1
|
Rigaud B, Cazoulat G, Vedam S, Venkatesan AM, Peterson CB, Taku N, Klopp AH, Brock KK. Modeling Complex Deformations of the Sigmoid Colon Between External Beam Radiation Therapy and Brachytherapy Images of Cervical Cancer. Int J Radiat Oncol Biol Phys 2020; 106:1084-1094. [PMID: 32029345 DOI: 10.1016/j.ijrobp.2019.12.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/13/2019] [Accepted: 12/19/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE In this study, we investigated registration methods for estimating the large interfractional sigmoid deformations that occur between external beam radiation therapy (EBRT) and brachytherapy (BT) for cervical cancer. METHODS AND MATERIALS Sixty-three patients were retrospectively analyzed. The sigmoid colon was delineated on 2 computed tomography images acquired during EBRT (without applicator) and BT (with applicator) for each patient. Five registration approaches were compared to propagate the contour of the sigmoid from BT to EBRT anatomies: rigid registration, commercial hybrid (ANAtomically CONstrained Deformation Algorithm), controlling ROI surface projection of RayStation, and the classical and constrained symmetrical thin-plate spline robust point matching (sTPS-RPM) methods. Deformation of the sigmoid due to insertion of the BT applicator was reported. Registration performance was compared by using the Dice similarity coefficient (DSC), distance to agreement, and Hausdorff distance. The 2 sTPS-RPM methods were compared by using surface triangle quality criteria between deformed surfaces. Using the deformable approaches, the BT dose of the sigmoid was deformed toward the EBRT anatomy. The displacement and discrepancy between the deformable methods to propagate the planned D1cm3 and D2cm3 of the sigmoid from BT to EBRT anatomies were reported for 55 patients. RESULTS Large and complex deformations of the sigmoid were observed for each patient. Rigid registration resulted in poor sigmoid alignment with a mean DSC of 0.26. Using the contour to drive the deformation, ANAtomically CONstrained Deformation Algorithm was able to slightly improve the alignment of the sigmoid with a mean DSC of 0.57. Using only the sigmoid surface as controlling ROI, the mean DSC was improved to 0.79. The classical and constrained sTPS-RPM methods provided mean DSCs of 0.95 and 0.96, respectively, with an average inverse consistency error <1 mm. The constrained sTPS-RPM provided more realistic deformations and better surface topology of the deformed sigmoids. The planned mean (range) D1cm3 and D2cm3 of the sigmoid were 13.4 Gy (1-24.1) and 12.2 Gy (1-21.5) on the BT anatomy, respectively. Using the constrained sTPS-RPM to deform the sigmoid from BT to EBRT anatomies, these hotspots had a mean (range) displacement of 27.1 mm (6.8-81). CONCLUSIONS Large deformations of the sigmoid were observed between the EBRT and BT anatomies, suggesting that the D1cm3 and D2cm3 of the sigmoid would unlikely to be at the same position throughout treatment. The proposed constrained sTPS-RPM seems to be the preferred approach to manage the large deformation due to BT applicator insertion. Such an approach could be used to map the EBRT dose to the BT anatomy for personalized BT planning optimization.
Collapse
Affiliation(s)
- Bastien Rigaud
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Guillaume Cazoulat
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sastry Vedam
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aradhana M Venkatesan
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christine B Peterson
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nicolette Taku
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ann H Klopp
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kristy K Brock
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
2
|
Song Y, Lee H, Kang HC, Shin J, Hong GS, Park SH, Lee J, Shin YG. Interactive registration between supine and prone scans in computed tomography colonography using band-height images. Comput Biol Med 2017; 80:124-136. [DOI: 10.1016/j.compbiomed.2016.11.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 01/12/2023]
|
3
|
Nadeem S, Marino J, Gu X, Kaufman A. Corresponding Supine and Prone Colon Visualization Using Eigenfunction Analysis and Fold Modeling. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2017; 23:751-760. [PMID: 27875189 PMCID: PMC7812443 DOI: 10.1109/tvcg.2016.2598791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We present a method for registration and visualization of corresponding supine and prone virtual colonoscopy scans based on eigenfunction analysis and fold modeling. In virtual colonoscopy, CT scans are acquired with the patient in two positions, and their registration is desirable so that physicians can corroborate findings between scans. Our algorithm performs this registration efficiently through the use of Fiedler vector representation (the second eigenfunction of the Laplace-Beltrami operator). This representation is employed to first perform global registration of the two colon positions. The registration is then locally refined using the haustral folds, which are automatically segmented using the 3D level sets of the Fiedler vector. The use of Fiedler vectors and the segmented folds presents a precise way of visualizing corresponding regions across datasets and visual modalities. We present multiple methods of visualizing the results, including 2D flattened rendering and the corresponding 3D endoluminal views. The precise fold modeling is used to automatically find a suitable cut for the 2D flattening, which provides a less distorted visualization. Our approach is robust, and we demonstrate its efficiency and efficacy by showing matched views on both the 2D flattened colons and in the 3D endoluminal view. We analytically evaluate the results by measuring the distance between features on the registered colons, and we also assess our fold segmentation against 20 manually labeled datasets. We have compared our results analytically to previous methods, and have found our method to achieve superior results. We also prove the hot spots conjecture for modeling cylindrical topology using Fiedler vector representation, which allows our approach to be used for general cylindrical geometry modeling and feature extraction.
