’s defence against invading pathogens during pneumococcal meningitis. Whereas several studies support their importance in innate immunity, thereby preventing host mortality, any role in protecting neurological function during meningeal infection is ill-understood. Here we investigated both the acute immunological reaction and the long-term neurobehavioural consequences of experimental pneumococcal meningitis in mice lacking both TLR2 and TLR4. The absence of these TLRs significantly impaired survival in mice inoculated intracerebroventricularly with Streptococcus pneumoniae. During the acute phase of infection, TLR2/4-deficient mice had lower cerebrospinal fluid concentrations of interleukin-1β, and higher interferon-γ, than their wild-type counterparts. After antibiotic cure, TLR2/4 double deficiency was associated with aggravation of behavioural impairment in mice, as shown by diurnal hypolocomotion throughout the adaptation phases in the Intellicage of TLR-deficient mice compared to their wild-type counterparts. While TLR2/4 double deficiency did not affect the cognitive ability of mice in a patrolling task, it aggravated the impairment of cognitive flexibility. We conclude that TLR2 and TLR4 are central to regulating the host inflammatory response in pneumococcal meningitis, which may mediate diverse compensatory mechanisms that protect the host not only against mortality but also long-term neurological complications.
Collapse
Affiliation(s)
- Lay Khoon Too
- The University of Sydney, Molecular Immunopathology Unit, Bosch Institute and School of Medical Sciences, University of Sydney, Sydney, New South Wales, 2006, Australia.
| | - Belinda Yau
- The University of Sydney, Molecular Immunopathology Unit, Bosch Institute and School of Medical Sciences, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Alan G Baxter
- Comparative Genomics Centre, James Cook University, Townsville, Queensland, 4811, Australia
| | - Iain S McGregor
- School of Psychology, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Nicholas H Hunt
- The University of Sydney, Molecular Immunopathology Unit, Bosch Institute and School of Medical Sciences, University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
18
|
The Potential Role of Matrix Metalloproteinases 8 and 9 and Myeloperoxidase in Predicting Outcomes of Bacterial Meningitis of Childhood. Mediators Inflamm 2019; 2019:7436932. [PMID: 31780869 PMCID: PMC6874999 DOI: 10.1155/2019/7436932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/23/2019] [Accepted: 09/30/2019] [Indexed: 11/18/2022] Open
Abstract
Background Matrix metalloproteinases (MMPs) and myeloperoxidase (MPO) contribute to the inflammatory cascade in the cerebrospinal fluid (CSF) during bacterial meningitis. We determined levels of MPO, MMP-8, MMP-9, and tissue inhibitor of metalloproteinase- (TIMP-) 1 in the CSF of children with bacterial meningitis and investigated how these inflammatory mediators relate to each other and to the disease outcomes. Methods Clinical data and the diagnostic CSF samples from 245 children (median age eight months) with bacterial meningitis were obtained from a clinical trial in Latin America in 1996–2003. MMP-9 levels in the CSF were assessed by zymography, while MMP-8, MPO, and TIMP-1 concentrations were determined with immunofluorometric and enzyme-linked immunosorbent assays. Results MPO correlated positively with MMP-8 (rho 0.496, P < 0.001) and MMP-9 (rho 0.153, P = 0.02) but negatively with TIMP-1 (rho -0.361, P < 0.001). MMP-8 emerged as the best predictor of disease outcomes: a CSF MMP-8 concentration above the median increased the odds of death 4.9-fold (95% confidence interval 1.8–12.9). Conclusions CSF MMP-8 presented as an attractive prognostic marker in children with bacterial meningitis.
Collapse
|
19
|
Thorsdottir S, Henriques-Normark B, Iovino F. The Role of Microglia in Bacterial Meningitis: Inflammatory Response, Experimental Models and New Neuroprotective Therapeutic Strategies. Front Microbiol 2019; 10:576. [PMID: 30967852 PMCID: PMC6442515 DOI: 10.3389/fmicb.2019.00576] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/06/2019] [Indexed: 12/11/2022] Open
Abstract
Microglia have a pivotal role in the pathophysiology of bacterial meningitis. The goal of this review is to provide an overview on how microglia respond to bacterial pathogens targeting the brain, how the interplay between microglia and bacteria can be studied experimentally, and possible ways to use gained knowledge to identify novel preventive and therapeutic strategies. We discuss the dual role of microglia in disease development, the beneficial functions crucial for bacterial clearing, and the destructive properties through triggering neuroinflammation, characterized by cytokine and chemokine release which leads to leukocyte trafficking through the brain vascular endothelium and breakdown of the blood-brain barrier integrity. Due to intrinsic complexity of microglia and up until recently lack of specific markers, the study of microglial response to bacterial pathogens is challenging. New experimental models and techniques open up possibilities to accelerate progress in the field. We review existing models and discuss possibilities and limitations. Finally, we summarize recent findings where bacterial virulence factors are identified to be important for the microglial response, and how manipulation of evoked responses could be used for therapeutic or preventive purposes. Among promising approaches are: modulations of microglia phenotype switching toward anti-inflammatory and phagocytic functions, the use of non-bacterolytic antimicrobials, preventing release of bacterial components into the neural milieu and consequential amplification of immune activation, and protection of the blood-brain barrier integrity.
Collapse
Affiliation(s)
- Sigrun Thorsdottir
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Bioclinicum, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Bioclinicum, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.,Singapore Centre for Environmental Life Sciences Engineering (SCELSE) and Lee Kong Chian School of Medicine (LKC), Nanyang Technological University (NTU), Singapore, Singapore
| | - Federico Iovino
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Bioclinicum, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
20
|
Fu J, Li L, Yang X, Yang R, Amjad N, Liu L, Tan C, Chen H, Wang X. Transactivated Epidermal Growth Factor Receptor Recruitment of α-actinin-4 From F-actin Contributes to Invasion of Brain Microvascular Endothelial Cells by Meningitic Escherichia coli. Front Cell Infect Microbiol 2019; 8:448. [PMID: 30687645 PMCID: PMC6333852 DOI: 10.3389/fcimb.2018.00448] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 12/18/2018] [Indexed: 01/05/2023] Open
Abstract
Bacterial penetration of the blood-brain barrier requires its successful invasion of brain microvascular endothelial cells (BMECs), and host actin cytoskeleton rearrangement in these cells is a key prerequisite for this process. We have reported previously that meningitic Escherichia coli can induce the activation of host's epidermal growth factor receptor (EGFR) to facilitate its invasion of BMECs. However, it is unknown how EGFR specifically functions during this invasion process. Here, we identified an important EGFR-interacting protein, α-actinin-4 (ACTN4), which is involved in maintaining and regulating the actin cytoskeleton. We observed that transactivated-EGFR competitively recruited ACTN4 from intracellular F-actin fibers to disrupt the cytoskeleton, thus facilitating bacterial invasion of BMECs. Strikingly, this mechanism operated not only for meningitic E. coli, but also for infections with Streptococcus suis, a Gram-positive meningitis-causing bacterial pathogen, thus revealing a common mechanism hijacked by these meningitic pathogens where EGFR competitively recruits ACTN4. Ever rising levels of antibiotic-resistant bacteria and the emergence of their extended-spectrum antimicrobial-resistant counterparts remind us that EGFR could act as an alternative non-antibiotic target to better prevent and control bacterial meningitis.
