1
|
Niendorf T, Gladytz T, Cantow K, Millward JM, Waiczies S, Seeliger E. Magnetic resonance imaging of renal oxygenation. Nat Rev Nephrol 2025:10.1038/s41581-025-00956-z. [PMID: 40269325 DOI: 10.1038/s41581-025-00956-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2025] [Indexed: 04/25/2025]
Abstract
Renal hypoxia has a key role in the pathophysiology of many kidney diseases. MRI provides surrogate markers of oxygenation, offering a critical opportunity to detect renal hypoxia. However, studies that have assessed the diagnostic performance of oxygenation MRI for kidney disorders have provided inconsistent results because MRI metrics do not fully capture the complexity of renal oxygenation. Most oxygenation MRI studies are descriptive in nature and fail to detail the pathophysiological importance of the imaging findings. These limitations have restricted the clinical application of oxygenation MRI and the full potential of this technology to facilitate early diagnosis, risk prediction and treatment monitoring of kidney disease has not yet been realized. Understanding of the relationship between renal tissue oxygenation and MRI metrics, which is affected by kidney size, tubular volume fraction and renal blood volume fraction, and measurement of these factors using novel MR methods is imperative for correct physiological interpretation of renal MR oximetry findings. Next steps to enable the clinical adoption of MR oximetry should involve multidisciplinary collaboration to address standardization of acquisition and data analysis protocols and establish reference values of MRI metrics.
Collapse
Affiliation(s)
- Thoralf Niendorf
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), Berlin, Germany.
- Experimental and Clinical Research Center, A joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
| | - Thomas Gladytz
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), Berlin, Germany
- Experimental and Clinical Research Center, A joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Kathleen Cantow
- Institute of Translational Physiology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Jason M Millward
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), Berlin, Germany
- Experimental and Clinical Research Center, A joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sonia Waiczies
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), Berlin, Germany
- Experimental and Clinical Research Center, A joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Erdmann Seeliger
- Institute of Translational Physiology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| |
Collapse
|
2
|
Niendorf T, Seeliger E, Cantow K, Flemming B, Waiczies S, Pohlmann A. Probing renal blood volume with magnetic resonance imaging. Acta Physiol (Oxf) 2020; 228:e13435. [PMID: 31876349 DOI: 10.1111/apha.13435] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023]
Abstract
Damage to the kidney substantially reduces life expectancy. Renal tissue hypoperfusion and hypoxia are key elements in the pathophysiology of acute kidney injury and its progression to chronic kidney disease. In vivo assessment of renal haemodynamics and tissue oxygenation remains a challenge. Blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI) is sensitive to changes in the effective transversal relaxation time (T2 *) in vivo, and is non-invasive and indicative of renal tissue oxygenation. However, the renal T2 * to tissue pO2 relationship is not governed exclusively by renal blood oxygenation, but is affected by physiological confounders with alterations in renal blood volume fraction (BVf) being of particular relevance. To decipher this interference probing renal BVf is essential for the pursuit of renal MR oximetry. Superparamagnetic iron oxide nanoparticle (USPIO) preparations can be used as MRI visible blood pool markers for detailing alterations in BVf. This review promotes the opportunities of MRI-based assessment of renal BVf. Following an outline on the specifics of renal oxygenation and perfusion, changes in renal BVf upon interventions and their potential impact on renal T2 * are discussed. We also describe the basic principles of renal BVf assessment using ferumoxytol-enhanced MRI in the equilibrium concentration regimen. We demonstrate that ferumoxytol does not alter control of renal haemodynamics and oxygenation. Preclinical applications of ferumoxytol enhanced renal MRI as well as considerations for its clinical implementation for examining renal BVf changes are provided alongside practical considerations. Finally, we explore the future directions of MRI-based assessment of renal BVf.
Collapse
Affiliation(s)
- Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.) Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| | - Erdmann Seeliger
- Institute of Physiology Charité – Universitätsmedizin Berlin Campus Mitte, and Center for Cardiovascular Research (CCR) Berlin Germany
| | - Kathleen Cantow
- Institute of Physiology Charité – Universitätsmedizin Berlin Campus Mitte, and Center for Cardiovascular Research (CCR) Berlin Germany
| | - Bert Flemming
- Institute of Physiology Charité – Universitätsmedizin Berlin Campus Mitte, and Center for Cardiovascular Research (CCR) Berlin Germany
| | - Sonia Waiczies
- Berlin Ultrahigh Field Facility (B.U.F.F.) Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.) Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| |
Collapse
|
5
|
Pohlmann A, Cantow K, Huelnhagen T, Grosenick D, Dos Santos Periquito J, Boehmert L, Gladytz T, Waiczies S, Flemming B, Seeliger E, Niendorf T. Experimental MRI Monitoring of Renal Blood Volume Fraction Variations En Route to Renal Magnetic Resonance Oximetry. ACTA ACUST UNITED AC 2017; 3:188-200. [PMID: 30042981 PMCID: PMC6024389 DOI: 10.18383/j.tom.2017.00012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diagnosis of early-stage acute kidney injury (AKI) will benefit from a timely identification of local tissue hypoxia. Renal tissue hypoxia is an early feature in AKI pathophysiology, and renal oxygenation is increasingly being assessed through T2*-weighted magnetic resonance imaging (MRI). However, changes in renal blood volume fraction (BVf) confound renal T2*. The aim of this study was to assess the feasibility of intravascular contrast-enhanced MRI for monitoring renal BVf during physiological interventions that are concomitant with variations in BVf and to explore the possibility of correcting renal T2* for BVf variations. A dose-dependent study of the contrast agent ferumoxytol was performed in rats. BVf was monitored throughout short-term occlusion of the renal vein, which is known to markedly change renal blood partial pressure of O2 and BVf. BVf calculated from MRI measurements was used to estimate oxygen saturation of hemoglobin (SO2). BVf and SO2 were benchmarked against cortical data derived from near-infrared spectroscopy. As estimated from magnetic resonance parametric maps of T2 and T2*, BVf was shown to increase, whereas SO2 was shown to decline during venous occlusion (VO). This observation could be quantitatively reproduced in test–retest scenarios. Changes in BVf and SO2 were in good agreement with data obtained from near-infrared spectroscopy. Our findings provide motivation to advance multiparametric MRI for studying AKIs, with the ultimate goal of translating MRI-based renal BVf mapping into clinical practice en route noninvasive renal magnetic resonance oximetry as a method of assessing AKI and progression to chronic damage.