Collapse
|
4
|
Nie K, Pouliot J, Smith E, Chuang C. Performance variations among clinically available deformable image registration tools in adaptive radiotherapy - how should we evaluate and interpret the result? J Appl Clin Med Phys 2016; 17:328-340. [PMID: 27074457 PMCID: PMC5874855 DOI: 10.1120/jacmp.v17i2.5778] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/18/2015] [Accepted: 10/26/2015] [Indexed: 11/23/2022] Open
Abstract
The purpose of this study is to evaluate the performance variations in commercial deformable image registration (DIR) tools for adaptive radiation therapy and further to interpret the differences using clinically available terms. Three clinical examples (prostate, head and neck (HN), and cranial spinal irradiation (CSI) with L‐spine boost) were evaluated in this study. Firstly, computerized deformed CT images were generated using simulation QA software with virtual deformations of bladder filling (prostate), neck flexion/bite‐block repositioning/tumor shrinkage (HN), and vertebral body rotation (CSI). The corresponding transformation matrices served as a “reference” for the following comparisons. Three commercialized DIR algorithms: the free‐form deformation from MIMVista 5.5 and the RegRefine from MIMMaestro 6.0, the multipass B‐spline from VelocityAI v3.0.1, and the adaptive demons from OnQ rts 2.1.15, were applied between the initial images and the deformed CT sets. The generated adaptive contours and dose distributions were compared with the “reference” and among each other. The performance in transferring contours was comparable among all three tools with an average Dice similarity coefficient of 0.81 for all the organs. However, the dose warping accuracy appeared to rely on the evaluation end points and methodologies. Point‐dose differences could show a difference of up to 23.3 Gy inside the PTVs and to overestimate up to 13.2 Gy for OARs, which was substantial for a 72 Gy prescription dose. Dosevolume histogram‐based evaluation might not be sensitive enough to illustrate all the detailed variations, while isodose assessment on a slice‐by‐slice basis could be tedious. We further explored the possibility of using 3D gamma index analysis for warping dose variation assessment, and observed differences in dose warping using different DIR tools. Overall, our results demonstrated that evaluation based only on the performance of contour transformation could not guarantee the accuracy in dose warping, while dose‐transferring validation strongly relied on the evaluation endpoint. As dose‐transferring errors could cause misinterpretations when attempting to accumulate dose for adaptive radiation therapy and more DIR tools are available for clinical use, a standard and clinically meaningful quality assurance criterion should be established for DIR QA in the near future. PACS number(s): 87.57
Collapse
Affiliation(s)
- Ke Nie
- Rutgers-Robert Wood Johnson Medical School.