Collapse
Affiliation(s)
- Jiyang Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xiaopei Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Ruicheng Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Nouman Amjad
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Lu Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| |
Collapse
|
21
|
Zhang M, Gillaspy AF, Gipson JR, Cassidy BR, Nave JL, Brewer MF, Stoner JA, Chen J, Drevets DA. Neuroinvasive Listeria monocytogenes Infection Triggers IFN-Activation of Microglia and Upregulates Microglial miR-155. Front Immunol 2018; 9:2751. [PMID: 30538705 PMCID: PMC6277692 DOI: 10.3389/fimmu.2018.02751] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/08/2018] [Indexed: 11/17/2022] Open
Abstract
MicroRNA (miR) miR-155 modulates microglial activation and polarization, but its role in activation of microglia during bacterial brain infection is unclear. We studied miR-155 expression in brains of C57BL/6 (B6.WT) mice infected i.p. with the neuro-invasive bacterial pathogen Listeria monocytogenes (L. monocytogenes). Infected mice were treated with ampicillin starting 2 days (d) post-infection (p.i.) and analyzed 3d, 7d, and 14d p.i. Virulent L. monocytogenes strains EGD and 10403s upregulated miR-155 in whole brain 7 d p.i. whereas infection with avirulent, non-neurotropic Δhly or ΔactA L. monocytogenes mutants did not. Similarly, infection with virulent but not mutated bacteria upregulated IFN-γ mRNA in the brain at 7 d p.i. Upregulation of miR-155 in microglia was confirmed by qPCR of flow cytometry-sorted CD45intCD11bpos brain cells. Subsequently, brain leukocyte influxes and gene expression in sorted microglia were compared in L. monocytogenes-infected B6.WT and B6.Cg-Mir155tm1.1Rsky/J (B6.miR-155−/−) mice. Brain influxes of Ly-6Chigh monocytes and upregulation of IFN-related genes in microglia were similar to B6.WT mice at 3 d p.i. In contrast, by d 7 p.i. expressions of microglial IFN-related genes, including markers of M1 polarization, were significantly lower in B6.miR-155−/− mice and by 14 d p.i., influxes of activated T-lymphocytes were markedly reduced. Notably, CD45highCD11bpos brain cells from B6.miR-155−/− mice isolated at 7 d p.i. expressed 2-fold fewer IFN-γ transcripts than did cells from B6.WT mice suggesting reduced IFN-γ stimulation contributed to dampened gene expression in B6.miR-155−/− microglia. Lastly, in vitro stimulation of 7 d p.i. brain cells with heat-killed L. monocytogenes induced greater production of TNF in B6.miR-155−/− microglia than in B6.WT microglia. Thus, miR-155 affects brain inflammation by multiple mechanisms during neuroinvasive L. monocytogenes infection. Peripheral miR-155 promotes brain inflammation through its required role in optimal development of IFN-γ-secreting lymphocytes that enter the brain and activate microglia. Microglial miR-155 promotes M1 polarization, and also inhibits inflammatory responses to stimulation by heat-killed L. monocytogenes, perhaps by targeting Tab2.
Collapse
Affiliation(s)
- Miao Zhang
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Allison F Gillaspy
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Laboratory for Molecular Biology and Cytometry Research, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jenny R Gipson
- Laboratory for Molecular Biology and Cytometry Research, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Benjamin R Cassidy
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jessica L Nave
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Misty F Brewer
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Julie A Stoner
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jie Chen
- Histology and Immunohistochemistry Core, Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Douglas A Drevets
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Veterans Affairs Medical Center, Oklahoma City, OK, United States
| |
Collapse
|
22
|
Late-onset cerebral vasculopathy complicating pneumococcal meningitis. A case report with unusual clinical features. Clin Neurol Neurosurg 2018; 174:26-28. [DOI: 10.1016/j.clineuro.2018.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 08/21/2018] [Accepted: 08/29/2018] [Indexed: 11/18/2022]
|
23
|
Rapid pathogen identification using a novel microarray-based assay with purulent meningitis in cerebrospinal fluid. Sci Rep 2018; 8:15965. [PMID: 30374098 PMCID: PMC6206030 DOI: 10.1038/s41598-018-34051-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/24/2018] [Indexed: 11/23/2022] Open
Abstract
In order to improve the diagnosis of pathogenic bacteria in cerebrospinal fluid (CSF) with purulent meningitis, we developed a DNA microarray technique for simultaneous detection and identification of seven target bacterium. DNA were extracted from 24 CSF samples with purulent meningitis (or suspected purulent meningitis). The specific genes of each pathogen were chosen as the amplification target, performed the polymerase chain reaction (PCR), labeled with a fluorescence dye, and hybridized to the oligonucleotide probes on the microarray. There is no significant cross-hybridization fluorescent signal occurred in untargeted bacteria. There were 87.5% (21/24) positive results in DNA microarray compared with the 58.3% (14/24) of the CSF culture test. Of which 58.3% (14/24) of the patients with culture-confirmed purulent meningitis, 37.5% (9/24) patients who were not confirmed by culture test but were demonstrated by the clinical diagnosis and DNA microarray. Multiple bacterial infections were detected in 5 cases by the microarray. In addition, the number of gene copies was carried out to determine the sensitivity of this technique, which was shown to be 3.5 × 101 copies/μL. The results revealed that the microarray technique which target pathogens of the CSF specimen is better specificity, accuracy, and sensitivity than traditional culture method. The microarray method is an effective tool for rapidly detecting more target pathogens and identifying the subtypes of strains which can eliminate the impact of the different individuals with purulent meningitis for prompt diagnosis and treatment.
Collapse
|
24
|
Aust V, Kress E, Abraham S, Schröder N, Kipp M, Stope MB, Pufe T, Tauber SC, Brandenburg LO. Lack of chemokine (C-C motif) ligand 3 leads to decreased survival and reduced immune response after bacterial meningitis. Cytokine 2018; 111:246-254. [PMID: 30199766 DOI: 10.1016/j.cyto.2018.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 12/12/2022]
Abstract
Pneumococcal meningitis, caused by Streptococcus pneumoniae, is the most common type of bacterial meningitis. The clinical management of this disease has been challenged by the emergence of multidrug-resistant Streptococcus pneumoniae, requiring the urgent development of new therapeutic alternatives. Over the course of bacterial meningitis, pathogen invasion is accompanied by a massive recruitment of peripheral immune cells, especially neutrophil granulocytes, which are recruited under the coordination of several cytokines and chemokines. Here, we used chemokine (C-C motif) ligand 3 (Ccl3)-deficient mice to investigate the functional role of CCL3 in a mouse model of pneumococcal meningitis. Following intrathecal infection with Streptococcus pneumoniae Ccl3-deficient mice presented a significantly shorter survival and higher bacterial load than wildtype mice, paralleled by an ameliorated infiltration of neutrophil granulocytes into the CNS. Blood sample analysis revealed that infected Ccl3-deficient mice showed a significant decrease in erythrocytes, hemoglobin and hematocrit as well as in the number of banded neutrophils. Moreover, infected Ccl3-deficient mice showed an altered cytokine expression profile. Glial cell activation remained unchanged in both genotypes. In summary, this study demonstrates that CCL3 is beneficial in Streptococcus pneumoniae-induced meningitis. Pharmacological modulation of the CCL3 pathways might, therefore, represent a future therapeutic option to manage Streptococcus pneumoniae meningitis.
Collapse
Affiliation(s)
- Vanessa Aust
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Eugenia Kress
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Stephanie Abraham
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Nicole Schröder
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Markus Kipp
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, Munich, Germany; Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057 Rostock, Germany
| | - Matthias B Stope
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Simone C Tauber
- Department of Neurology, RWTH University Hospital Aachen, Germany
| | - Lars-Ove Brandenburg
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
25
|
Klein M, Höhne C, Angele B, Högen T, Pfister HW, Tüfekci H, Koedel U. Adjuvant non-bacteriolytic and anti-inflammatory combination therapy in pneumococcal meningitis: an investigation in a mouse model. Clin Microbiol Infect 2018; 25:108.e9-108.e15. [PMID: 29649601 DOI: 10.1016/j.cmi.2018.03.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/05/2018] [Accepted: 03/28/2018] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Therapy with antibiotics, dexamethasone, and supportive intensive care has improved the prognosis of pneumococcal meningitis, but mortality remains high. Here, we investigated an adjunctive combination therapy of the non-bacteriolytic antibiotic daptomycin plus several anti-inflammatory agents to identify the currently most promising adjunctive combination therapy for pneumococcal meningitis. METHODS C57BL/6 mice were infected by injection of pneumococci into the cisterna magna. Treatment was begun 21 h after infection, and consisted of ceftriaxone plus (a) dexamethasone, (b) dexamethasone plus daptomycin, (c) daptomycin, (d) daptomycin plus an anti-IL1 antibody, (e) daptomycin plus roscovitine, or (f) daptomycin plus an anti-C5 antibody. Animals were followed until 45 h after infection. Furthermore, adjunctive daptomycin plus anti-C5 antibodies were assessed in a long-term follow-up. RESULTS Adjunctive treatment with daptomycin and an anti-C5 antibody was superior to adjunctive dexamethasone and reduced disease symptoms (clinical score 1.1 ± 1.1 versus 5.0 ± 2.7, p < 0.0083), improved explorative activity (open field test 17.8 ± 8.2 versus 7.4 ± 4.3 crossed fields/2 minutes, p < 0.0083), and reduced hearing impairment (thresholds for click stimulus 96.1 ± 14.7 versus 114.8 ± 9.3 dB SPL, p < 0.0083) in the acute stage. Furthermore, explorative activity (14.4 ± 7.3 crossed fields/2 minutes versus 6.3 ± 7.2, p < 0.05) and cognitive function (t-maze test, exploration time previously unknown alley 72.4 ± 14.3 versus 48.7 ± 25.6%, p < 0.05) was improved at 2 weeks after infection. Treatment with daptomycin plus an anti-IL-1β antibody or roscovitine was not of significant benefit in comparison to adjunctive therapy with dexamethasone. CONCLUSIONS An adjunctive combination of the non-lytic antibiotic daptomycin plus an anti-C5 antibody was superior to standard therapy with adjunctive dexamethasone in the treatment of pneumococcal meningitis.
Collapse
Affiliation(s)
- M Klein
- Department of Neurology, Klinikum der Ludwig-Maximilians-Universität München, Marchioninistr. 15, 81377 München, Germany.
| | - C Höhne
- Department of Neurology, Klinikum der Ludwig-Maximilians-Universität München, Marchioninistr. 15, 81377 München, Germany
| | - B Angele
- Department of Neurology, Klinikum der Ludwig-Maximilians-Universität München, Marchioninistr. 15, 81377 München, Germany
| | - T Högen
- Department of Neurology, Klinikum der Ludwig-Maximilians-Universität München, Marchioninistr. 15, 81377 München, Germany
| | - H W Pfister
- Department of Neurology, Klinikum der Ludwig-Maximilians-Universität München, Marchioninistr. 15, 81377 München, Germany
| | - H Tüfekci
- Department of Neurology, Klinikum der Ludwig-Maximilians-Universität München, Marchioninistr. 15, 81377 München, Germany
| | - U Koedel
- Department of Neurology, Klinikum der Ludwig-Maximilians-Universität München, Marchioninistr. 15, 81377 München, Germany
| |
Collapse
|
26
|
Taj A, Jamil N. Bioconversion of Tyrosine and Tryptophan Derived Biogenic Amines by Neuropathogenic Bacteria. Biomolecules 2018; 8:E10. [PMID: 29438351 PMCID: PMC5871979 DOI: 10.3390/biom8010010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 01/09/2023] Open
Abstract
The biochemical potential of pathogenic bacteria may cause alteration in the neurophysiological environment; consequently, neuroendocrine and immune responses of the host are modulated by endogenously produced metabolic products of neuropathogenic bacteria. The present study was designed to detect the derived biogenic amines in spent culture media of Bacillus cereus (Bc), Clostridium tetani (Ct), Listeria monocytogenes (Lm), and Neisseria meningitidis (Nm). Overnight grown culture in different culture media i.e., Nutrient broth (NB), Luria basal broth (LB), Brain Heart Infusion broth (BHI), and human serum supplemented RPMI 1640 medium (RPMI) were used to prepare filter-sterilized, cell-free cultural broths (SCFBs) and subjected to high performance liquid chromatography with electrochemical detection (HPLC-EC) along with the control SCFBs. Comparative analysis of biogenic amines in neuropathogenic bacterial SCFBs with their respective control (SCFB) revealed the complete degradation of dopamine (DA) into its metabolic products by Bc, Ct, and Nm, whereas Lm showed negligible degradation of DA. A relatively high concentration of 5-hydroxyindol acetic acid (5HIAA) by Bc in NB and LB indicated the tryptophan metabolism by the serotonin (5HT) pathway. Our study suggests that microbial endocrinology could help unravel new perspectives to the progression of infectious diseases.
Collapse
Affiliation(s)
- Aneela Taj
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan.
| | - Nusrat Jamil
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
27
|
Cerebrospinal Fluid Cathelicidin Correlates With the Bacterial Load and Outcomes in Childhood Bacterial Meningitis. Pediatr Infect Dis J 2018; 37:182-185. [PMID: 28827496 DOI: 10.1097/inf.0000000000001744] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Large cerebrospinal fluid (CSF) bacterial load in bacterial meningitis (BM) relates to poor outcome. However, the antimicrobial peptide cathelicidin seems important to host defense. We studied how cathelicidin concentrations and bacterial load in CSF relate in childhood BM and to what extent they may predict the disease outcome. METHODS The patient data originated from a large prospective clinical trial in Latin America in 1996-2003 in which the CSF samples were collected on admission (CSF1) and 12-24 hours later (CSF2). The cathelicidin concentrations were measured by enzyme-linked immunosorbent assay and the CSF bacterial load by real-time polymerase chain reaction. This analysis comprised 76 children with meningitis caused by Haemophilus influenzae type b (n = 44), Streptococcus pneumoniae (n = 28) or Neisseria meningitidis (n = 4). RESULTS The cathelicidin concentration correlated with the bacterial genome count in both samples (CSF1: ρ = 0.531, P < 0.001; CSF2: ρ = 0.553, P < 0.001). A high CSF1 ratio of cathelicidin to the bacterial genome count was associated with fewer audiologic sequelae (odds ratio: 0.11, 95% confidence interval: 0.02-0.61, P = 0.01) and more favorable neurologic outcomes (odds ratio: 3.95, 95% confidence interval: 1.22-12.8, P = 0.02), but not with better survival. CONCLUSIONS In conclusion, CSF cathelicidin and the bacterial load were closely related in childhood BM. A high initial cathelicidin-to-bacterial genome count ratio predicted better outcomes in survivors.
Collapse
|
28
|
Reshi Z, Nazir M, Wani W, Malik M, Iqbal J, Wajid S. Cerebrospinal fluid procalcitonin as a biomarker of bacterial meningitis in neonates. J Perinatol 2017; 37:927-931. [PMID: 28541274 DOI: 10.1038/jp.2017.73] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/31/2017] [Accepted: 04/17/2017] [Indexed: 01/30/2023]
Abstract
OBJECTIVE The objective of the study was to study the performance of cerebrospinal fluid (CSF) procalcitonin as a marker for bacterial meningitis in neonates, and to determine its optimal 'cutoff' in CSF that can be called significant for the diagnosis. STUDY DESIGN Neonates qualifying for lumbar puncture were prospectively studied. Procalcitonin and established CSF parameters were recorded. RESULTS At a cut-off value of 0.33 ng ml-1, CSF procalcitonin had a sensitivity of 0.92, specificity of 0.87, with positive and negative likelihood ratios of 7.13 and 0.092, respectively. The area under the curve for different CSF parameters was: 0.926 (0.887 to 0.964) (P<0.001) for procalcitonin, 0.965 (0.956 to 0.974) for total leukocyte count, 0.961 (0.94 to 0.983) for neutrophil count, 0.874 (0.825 to 0.923) for protein, 0.946 (0.914 to 0.978) for sugar and 0.92 (0.955 to 0.992) for CSF:serum sugar ratio. The lumbar puncture was traumatic in 36 (21.4%) patients; out of these 15 (41.7%) had bacterial meningitis and 21 (58.3%) had no meningitis. In traumatic lumbar tap group, the median (IQR) CSF procalcitonin in patients with and without meningitis was 1.41 (0.32-3.42) ng/ml and 0.21(0.20-0.31) ng/ml respectively (p<0.05). CONCLUSIONS Procalcitonin measurement has diagnostic efficiency similar to the established CSF markers. Routine assessment of procalcitonin in clean non-contaminated CSF may not yield additional information, but it may have clinical utility in situations where diagnosis of meningitis is in dilemma, as in the case of blood contamination of CSF in traumatic lumbar punctures.