| | | | | | | |
Collapse
|
5
|
Normalized gradient fields for nonlinear motion correction of DCE-MRI time series. Comput Med Imaging Graph 2014; 38:202-10. [DOI: 10.1016/j.compmedimag.2013.12.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 10/05/2013] [Accepted: 12/02/2013] [Indexed: 12/25/2022]
|
6
|
Boone DJ, Halligan S, Roth HR, Hampshire TE, Helbren E, Slabaugh GG, McQuillan J, McClelland JR, Hu M, Punwani S, Taylor SA, Hawkes DJ. CT colonography: external clinical validation of an algorithm for computer-assisted prone and supine registration. Radiology 2013; 268:752-60. [PMID: 23687175 DOI: 10.1148/radiol.13122083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE To perform external validation of a computer-assisted registration algorithm for prone and supine computed tomographic (CT) colonography and to compare the results with those of an existing centerline method. MATERIALS AND METHODS All contributing centers had institutional review board approval; participants provided informed consent. A validation sample of CT colonographic examinations of 51 patients with 68 polyps (6-55 mm) was selected from a publicly available, HIPAA compliant, anonymized archive. No patients were excluded because of poor preparation or inadequate distension. Corresponding prone and supine polyp coordinates were recorded, and endoluminal surfaces were registered automatically by using a computer algorithm. Two observers independently scored three-dimensional endoluminal polyp registration success. Results were compared with those obtained by using the normalized distance along the colonic centerline (NDACC) method. Pairwise Wilcoxon signed rank tests were used to compare gross registration error and McNemar tests were used to compare polyp conspicuity. RESULTS Registration was possible in all 51 patients, and 136 paired polyp coordinates were generated (68 polyps) to test the algorithm. Overall mean three-dimensional polyp registration error (mean ± standard deviation, 19.9 mm ± 20.4) was significantly less than that for the NDACC method (mean, 27.4 mm ± 15.1; P = .001). Accuracy was unaffected by colonic segment (P = .76) or luminal collapse (P = .066). During endoluminal review by two observers (272 matching tasks, 68 polyps, prone to supine and supine to prone coordinates), 223 (82%) polyp matches were visible (120° field of view) compared with just 129 (47%) when the NDACC method was used (P < .001). By using multiplanar visualization, 48 (70%) polyps were visible after scrolling ± 15 mm in any multiplanar axis compared with 16 (24%) for NDACC (P < .001). CONCLUSION Computer-assisted registration is more accurate than the NDACC method for mapping the endoluminal surface and matching the location of polyps in corresponding prone and supine CT colonographic acquisitions.
Collapse
Affiliation(s)
- Darren J Boone
- Centre for Medical Imaging and Centre for Medical Image Computing, University College London, Podium Level 2, University College Hospital, 235 Euston Rd, London NW1 2BU, England
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Hampshire T, Roth HR, Helbren E, Plumb A, Boone D, Slabaugh G, Halligan S, Hawkes DJ. Endoluminal surface registration for CT colonography using haustral fold matching. Med Image Anal 2013; 17:946-58. [PMID: 23845949 PMCID: PMC3807796 DOI: 10.1016/j.media.2013.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 04/16/2013] [Accepted: 04/18/2013] [Indexed: 12/30/2022]
Abstract
Novel haustral fold matching algorithm. Achieves 96.1% mean accuracy over 1743 reference points in 17 CTC datasets. New initialisation to non-rigid intensity-based surface registration method. Full method shows 6.0 mm mean error. Use of initialisation shows significant improvement (p < 0.001).
Computed Tomographic (CT) colonography is a technique used for the detection of bowel cancer or potentially precancerous polyps. The procedure is performed routinely with the patient both prone and supine to differentiate fixed colonic pathology from mobile faecal residue. Matching corresponding locations is difficult and time consuming for radiologists due to colonic deformations that occur during patient repositioning. We propose a novel method to establish correspondence between the two acquisitions automatically. The problem is first simplified by detecting haustral folds using a graph cut method applied to a curvature-based metric applied to a surface mesh generated from segmentation of the colonic lumen. A virtual camera is used to create a set of images that provide a metric for matching pairs of folds between the prone and supine acquisitions. Image patches are generated at the fold positions using depth map renderings of the endoluminal surface and optimised by performing a virtual camera registration over a restricted set of degrees of freedom. The intensity difference between image pairs, along with additional neighbourhood information to enforce geometric constraints over a 2D parameterisation of the 3D space, are used as unary and pair-wise costs respectively, and included in a Markov Random Field (MRF) model to estimate the maximum a posteriori fold labelling assignment. The method achieved fold matching accuracy of 96.0% and 96.1% in patient cases with and without local colonic collapse. Moreover, it improved upon an existing surface-based registration algorithm by providing an initialisation. The set of landmark correspondences is used to non-rigidly transform a 2D source image derived from a conformal mapping process on the 3D endoluminal surface mesh. This achieves full surface correspondence between prone and supine views and can be further refined with an intensity based registration showing a statistically significant improvement (p < 0.001), and decreasing mean error from 11.9 mm to 6.0 mm measured at 1743 reference points from 17 CTC datasets.