Collapse
Affiliation(s)
- Z Reshi
- Department of Pediatrics and Neonatology, Sher-I-Kashmir Institute of Medical Sciences Hospital, Srinagar, India
| | - M Nazir
- Department of Pediatrics and Neonatology, Sher-I-Kashmir Institute of Medical Sciences Hospital, Srinagar, India
| | - W Wani
- Department of Pediatrics and Neonatology, Sher-I-Kashmir Institute of Medical Sciences Hospital, Srinagar, India
| | - M Malik
- Department of Pediatrics and Neonatology, Sher-I-Kashmir Institute of Medical Sciences Hospital, Srinagar, India
| | - J Iqbal
- Department of Pediatrics and Neonatology, Sher-I-Kashmir Institute of Medical Sciences Hospital, Srinagar, India
| | - S Wajid
- Department of Pediatrics and Neonatology, Sher-I-Kashmir Institute of Medical Sciences Hospital, Srinagar, India
| |
Collapse
|
29
|
Abstract
Infections of the nervous system are an important and challenging aspect of clinical neurology. Immediate correct diagnosis enables to introduce effective therapy, in conditions that without diagnosis may leave the patient with severe neurological incapacitation and sometimes even death. The cerebrospinal fluid (CSF) is a mirror that reflects nervous system pathology and can promote early diagnosis and therapy. The present chapter focuses on the CSF findings in neuro-infections, mainly viral and bacterial. Opening pressure, protein and glucose levels, presence of cells and type of the cellular reaction should be monitored. Other tests can also shed light on the causative agent: serology, culture, staining, molecular techniques such as polymerase chain reaction. Specific examination such as panbacterial and panfungal examinations should be examined when relevant. Our chapter is a guide-text that combines clinical presentation and course with CSF findings as a usuaful tool in diagnosis of neuroinfections.
Collapse
Affiliation(s)
- Felix Benninger
- Department of Neurology, Rabin Medical Center, Petach Tikva, Israel
| | - Israel Steiner
- Department of Neurology, Rabin Medical Center, Petach Tikva, Israel
| |
Collapse
|
30
|
van de Beek D, Brouwer M, Hasbun R, Koedel U, Whitney CG, Wijdicks E. Community-acquired bacterial meningitis. Nat Rev Dis Primers 2016; 2:16074. [PMID: 27808261 DOI: 10.1038/nrdp.2016.74] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Meningitis is an inflammation of the meninges and subarachnoid space that can also involve the brain cortex and parenchyma. It can be acquired spontaneously in the community - community-acquired bacterial meningitis - or in the hospital as a complication of invasive procedures or head trauma (nosocomial bacterial meningitis). Despite advances in treatment and vaccinations, community-acquired bacterial meningitis remains one of the most important infectious diseases worldwide. Streptococcus pneumoniae and Neisseria meningitidis are the most common causative bacteria and are associated with high mortality and morbidity; vaccines targeting these organisms, which have designs similar to the successful vaccine that targets Haemophilus influenzae type b meningitis, are now being used in many routine vaccination programmes. Experimental and genetic association studies have increased our knowledge about the pathogenesis of bacterial meningitis. Early antibiotic treatment improves the outcome, but the growing emergence of drug resistance as well as shifts in the distribution of serotypes and groups are fuelling further development of new vaccines and treatment strategies. Corticosteroids were found to be beneficial in high-income countries depending on the bacterial species. Further improvements in the outcome are likely to come from dampening the host inflammatory response and implementing preventive measures, especially the development of new vaccines.
Collapse
Affiliation(s)
- Diederik van de Beek
- Department of Neurology, Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, P.O. BOX 22660, 1100DD Amsterdam, The Netherlands
| | - Matthijs Brouwer
- Department of Neurology, Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, P.O. BOX 22660, 1100DD Amsterdam, The Netherlands
| | - Rodrigo Hasbun
- Department of Internal Medicine, UT Health McGovern Medical School, Houston, Texas, USA
| | - Uwe Koedel
- Department of Neurology, Clinic Grosshadern of the Ludwig-Maximilians University of Munich, Munich, Germany
| | - Cynthia G Whitney
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Eelco Wijdicks
- Division of Critical Care Neurology, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
31
|
Buchholz G, Koedel U, Pfister HW, Kastenbauer S, Klein M. Dramatic reduction of mortality in pneumococcal meningitis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:312. [PMID: 27716447 PMCID: PMC5045860 DOI: 10.1186/s13054-016-1498-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/19/2016] [Indexed: 12/28/2022]
Abstract
Background Acute bacterial meningitis is still a life threatening disease. Methods We performed a retrospective observational study on the clinical characteristics of consecutively admitted patients with acute pneumococcal meningitis in a single tertiary care center in central Europe (from 2003 until 2015). Data were compared with a previously published historical group of 87 patients treated for pneumococcal meningitis at the same hospital (from 1984 until 2002). Results Fifty-five consecutive patients with microbiologically proven pneumococcal meningitis were included. Most striking, mortality was down to 5.5 %, which was significantly lower than in the historical group where 24.1 % of the patients did not survive. Intracranial complications during the course of the disease were common and affected half of the patients. Unlike in the historic group, most of the intracranial complications (except ischemic stroke) were no longer associated with a low Glasgow Outcome Score at discharge. Conclusion The drastic reduction of mortality proves there have been important advances in the treatment of pneumococcal meningitis. Nevertheless, the fact that only 44.2 % of survivors had a full recovery indicates that the search for new adjunctive treatment options must be ongoing.
Collapse
Affiliation(s)
- Grete Buchholz
- Department of Neurology, Klinikum Grosshadern, Ludwig Maximilians University, Marchioninistr. 15, 81377, Munich, Germany
| | - Uwe Koedel
- Department of Neurology, Klinikum Grosshadern, Ludwig Maximilians University, Marchioninistr. 15, 81377, Munich, Germany
| | - Hans-Walter Pfister
- Department of Neurology, Klinikum Grosshadern, Ludwig Maximilians University, Marchioninistr. 15, 81377, Munich, Germany
| | | | - Matthias Klein
- Emergency Department, Klinikum Grosshadern, Ludwig Maximilians University, Marchioninistr, 15, 81377, Munich, Germany.
| |
Collapse
|
32
|
Klein M, Pfister HW. Bakterielle Meningitis bei Erwachsenen im Notfall- und Rettungswesen. Med Klin Intensivmed Notfmed 2016; 111:647-659. [DOI: 10.1007/s00063-016-0209-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
33
|
Böhland M, Kress E, Stope MB, Pufe T, Tauber SC, Brandenburg LO. Lack of Toll-like receptor 2 results in higher mortality of bacterial meningitis by impaired host resistance. J Neuroimmunol 2016; 299:90-97. [PMID: 27725130 DOI: 10.1016/j.jneuroim.2016.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 09/01/2016] [Accepted: 09/04/2016] [Indexed: 12/17/2022]
Abstract
Bacterial meningitis is - despite therapeutical progress during the last decades - still characterized by high mortality and severe permanent neurogical sequelae. The brain is protected from penetrating pathogens by both the blood-brain barrier and the innate immune system. Invading pathogens are recognized by so-called pattern recognition receptors including the Toll-like receptors (TLR) which are expressed by glial immune cells in the central nervous system. Among these, TLR2 is responsible for the detection of Gram-positive bacteria such as the meningitis-causing pathogen Streptococcus pneumoniae. Here, we used TLR2-deficient mice to investigate the effects on mortality, bacterial growth and inflammation in a mouse model of pneumococcal meningitis. Our results revealed a significantly increased mortality rate and higher bacterial burden in TLR2-deficient mice with pneumococcal meningitis. Furthermore, infected TLR2-deficient mice suffered from a significantly increased pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) and Chemokine (C-C motif) ligand 2 (CCL2) or CCL3 chemokine expression and decreased expression of anti-inflammatory cytokines and antimicrobial peptides. In contrast, glial cell activation assessed by glial cell marker expression was comparable to wildtype mice. Taken together, the results suggest that TLR2 is essential for an efficient immune response against Streptococcus pneumoniae meningitis since lack of the receptor led to a worse outcome by higher mortality due to increased bacterial burden, weakened innate immune response and reduced expression of antimicrobial peptides.
Collapse
Affiliation(s)
- Martin Böhland
- Department of Anatomy and Cell Biology, RWTH Aachen University, Germany
| | - Eugenia Kress
- Department of Anatomy and Cell Biology, RWTH Aachen University, Germany
| | - Matthias B Stope
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, RWTH Aachen University, Germany
| | - Simone C Tauber
- Department of Neurology, RWTH University Hospital Aachen, Germany
| | | |
Collapse
|
34
|
Too LK, Mitchell AJ, McGregor IS, Hunt NH. Antibody-induced neutrophil depletion prior to the onset of pneumococcal meningitis influences long-term neurological complications in mice. Brain Behav Immun 2016; 56:68-83. [PMID: 26965652 DOI: 10.1016/j.bbi.2016.01.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/23/2016] [Accepted: 01/30/2016] [Indexed: 10/22/2022] Open
Abstract
During pneumococcal meningitis, clearance of bacteria by recruited neutrophils is crucial for host protection. However, these innate immune mechanisms are often insufficient and treatment with antibiotics is necessary to prevent death. Despite this antibiotic treatment, approximately half of all survivors suffer lifelong neurological problems. There is growing evidence indicating the harmful effects of neutrophils on CNS integrity. Therefore, the present study investigated the roles of neutrophils in the acute inflammatory response and the resulting long-term neuropsychological effects in murine pneumococcal meningitis. Long-term behavioural and cognitive functions in mice were measured using an automated IntelliCage system. Neutrophil depletion with antibody 1A8 as adjunctive therapy was shown to remarkably impair survival in meningitic C57BL/6J mice despite antibiotic (ceftriaxone) treatment. This was accompanied by increased bacterial load in the cerebrospinal fluid (CSF) and an increase in IL-1β, but decrease in TNF, within the CSF at 20h after bacterial inoculation. In the longer term, the surviving neutrophil-depleted post-meningitic (PM) mice displayed reduced diurnal hypolocomotion compared to PM mice treated with an isotype antibody. However, they showed nocturnal hyperactivity, and greater learning impairment in a patrolling task that is believed to depend upon an intact hippocampus. The data thus demonstrate two important mechanisms: 1. Neutrophil extravasation into the CNS during pneumococcal meningitis influences the pro-inflammatory response and is central to control of the bacterial load, an increase in which may lead to death. 2. Neutrophil-mediated changes in the acute inflammatory response modulate the neuropsychological sequelae in mice that survive pneumococcal meningitis.
Collapse
Affiliation(s)
- Lay Khoon Too
- Molecular Immunopathology Unit, Bosch Institute and School of Medical Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | - Iain S McGregor
- School of Psychology, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Nicholas H Hunt
- Molecular Immunopathology Unit, Bosch Institute and School of Medical Sciences, University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
35
|
Bakterielle Meningitis bei Erwachsenen im Not- und Rettungswesen. Notf Rett Med 2016. [DOI: 10.1007/s10049-016-0148-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Lack of Proinflammatory Cytokine Interleukin-6 or Tumor Necrosis Factor Receptor-1 Results in a Failure of the Innate Immune Response after Bacterial Meningitis. Mediators Inflamm 2016; 2016:7678542. [PMID: 27057100 PMCID: PMC4749820 DOI: 10.1155/2016/7678542] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/04/2016] [Indexed: 12/27/2022] Open
Abstract
The most frequent pathogen that causes bacterial meningitis is the Gram-positive bacterium Streptococcus pneumoniae. By entering the brain, host cells will be activated and proinflammatory cytokines like interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) are released. The goal of the current study was to examine the interaction between IL-6 and TNFR1 as receptor for TNF-α and the innate immune response in vivo in a model of Streptococcus pneumoniae-induced meningitis. For the experiments IL-6(-/-), TNFR1(-/-), and TNFR1-IL-6(-/-) KO mice were used. Our results revealed higher mortality rates and bacterial burden after infection in TNFR1(-/-), IL-6(-/-), and TNFR1-IL-6(-/-) mice and a decreased immune response including lower neutrophil infiltration in the meninges of TNFR1(-/-) and TNFR1-IL-6(-/-) mice in contrast to IL-6(-/-) and wild type mice. Furthermore, the increased mortality of TNFR1(-/-) and TNFR1-IL-6(-/-) mice correlated with decreased glial cell activation compared to IL-6(-/-) or wild type mice after pneumococcal meningitis. Altogether, the results show the importance of TNFR1 and IL-6 in the regulation of the innate immune response. The lack of TNFR1 and IL-6 results in higher mortality by weakened immune defence, whereas the lack of TNFR1 results in more severe impairment of the innate immune response than the lack of IL-6 alone.
Collapse
|
37
|
Perdomo-Celis F, Torres MA, Ostos H, Gutierrez-Achury J, Molano V, Durán LF, González G, Narváez CF. Patterns of Local and Systemic Cytokines in Bacterial Meningitis and its Relation with Severity and Long-Term Sequelae. Biomark Insights 2015; 10:125-31. [PMID: 26715831 PMCID: PMC4687976 DOI: 10.4137/bmi.s35005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/28/2015] [Accepted: 10/28/2015] [Indexed: 12/20/2022] Open
Abstract
Bacterial meningitis (BM) is a pyogenic infection present in the subarachnoid space, potentially fatal and frequently associated with neurological sequelae. During BM, cytokines (CTs) are locally produced. We sought to determine the CTs' clinical role as disease severity predictors in adults, which is not completely clear. Using a bead-based flow cytometric assay, levels of six CTs were determined in cerebrospinal fluid (CSF) and plasma from 18 adult BM patients and 19 uninfected controls. Long-term neurological sequelae were evaluated using the Glasgow Outcome Scale (GOS). All evaluated CTs were higher in CSF than in plasma, and the levels of CSF interleukin (IL)-6, IL-8, IL-10, IL-1β, and tumor necrosis factor-α and plasma IL-10 and IL-12p70 were significantly higher in patients with severe sepsis than with sepsis, suggesting an association with clinical severity. There was a strong negative correlation between CSF IL-6 and plasma IL-12p70 with GOS score, supporting the possible role of these CTs in the development of neurological long-term sequelae. These findings could be helpful to identify candidates to receive neuroprotective treatments and early physiotherapy schemes.
Collapse
Affiliation(s)
| | - Miguel A. Torres
- Programa de Medicina, Facultad de Salud, Universidad Surcolombiana, Neiva, Colombia
- Departamento de Medicina Interna, Hospital Universitario de Neiva, Colombia
| | - Henry Ostos
- Programa de Medicina, Facultad de Salud, Universidad Surcolombiana, Neiva, Colombia
| | | | - Víctor Molano
- Programa de Medicina, Facultad de Salud, Universidad Surcolombiana, Neiva, Colombia
- Departamento de Medicina Interna, Hospital Universitario de Neiva, Colombia
| | - Luis F. Durán
- Programa de Medicina, Facultad de Salud, Universidad Surcolombiana, Neiva, Colombia
- Departamento de Medicina Interna, Hospital Universitario de Neiva, Colombia
| | - Guillermo González
- Programa de Medicina, Facultad de Salud, Universidad Surcolombiana, Neiva, Colombia
- Departamento de Medicina Interna, Hospital Universitario de Neiva, Colombia
| | - Carlos F. Narváez
- Programa de Medicina, Facultad de Salud, Universidad Surcolombiana, Neiva, Colombia
| |
Collapse
|
38
|
Pettini E, Fiorino F, Cuppone AM, Iannelli F, Medaglini D, Pozzi G. Interferon-γ from Brain Leukocytes Enhances Meningitis by Type 4 Streptococcus pneumoniae. Front Microbiol 2015; 6:1340. [PMID: 26648922 PMCID: PMC4664635 DOI: 10.3389/fmicb.2015.01340] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/16/2015] [Indexed: 11/29/2022] Open
Abstract
Streptococcus pneumoniae is the leading cause of bacterial meningitis. Pneumococcal meningitis is a life-threatening disease with high rates of mortality and neurological sequelae. Immune targeting of S. pneumoniae is essential for clearance of infection; however, within the brain, the induced inflammatory response contributes to pathogenesis. In this study we investigate the local inflammatory response and the role of IFN-γ in a murine model of pneumococcal meningitis induced by intracranial injection of type 4 S. pneumoniae. Lymphoid and myeloid cell populations involved in meningitis, as well as cytokine gene expression, were investigated after infection. Animals were treated with a monoclonal antibody specific for murine IFN-γ to evaluate its role in animal survival. Intracranial inoculation of 3 × 104 colony-forming units of type 4 strain TIGR4 caused 75% of mice to develop meningitis within 4 days. The amount of lymphocytes, NK cells, neutrophils, monocytes and macrophages in the brain increased 48 h post infection. IFN-γ mRNA levels were about 240-fold higher in brains of infected mice compared to controls. Pro-inflammatory cytokines such as IL-1β and TNF-α, and TLR2 were also upregulated. In vivo treatment with anti-IFN-γ antibody increased survival of infected mice. This study shows that IFN-γ produced during meningitis by type 4 S. pneumoniae enhances bacterial pathogenesis exerting a negative effect on the disease outcome.