Collapse
Affiliation(s)
- Thomas Hampshire
- Centre for Medical Image Computing, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Nie K, Chuang C, Kirby N, Braunstein S, Pouliot J. Site-specific deformable imaging registration algorithm selection using patient-based simulated deformations. Med Phys 2013; 40:041911. [PMID: 23556905 DOI: 10.1118/1.4793723] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Ke Nie
- Department of Radiation Oncology, University of California, San Francisco, California 94143, USA
| | | | | | | | | |
Collapse
|
9
|
Schreibmann E, Pantalone P, Waller A, Fox T. A measure to evaluate deformable registration fields in clinical settings. J Appl Clin Med Phys 2012; 13:3829. [PMID: 22955647 PMCID: PMC5718225 DOI: 10.1120/jacmp.v13i5.3829] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 04/25/2012] [Accepted: 06/13/2012] [Indexed: 12/21/2022] Open
Abstract
Deformable registration has migrated from a research topic to a widely used clinical tool that can improve radiotherapeutic treatment accuracy by tracking anatomical changes. Although various mathematical formulations have been reported in the literature and implemented in commercial software, we lack a straightforward method to verify a given solution in routine clinical use. We propose a metric using concepts derived from vector analysis that complements the standard evaluation tools to identify unrealistic wrappings in a displacement field. At the heart of the proposed procedure is identification of vortexes in the displacement field that do not correspond to underlying anatomical changes. Vortexes are detected and their intensity quantified using the CURL operator and presented as a vortex map overlaid on the original anatomy for rapid identification of problematic regions. We show application of the proposed metric on clinical scenarios of adaptive radiotherapy and treatment response assessment, where the CURL operator quantitatively detected errors in the displacement field and identified problematic regions that were invisible to classical voxel‐based evaluation methods. Unrealistic warping not visible to standard voxel‐based solution assessment can produce erroneous results when the deformable solution is applied on a secondary dataset, such as dose matrix in adaptive therapy or PET data for treatment response assessment. The proposed metric for evaluating deformable registration provides increased usability and accuracy of detecting unrealistic deformable registration solutions when compared to standard intensity‐based approaches. It is computationally efficient and provides a valuable platform for the clinical acceptance of image‐guided radiotherapy. PACS numbers: 87.57.nj; 87.55.Qr; 87.57.cp
Collapse
Affiliation(s)
- Eduard Schreibmann
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | |
Collapse
|
10
|
Wei Z, Yao J, Wang S, Liu J, Summers RM. Automated teniae coli detection and identification on computed tomographic colonography. Med Phys 2012; 39:964-75. [PMID: 22320805 DOI: 10.1118/1.3679013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Computed tomographic colonography (CTC) is a minimally invasive technique for colonic polyps and cancer screening. Teniae coli are three bands of longitudinal smooth muscle on the colon surface. Teniae coli are important anatomically meaningful landmarks on human colon. In this paper, the authors propose an automatic teniae coli detection method for CT colonography. METHODS The original CTC slices are first segmented and reconstructed to a 3D colon surface. Then, the 3D colon surface is unfolded using a reversible projection technique. After that the unfolded colon is projected to a 2D height map. The teniae coli are detected using the height map and then reversely projected back to the 3D colon. Since teniae are located at the junctions where the haustral folds meet, the authors apply 2D Gabor filter banks to extract features of haustral folds. The maximum response of the filter banks is then selected as the feature image. The fold centers are then identified based on local maxima and thresholding on the feature image. Connecting the fold centers yields a path of the folds. Teniae coli are extracted as lines running between the fold paths. The authors used the spatial relationship between ileocecal valve (ICV) and teniae mesocolica (TM) to identify the TM, then the teniae omentalis (TO) and the teniae libera (TL) can be identified subsequently. RESULTS The authors tested the proposed method on 47 cases of 37 patients, 10 of the patients with both supine and prone CT scans. The proposed method yielded performance with an average normalized root mean square error (RMSE) ( ± standard deviation [95% confidence interval]) of 4.87% ( ± 2.93%, [4.05% 5.69%]). CONCLUSIONS The proposed fully-automated teniae coli detection and identification method is accurate and promising for future clinical applications.