Collapse
Affiliation(s)
- Elena Pettini
- Laboratorio di Microbiologia Molecolare e Biotecnologia, Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena Siena, Italy
| | - Fabio Fiorino
- Laboratorio di Microbiologia Molecolare e Biotecnologia, Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena Siena, Italy
| | - Anna Maria Cuppone
- Laboratorio di Microbiologia Molecolare e Biotecnologia, Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena Siena, Italy
| | - Francesco Iannelli
- Laboratorio di Microbiologia Molecolare e Biotecnologia, Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena Siena, Italy
| | - Donata Medaglini
- Laboratorio di Microbiologia Molecolare e Biotecnologia, Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena Siena, Italy
| | - Gianni Pozzi
- Laboratorio di Microbiologia Molecolare e Biotecnologia, Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena Siena, Italy
| |
Collapse
|
39
|
Fontes FL, de Araújo LF, Coutinho LG, Leib SL, Agnez-Lima LF. Genetic polymorphisms associated with the inflammatory response in bacterial meningitis. BMC MEDICAL GENETICS 2015; 16:70. [PMID: 26316174 PMCID: PMC4593216 DOI: 10.1186/s12881-015-0218-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 08/18/2015] [Indexed: 11/28/2022]
Abstract
Background Bacterial meningitis (BM) is an infectious disease that results in high mortality and morbidity. Despite efficacious antibiotic therapy, neurological sequelae are often observed in patients after disease. Currently, the main challenge in BM treatment is to develop adjuvant therapies that reduce the occurrence of sequelae. In recent papers published by our group, we described the associations between the single nucleotide polymorphisms (SNPs) AADAT +401C > T, APEX1 Asn148Glu, OGG1 Ser326Cys and PARP1 Val762Ala and BM. In this study, we analyzed the associations between the SNPs TNF -308G > A, TNF -857C > T, IL-8 -251A > T and BM and investigated gene-gene interactions, including the SNPs that we published previously. Methods The study was conducted with 54 BM patients and 110 healthy volunteers (as the control group). The genotypes were investigated via primer-introduced restriction analysis-polymerase chain reaction (PIRA-PCR) or polymerase chain reaction-based restriction fragment length polymorphism (PCR-RFLP) analysis. Allelic and genotypic frequencies were also associated with cytokine and chemokine levels, as measured with the x-MAP method, and cell counts. We analyzed gene-gene interactions among SNPs using the generalized multifactor dimensionality reduction (GMDR) method. Results We did not find significant association between the SNPs TNF -857C > T and IL-8 -251A > T and the disease. However, a higher frequency of the variant allele TNF -308A was observed in the control group, associated with changes in cytokine levels compared to individuals with wild type genotypes, suggesting a possible protective role. In addition, combined inter-gene interaction analysis indicated a significant association between certain genotypes and BM, mainly involving the alleles APEX1 148Glu, IL8 -251 T and AADAT +401 T. These genotypic combinations were shown to affect cyto/chemokine levels and cell counts in CSF samples from BM patients. Conclusions In conclusion, this study revealed a significant association between genetic variability and altered inflammatory responses, involving important pathways that are activated during BM. This knowledge may be useful for a better understanding of BM pathogenesis and the development of new therapeutic approaches. Electronic supplementary material The online version of this article (doi:10.1186/s12881-015-0218-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fabrícia Lima Fontes
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, Brazil.
| | - Luíza Ferreira de Araújo
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, Brazil.
| | - Leonam Gomes Coutinho
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, Brazil.
| | - Stephen L Leib
- Institute for Infectious Diseases, University of Bern, Friedbuehlstrasse 51, CH-3010, Bern, Switzerland.
| | - Lucymara Fassarella Agnez-Lima
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, Brazil. .,Departamento de Biologia Celular e Genética, Centro de Biociências - UFRN, Campus Universitário, Lagoa Nova, Natal, RN, 59078-970, Brazil.
| |
Collapse
|
40
|
Sporrborn JL, Knudsen GB, Sølling M, Seierøe K, Farre A, Lindhardt BØ, Benfield T, Brandt CT. Brain ventricular dimensions and relationship to outcome in adult patients with bacterial meningitis. BMC Infect Dis 2015; 15:367. [PMID: 26303023 PMCID: PMC4547431 DOI: 10.1186/s12879-015-1097-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 08/07/2015] [Indexed: 12/02/2022] Open
Abstract
Background Experimental studies suggest that changes in brain ventricle size are key events in bacterial meningitis. This study investigated the relationship between ventricle size, clinical condition and risk of poor outcome in patients with bacterial meningitis. Methods Adult patients diagnosed with bacterial meningitis admitted to two departments of infectious diseases from 2003 through 2010 were identified. Clinical and biochemical data as well as cerebral computed tomographic images were collected. The size of the brain ventricles were presented as a Ventricle to Brain Ratio (VBR). Normal range of VBR was defined from an age matched control group. A multivariate analysis was performed to identify predictors of 30-day mortality. Results One hundred and seven patients were included. Eighty-one patients had a CT scan at the time of diagnosis. VBR was identified as an independent risk factor of 30-day mortality, Mortality Rate Ratio: 6.03 (95 % confidence interval: 1.61-22.64, p = 0.008) for highest versus lowest tertile. A VBR deviating more than 2 standard deviations from the normal range was associated with increased mortality. Conclusions Brain ventricles are commonly subject to marked changes in size as a consequence of meningitis. Increased brain ventricle size in the acute phase of bacterial meningitis was associated with increased mortality. Electronic supplementary material The online version of this article (doi:10.1186/s12879-015-1097-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Janni L Sporrborn
- Department of Pulmonary and Infectious Diseases, Hillerød Hospital, University of Copenhagen, Copenhagen, Denmark.
| | - Gertrud B Knudsen
- Department of Infectious Diseases, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark.
| | - Mette Sølling
- Department of Pulmonary and Infectious Diseases, Hillerød Hospital, University of Copenhagen, Copenhagen, Denmark.
| | - Karina Seierøe
- Department of Diagnostic Radiology, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark.
| | - Annette Farre
- Department of Clinical Biochemistry, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark.
| | - Bjarne Ø Lindhardt
- Department of Pulmonary and Infectious Diseases, Hillerød Hospital, University of Copenhagen, Copenhagen, Denmark.
| | - Thomas Benfield
- Department of Infectious Diseases, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark.
| | - Christian T Brandt
- Department of Pulmonary and Infectious Diseases, Hillerød Hospital, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
41
|
Liu A, Wang C, Liang Z, Zhou ZW, Wang L, Ma Q, Wang G, Zhou SF, Wang Z. High-throughput sequencing of 16S rDNA amplicons characterizes bacterial composition in cerebrospinal fluid samples from patients with purulent meningitis. Drug Des Devel Ther 2015; 9:4417-29. [PMID: 26300628 PMCID: PMC4535540 DOI: 10.2147/dddt.s82728] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purulent meningitis (PM) is a severe infectious disease that is associated with high rates of morbidity and mortality. It has been recognized that bacterial infection is a major contributing factor to the pathogenesis of PM. However, there is a lack of information on the bacterial composition in PM, due to the low positive rate of cerebrospinal fluid bacterial culture. Herein, we aimed to discriminate and identify the main pathogens and bacterial composition in cerebrospinal fluid sample from PM patients using high-throughput sequencing approach. The cerebrospinal fluid samples were collected from 26 PM patients, and were determined as culture-negative samples. The polymerase chain reaction products of the hypervariable regions of 16S rDNA gene in these 26 samples of PM were sequenced using the 454 GS FLX system. The results showed that there were 71,440 pyrosequencing reads, of which, the predominant phyla were Proteobacteria and Firmicutes; and the predominant genera were Streptococcus, Acinetobacter, Pseudomonas, and Neisseria. The bacterial species in the cerebrospinal fluid were complex, with 61.5% of the samples presenting with mixed pathogens. A significant number of bacteria belonging to a known pathogenic potential was observed. The number of operational taxonomic units for individual samples ranged from six to 75 and there was a comparable difference in the species diversity that was calculated through alpha and beta diversity analysis. Collectively, the data show that high-throughput sequencing approach facilitates the characterization of the pathogens in cerebrospinal fluid and determine the abundance and the composition of bacteria in the cerebrospinal fluid samples of the PM patients, which may provide a better understanding of pathogens in PM and assist clinicians to make rational and effective therapeutic decisions.
Collapse
Affiliation(s)
- Aicui Liu
- Neurology Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China ; Key Laboratory of Brain Diseases of Ningxia, Yinchuan, Ningxia, People's Republic of China
| | - Chao Wang
- Neurology Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China ; Key Laboratory of Brain Diseases of Ningxia, Yinchuan, Ningxia, People's Republic of China
| | - Zhijuan Liang
- Department of Neurology, The First People's Hospital of Lanzhou, Lanzhou, Gansu, People's Republic of China
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Lin Wang
- Neurology Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China ; Key Laboratory of Brain Diseases of Ningxia, Yinchuan, Ningxia, People's Republic of China
| | - Qiaoli Ma
- Neurology Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China ; Key Laboratory of Brain Diseases of Ningxia, Yinchuan, Ningxia, People's Republic of China
| | - Guowei Wang
- Neurology Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China ; Key Laboratory of Brain Diseases of Ningxia, Yinchuan, Ningxia, People's Republic of China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Zhenhai Wang
- Neurology Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China ; Key Laboratory of Brain Diseases of Ningxia, Yinchuan, Ningxia, People's Republic of China
| |
Collapse
|
42
|
Almirón MA, Goldschmidt E, Bertelli AM, Gomez MI, Argibay P, Sanjuan NA. In Vitroinfection of human dura-mater fibroblasts withStaphylococcus aureus: colonization and reactive production of IL-1beta. Neurol Res 2015; 37:867-73. [DOI: 10.1179/1743132815y.0000000065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
43
|
Comparative proteomics of cerebrospinal fluid reveals a predictive model for differential diagnosis of pneumococcal, meningococcal, and enteroviral meningitis, and novel putative therapeutic targets. BMC Genomics 2015; 16 Suppl 5:S11. [PMID: 26040285 PMCID: PMC4460676 DOI: 10.1186/1471-2164-16-s5-s11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Meningitis is the inflammation of the meninges in response to infection or chemical agents. While aseptic meningitis, most frequently caused by enteroviruses, is usually benign with a self-limiting course, bacterial meningitis remains associated with high morbidity and mortality rates, despite advances in antimicrobial therapy and intensive care. Fast and accurate differential diagnosis is crucial for assertive choice of the appropriate therapeutic approach for each form of meningitis. METHODS We used 2D-PAGE and mass spectrometry to identify the cerebrospinal fluid proteome specifically related to the host response to pneumococcal, meningococcal, and enteroviral meningitis. The disease-specific proteome signatures were inspected by pathway analysis. RESULTS Unique cerebrospinal fluid proteome signatures were found to the three aetiological forms of meningitis investigated, and a qualitative predictive model with four protein markers was developed for the differential diagnosis of these diseases. Nevertheless, pathway analysis of the disease-specific proteomes unveiled that Kallikrein-kinin system may play a crucial role in the pathophysiological mechanisms leading to brain damage in bacterial meningitis. Proteins taking part in this cellular process are proposed as putative targets to novel adjunctive therapies. CONCLUSIONS Comparative proteomics of cerebrospinal fluid disclosed candidate biomarkers, which were combined in a qualitative and sequential predictive model with potential to improve the differential diagnosis of pneumococcal, meningococcal and enteroviral meningitis. Moreover, we present the first evidence of the possible implication of Kallikrein-kinin system in the pathophysiology of bacterial meningitis.
Collapse
|
44
|
Karadag-Oncel E, Cakir M, Kara A, Gonc N, Cengiz AB, Ozon A, Ciftci E, Alikasifoglu A, Ceyhan M, Kandemir N. Evaluation of hypothalamic-pituitary function in children following acute bacterial meningitis. Pituitary 2015; 18:1-7. [PMID: 24356781 DOI: 10.1007/s11102-013-0547-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Previous studies in adults and case reports in children have shown increased frequency of hypothalamo-pituitary dysfunction after infectious diseases of the central nervous system. The aim of this study was to evaluate the function of hypothalamo-pituitary axis in children with a history of bacterial meningitis. METHODS Patients diagnosed with bacterial meningitis between April 2000 and June 2011 was included. Baseline and stimulated hormonal tests were performed as required for hormonal evaluations following a diagnosis of meningitis. RESULTS Pituitary function was assessed following a period of 8-135 months (mean 53 months) after bacterial meningitis. Thirty-seven cases (27 male, 15 pubertal) with mean age of 11.1 ± 4.4 years were included. Mean height SDS was 0.01 ± 1.07 and mean BMI SDS was 0.54 ± 1.15 all patients had a SDS above -2 SD. Baseline cortisol and low dose ACTH stimulation revealed normal adrenal functions in all patients. Gonadotropin deficiency was not detected in any of the pubertal cases. Four cases (10.8%) had low IGF1 and IGFBP3 z-scores (<-2 SD) according to age, sex and Tanner stage, but peak GH response in clonidin test was >10 ng/ml in three of them suggesting neurosecretary dysfunction of GH in these cases. The fourth case has died before the test. No one had TSH deficiency and diabetes insipidus, only one case had mild hyperprolactinemia. CONCLUSIONS Our findings suggest that hypothalamo-pituitary dysfunction is not as common in childhood as in adulthood. The most remarkable finding was neurosecretary dysfunction of GH in some cases.
Collapse
Affiliation(s)
- Eda Karadag-Oncel
- Department of Pediatric Infectious Disease, Faculty of Medicine, Hacettepe University, Sıhhiye, 06100, Ankara, Turkey,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Infektionen. NEUROINTENSIV 2015. [PMCID: PMC7175474 DOI: 10.1007/978-3-662-46500-4_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In diesem Kapitel werden zunächst die für die Neurointensivmedizin wesentlichen bakteriellen Infektionen (Meningitis, spinale und Hirnabszesse, Spondylodiszitis, septisch-embolische Herdenzephalitis) abgehandelt, die trotz gezielt eingesetzter Antibiotika und neurochirurgischer Therapieoptionen noch mit einer erheblichen Morbidität und Mortalität behaftet sind. Besonderheiten wie neurovaskuläre Komplikationen, die Tuberkulose des Nervensystems, Neuroborreliose, Neurosyphilis und opportunistische Infektionen bei Immunsuppressionszuständen finden hierbei besondere Berücksichtigung. Der zweite Teil dieses Kapitels behandelt akute und chronische Virusinfektionen des ZNS sowie in einem gesonderten Abschnitt die HIVInfektion und HIV-assoziierte Krankheitsbilder sowie Parasitosen und Pilzinfektionen, die in Industrieländern seit Einführung der HAART bei HIV zwar eher seltener, aber mit zunehmender Globalisierung auch in unseren Breiten immer noch anzutreffen sind.