Collapse
Affiliation(s)
- Zhuoshi Wei
- National Institutes of Health Clinical Center, Bethesda, MD 20892-1182, USA
| | | | | | | | | |
Collapse
|
11
|
Roth HR, McClelland JR, Boone DJ, Modat M, Cardoso MJ, Hampshire TE, Hu M, Punwani S, Ourselin S, Slabaugh GG, Halligan S, Hawkes DJ. Registration of the endoluminal surfaces of the colon derived from prone and supine CT colonography. Med Phys 2011; 38:3077-89. [PMID: 21815381 DOI: 10.1118/1.3577603] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Computed tomographic (CT) colonography is a relatively new technique for detecting bowel cancer or potentially precancerous polyps. CT scanning is combined with three-dimensional (3D) image reconstruction to produce a virtual endoluminal representation similar to optical colonoscopy. Because retained fluid and stool can mimic pathology, CT data are acquired with the bowel cleansed and insufflated with gas and patient in both prone and supine positions. Radiologists then match visually endoluminal locations between the two acquisitions in order to determine whether apparent pathology is real or not. This process is hindered by the fact that the colon, essentially a long tube, can undergo considerable deformation between acquisitions. The authors present a novel approach to automatically establish spatial correspondence between prone and supine endoluminal colonic surfaces after surface parameterization, even in the case of local colon collapse. METHODS The complexity of the registration task was reduced from a 3D to a 2D problem by mapping the surfaces extracted from prone and supine CT colonography onto a cylindrical parameterization. A nonrigid cylindrical registration was then performed to align the full colonic surfaces. The curvature information from the original 3D surfaces was used to determine correspondence. The method can also be applied to cases with regions of local colonic collapse by ignoring the collapsed regions during the registration. RESULTS Using a development set, suitable parameters were found to constrain the cylindrical registration method. Then, the same registration parameters were applied to a different set of 13 validation cases, consisting of 8 fully distended cases and 5 cases exhibiting multiple colonic collapses. All polyps present were well aligned, with a mean (+/- std. dev.) registration error of 5.7 (+/- 3.4) mm. An additional set of 1175 reference points on haustral folds spread over the full endoluminal colon surfaces resulted in an error of 7.7 (+/- 7.4) mm. Here, 82% of folds were aligned correctly after registration with a further 15% misregistered by just onefold. CONCLUSIONS The proposed method reduces the 3D registration task to a cylindrical registration representing the endoluminal surface of the colon. Our algorithm uses surface curvature information as a similarity measure to drive registration to compensate for the large colorectal deformations that occur between prone and supine data acquisitions. The method has the potential to both enhance polyp detection and decrease the radiologist's interpretation time.
Collapse
Affiliation(s)
- Holger R Roth
- Centre for Medical Image Computing, University College London, London WC1E 6BT, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Fox T, Lawson J, Schreibmann E. Technical Aspects of PET/CT-Based Radiotherapy Planning. PET Clin 2011; 6:117-29. [DOI: 10.1016/j.cpet.2011.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Suh JW, Scheinost D, Dione DP, Dobrucki LW, Sinusas AJ, Papademetris X. A non-rigid registration method for serial lower extremity hybrid SPECT/CT imaging. Med Image Anal 2011; 15:96-111. [PMID: 20869902 PMCID: PMC2988883 DOI: 10.1016/j.media.2010.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 08/04/2010] [Accepted: 08/24/2010] [Indexed: 10/19/2022]
Abstract
Small animal X-ray computed tomographic (microCT) imaging of the lower extremities permits evaluation of arterial growth in models of hindlimb ischemia, and when applied serially can provide quantitative information about disease progression and aid in the evaluation of therapeutic interventions. The quantification of changes in tissue perfusion and concentration of molecular markers concurrently obtained using nuclear imaging requires the ability to non-rigidly register the microCT images over time, a task made more challenging by the potentially large changes in the positions of the legs due to articulation. While non-rigid registration methods have been extensively used in the evaluation of individual organs, application in whole body imaging has been limited, primarily because the scale of possible displacements and deformations is large resulting in poor convergence of most methods. In this paper we present a new method based on the extended demons algorithm that uses a level-set representation of the body contour and skeletal structure as an input. The proposed serial registration method reflects the natural physical moving combination of mouse anatomy in which the movement of bones is the framework for body movements, and the movement of skin constrains the detailed movements of the specific segmented body regions. We applied our method to both the registration of serial microCT mouse images and the quantification of microSPECT component of the serially hybrid microCT-SPECT images demonstrating improved performance as compared to existing registration techniques.