Collapse
|
46
|
Ricci S, Grandgirard D, Wenzel M, Braccini T, Salvatore P, Oggioni MR, Leib SL, Koedel U. Inhibition of matrix metalloproteinases attenuates brain damage in experimental meningococcal meningitis. BMC Infect Dis 2014; 14:726. [PMID: 25551808 PMCID: PMC4300156 DOI: 10.1186/s12879-014-0726-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/18/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Approximately 7% of survivors from meningococcal meningitis (MM) suffer from neurological sequelae due to brain damage in the course of meningitis. The present study focuses on the role of matrix metalloproteinases (MMPs) in a novel mouse model of MM-induced brain damage. METHODS The model is based on intracisternal infection of BALB/c mice with a serogroup C Neisseria meningitidis strain. Mice were infected with meningococci and randomised for treatment with the MMP inhibitor batimastat (BB-94) or vehicle. Animal survival, brain injury and host-response biomarkers were assessed 48 h after meningococcal challenge. RESULTS Mice that received BB-94 presented significantly diminished MMP-9 levels (p < 0.01), intracerebral bleeding (p < 0.01), and blood-brain barrier (BBB) breakdown (p < 0.05) in comparison with untreated animals. In mice suffering from MM, the amount of MMP-9 measured by zymography significantly correlated with both intracerebral haemorrhage (p < 0.01) and BBB disruption (p < 0.05). CONCLUSIONS MMPs significantly contribute to brain damage associated with experimental MM. Inhibition of MMPs reduces intracranial complications in mice suffering from MM, representing a potential adjuvant strategy in MM post-infection sequelae.
Collapse
|
47
|
Oldekamp S, Pscheidl S, Kress E, Soehnlein O, Jansen S, Pufe T, Wang JM, Tauber SC, Brandenburg LO. Lack of formyl peptide receptor 1 and 2 leads to more severe inflammation and higher mortality in mice with of pneumococcal meningitis. Immunology 2014; 143:447-61. [PMID: 24863484 DOI: 10.1111/imm.12324] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 12/22/2022] Open
Abstract
Bacterial meningitis is, despite progress in research and the development of new treatment strategies, still a cause of severe neuronal sequelae. The brain is protected from penetrating pathogens by both the blood-brain barrier and the innate immune system. The invading pathogens are recognized by pattern recognition receptors including the G-protein coupled formyl peptide receptors (FPRs), which are expressed by immune cells of the central nervous system. The expression of FPRs is up-regulated during bacterial meningitis, but the consequence on the progression of inflammation and impact on mortality are far from clear. Therefore, we used mFPR1 and mFPR2-deficient mice to investigate the effects on inflammation, bacterial growth and mortality in a mouse model of pneumococcal meningitis. Our results revealed increased bacterial burden, increased neutrophil infiltration and higher mortality in mFPR1/2-deficient mice in comparison to wild-type mice. The mFPR1- or mFPR2-deficient mice also showed significantly increased glial cell density, whereas the immune responses including the expression of anti-inflammatory cytokines and antimicrobial peptides were decreased in bacterial meningitis. Taken together, the results suggest that FPR1 and FPR2 play an important role in the innate immune responses against Streptococcus pneumoniae within the central nervous system and the lack of the receptors leads to a dysregulation of the inflammatory response compared with wild-type mice.
Collapse
Affiliation(s)
- Sandra Oldekamp
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Acute meningitis in rats is associated with decreased levels of miR132 and miR146a. Cent Eur J Immunol 2014; 39:316-22. [PMID: 26155141 PMCID: PMC4439992 DOI: 10.5114/ceji.2014.45941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/06/2014] [Indexed: 11/17/2022] Open
Abstract
Introduction The pathogenesis of bacterial meningitis due to Streptococcus pneumoniae is still unclear. Despite early treatment with antibiotics, its morbidity and mortality is still high. Material and methods Streptococcus pneumoniae induced rat meningitis models were taken and divided into 2 groups; control (C) and meningitis (M). Western blot was used to detect toll like receptor 4 (TLR4), tumor necrosis factor α (TNF-α), interleukin 1B (IL1B), nuclear factor κB (NFκB) and real time polymerase chain reaction were used to detect the expression of miR146a, miR132, respectively. Results We found that the expressions of TLR4, TNF-α, IL1B, NFκB were all up-regulated in the acute stage of bacterial meningitis when compared to the control group. While for the post transcription factors, miR146a and miR132, the opposite was observed. They were down-regulated in the meningitis group. Conclusions miR146a and miR132 may take part in the pathogenesis of SP bacterial meningitis as well as the TLR4- NFκB- TNF-α/IL1B signal transduction pathway.
Collapse
|
49
|
Borkowski J, Li L, Steinmann U, Quednau N, Stump-Guthier C, Weiss C, Findeisen P, Gretz N, Ishikawa H, Tenenbaum T, Schroten H, Schwerk C. Neisseria meningitidis elicits a pro-inflammatory response involving IκBζ in a human blood-cerebrospinal fluid barrier model. J Neuroinflammation 2014; 11:163. [PMID: 25347003 PMCID: PMC4172843 DOI: 10.1186/s12974-014-0163-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 08/29/2014] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The human-specific, Gram-negative bacterium Neisseria meningitidis (Nm) is a leading cause of bacterial meningitis worldwide. The blood-cerebrospinal fluid barrier (BCSFB), which is constituted by the epithelial cells of the choroid plexus (CP), has been suggested as one of the potential entry sites of Nm into the CSF and can contribute to the inflammatory response during infectious diseases of the brain. Toll-like receptors (TLRs) are involved in mediating signal transduction caused by the pathogens. METHODS Using a recently established in vitro model of the human BCSFB based on human malignant CP papilloma (HIBCPP) cells we investigated the cellular response of HIBCPP cells challenged with the meningitis-causing Nm strain, MC58, employing transcriptome and RT-PCR analysis, cytokine bead array, and enzyme-linked immunosorbent assay (ELISA). In comparison, we analyzed the answer to the closely related unencapsulated carrier isolate Nm α14. The presence of TLRs in HIBCPP and their role during signal transduction caused by Nm was studied by RT-PCR and the use of specific agonists and mutant bacteria. RESULTS We observed a stronger transcriptional response after infection with strain MC58, in particular with its capsule-deficient mutant MC58siaD-, which correlated with bacterial invasion levels. Expression evaluation and Gene Set Enrichment Analysis pointed to a NFκB-mediated pro-inflammatory immune response involving up-regulation of the transcription factor IκBζ. Infected cells secreted significant levels of pro-inflammatory chemokines and cytokines, including, among others, IL8, CXCL1-3, and the IκBζ target gene product IL6. The expression profile of pattern recognition receptors in HIBCPP cells and the response to specific agonists indicates that TLR2/TLR6, rather than TLR4 or TLR2/TLR1, is involved in the cellular reaction following Nm infection. CONCLUSIONS Our data show that Nm can initiate a pro-inflammatory response in human CP epithelial cells probably involving TLR2/TLR6 signaling and the transcriptional regulator IκBζ.
Collapse
|
50
|
Izadpanah K, Freyer D, Weber JR, Braun JS. Brain parenchymal TNF-α and IL-1β induction in experimental pneumococcal meningitis. J Neuroimmunol 2014; 276:104-11. [PMID: 25218213 DOI: 10.1016/j.jneuroim.2014.08.625] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/23/2014] [Accepted: 08/26/2014] [Indexed: 10/24/2022]
Abstract
Triggers of brain inflammation in pneumococcal meningitis are unknown. TNF-α and IL-1β were upregulated (real time PCR and in situ hybridization) in neurons and astrocytes time-dependently and maximally in the hippocampus during murine pneumococcal meningitis. Upregulation of TNF-α and IL-1β mRNA in the brain parenchyma was independent of cerebrospinal fluid leukocytosis, pneumococcal pneumolysin and H2O2, but it was potently induced by pneumococcal cell wall (PCW) fragments. Brain TNF-α mRNA was downregulated by a matrix metalloproteinases inhibitor. PCW fragments were located in the brain parenchyma. In conclusion, PCW fragments and matrix metalloproteinases trigger cytokine induction in the brain parenchyma during pneumococcal meningitis.
Collapse
Affiliation(s)
- Kaywan Izadpanah
- Department of Neurology, Charité Universitätsmedizin Berlin, Germany; Department of Orthopedics and Traumatology, University Freiburg, Germany
| | - Dorette Freyer
- Department of Neurology, Charité Universitätsmedizin Berlin, Germany
| | - Joerg R Weber
- Department of Neurology, Charité Universitätsmedizin Berlin, Germany; Department of Neurology, Klinikum Klagenfurt, Austria
| | - Johann S Braun
- Department of Neurology, Charité Universitätsmedizin Berlin, Germany; Department of Internal Medicine, Division Neurology, College of Medicine and Health Sciences, United Arab Emirates University, United Arab Emirates.
| |
Collapse
|