Collapse
Affiliation(s)
- Jung W. Suh
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
| | - Dustin Scheinost
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | | | | | - Albert J. Sinusas
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Medicine, Yale University, New Haven, CT, USA
| | - Xenophon Papademetris
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
14
|
Abstract
Computed tomography (CT) colonography is a minimally invasive screening technique for colorectal polyps, in which X-ray CT images of the distended colon are acquired, usually in the prone and supine positions of a single patient. Registration of segmented colon images from both positions will be useful for computer-assisted polyp detection. We have previously presented algorithms for registration of the prone and supine colons when both are well distended and there is a single connected lumen. However, due to inadequate bowel preparation or peristalsis, there may be collapsed segments in one or both of the colon images resulting in a topological change in the images. Such changes make deformable registration of the colon images difficult, and at present, there are no registration algorithms that can accommodate them. In this paper, we present an algorithm that can perform volume registration of prone/supine colon images in the presence of a topological change. For this purpose, 3-D volume images are embedded as a manifold in a 4-D space, and the manifold is evolved for nonrigid registration. Experiments using data from 24 patients show that the proposed method achieves good registration results in both the shape alignment of topologically different colon images from a single patient and the polyp location estimation between supine and prone colon images.
Collapse
Affiliation(s)
- Jung W Suh
- Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19014, USA.
| | | |
Collapse
|
15
|
|
16
|
Zeng W, Marino J, Gurijala KC, Gu X, Kaufman A. Supine and prone colon registration using quasi-conformal mapping. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2010; 16:1348-57. [PMID: 20975175 PMCID: PMC4536852 DOI: 10.1109/tvcg.2010.200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In virtual colonoscopy, CT scans are typically acquired with the patient in both supine (facing up) and prone (facing down) positions. The registration of these two scans is desirable so that the user can clarify situations or confirm polyp findings at a location in one scan with the same location in the other, thereby improving polyp detection rates and reducing false positives. However, this supine-prone registration is challenging because of the substantial distortions in the colon shape due to the patient's change in position. We present an efficient algorithm and framework for performing this registration through the use of conformal geometry to guarantee that the registration is a diffeomorphism (a one-to-one and onto mapping). The taeniae coli and colon flexures are automatically extracted for each supine and prone surface, employing the colon geometry. The two colon surfaces are then divided into several segments using the flexures, and each segment is cut along a taenia coli and conformally flattened to the rectangular domain using holomorphic differentials. The mean curvature is color encoded as texture images, from which feature points are automatically detected using graph cut segmentation, mathematic morphological operations, and principal component analysis. Corresponding feature points are found between supine and prone and are used to adjust the conformal flattening to be quasi-conformal, such that the features become aligned. We present multiple methods of visualizing our results, including 2D flattened rendering, corresponding 3D endoluminal views, and rendering of distortion measurements. We demonstrate the efficiency and efficacy of our registration method by illustrating matched views on both the 2D flattened colon images and in the 3D volume rendered colon endoluminal view. We analytically evaluate the correctness of the results by measuring the distance between features on the registered colons.
Collapse
Affiliation(s)
- Wei Zeng
- Computer Science Department at Stony Brook University
| | - Joseph Marino
- Computer Science Department at Stony Brook University
| | | | - Xianfeng Gu
- Computer Science Department at Stony Brook University
| | - Arie Kaufman
- Computer Science Department at Stony Brook University
| |
Collapse
|
17
|
Näppi JJ. CADe prompts and observer performance a game of confidence. Acad Radiol 2010; 17:945-7. [PMID: 20599154 DOI: 10.1016/j.acra.2010.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 05/21/2010] [Accepted: 05/23/2010] [Indexed: 11/26/2022]
|
18
|
Roth H, McClelland J, Modat M, Boone D, Hu M, Ourselin S, Slabaugh G, Halligan S, Hawkes D. Establishing spatial correspondence between the inner colon surfaces from prone and supine CT colonography. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2010; 13:497-504. [PMID: 20879437 DOI: 10.1007/978-3-642-15711-0_62] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2025]
Abstract
Colonography is an important screening tool for colorectal lesions. This paper presents a method for establishing spatial correspondence between prone and supine inner colon surfaces reconstructed from CT colonography. The method is able to account for the large deformations and torsions of the colon occurring through movement between the two positions. Therefore, we parameterised the two surfaces in order to provide a 2D indexing system over the full length of the colon using the Ricci flow method. This provides the input to a non-rigid B-spline registration in 2D space which establishes a correspondence for each surface point of the colon in prone and supine position. The method was validated on twelve clinical cases and demonstrated promising registration results over the majority of the colon surface.
Collapse
Affiliation(s)
- Holger Roth
- Centre for Medical Image Computing, University College London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|