Collapse
Affiliation(s)
- Andreas Pohlmann
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Ultrahigh Field Facility (B.U.F.F.), Berlin, Germany
| | - Kathleen Cantow
- Institute of Physiology and Center for Cardiovascular Research, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Till Huelnhagen
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Ultrahigh Field Facility (B.U.F.F.), Berlin, Germany
| | - Dirk Grosenick
- Physikalisch-Technische-Bundesanstalt (PTB), Berlin, Germany
| | - Joāo Dos Santos Periquito
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Ultrahigh Field Facility (B.U.F.F.), Berlin, Germany
| | - Laura Boehmert
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Ultrahigh Field Facility (B.U.F.F.), Berlin, Germany
| | - Thomas Gladytz
- Physikalisch-Technische-Bundesanstalt (PTB), Berlin, Germany
| | - Sonia Waiczies
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Ultrahigh Field Facility (B.U.F.F.), Berlin, Germany
| | - Bert Flemming
- Institute of Physiology and Center for Cardiovascular Research, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Erdmann Seeliger
- Institute of Physiology and Center for Cardiovascular Research, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Thoralf Niendorf
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Ultrahigh Field Facility (B.U.F.F.), Berlin, Germany.,Experimental and Clinical Research Center, Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; and.,Deutsches Zentrum für Herz- Kreislauf-Forschung (DZHK; German Centre for Cardiovascular Research), Berlin, Germany
| |
Collapse
|
6
|
Toth GB, Varallyay CG, Horvath A, Bashir MR, Choyke PL, Daldrup-Link HE, Dosa E, Finn JP, Gahramanov S, Harisinghani M, Macdougall I, Neuwelt A, Vasanawala SS, Ambady P, Barajas R, Cetas JS, Ciporen J, DeLoughery TJ, Doolittle ND, Fu R, Grinstead J, Guimaraes AR, Hamilton BE, Li X, McConnell HL, Muldoon LL, Nesbit G, Netto JP, Petterson D, Rooney WD, Schwartz D, Szidonya L, Neuwelt EA. Current and potential imaging applications of ferumoxytol for magnetic resonance imaging. Kidney Int 2017; 92:47-66. [PMID: 28434822 PMCID: PMC5505659 DOI: 10.1016/j.kint.2016.12.037] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/17/2016] [Accepted: 12/06/2016] [Indexed: 01/18/2023]
Abstract
Contrast-enhanced magnetic resonance imaging is a commonly used diagnostic tool. Compared with standard gadolinium-based contrast agents, ferumoxytol (Feraheme, AMAG Pharmaceuticals, Waltham, MA), used as an alternative contrast medium, is feasible in patients with impaired renal function. Other attractive imaging features of i.v. ferumoxytol include a prolonged blood pool phase and delayed intracellular uptake. With its unique pharmacologic, metabolic, and imaging properties, ferumoxytol may play a crucial role in future magnetic resonance imaging of the central nervous system, various organs outside the central nervous system, and the cardiovascular system. Preclinical and clinical studies have demonstrated the overall safety and effectiveness of this novel contrast agent, with rarely occurring anaphylactoid reactions. The purpose of this review is to describe the general and organ-specific properties of ferumoxytol, as well as the advantages and potential pitfalls associated with its use in magnetic resonance imaging. To more fully demonstrate the applications of ferumoxytol throughout the body, an imaging atlas was created and is available online as supplementary material.
Collapse
Affiliation(s)
- Gerda B Toth
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Csanad G Varallyay
- Department of Radiology, Oregon Health & Science University, Portland, Oregon, USA
| | - Andrea Horvath
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Mustafa R Bashir
- Department of Radiology, Duke University Medical Center, 3808, Durham, North Carolina, USA; Center for Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, North Carolina, USA
| | - Peter L Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Heike E Daldrup-Link
- Department of Radiology, Section of Pediatric Radiology, Lucile Packard Children's Hospital, Stanford University, 725 Welch Rd, Stanford, California, USA
| | - Edit Dosa
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - John Paul Finn
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Seymur Gahramanov
- Department of Neurosurgery, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Mukesh Harisinghani
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Iain Macdougall
- Department of Renal Medicine, King's College Hospital, London, UK
| | - Alexander Neuwelt
- Division of Medical Oncology, University of Colorado Denver, Aurora, Colorado, USA
| | | | - Prakash Ambady
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Ramon Barajas
- Department of Radiology, Oregon Health & Science University, Portland, Oregon, USA
| | - Justin S Cetas
- Department of Neurosurgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Jeremy Ciporen
- Department of Neurosurgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Thomas J DeLoughery
- Department of Hematology and Medical Oncology, Oregon Health & Science University, Portland, Oregon, USA
| | - Nancy D Doolittle
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Rongwei Fu
- School of Public Health, Oregon Health & Science University, Portland, Oregon, USA; Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon, USA
| | | | | | - Bronwyn E Hamilton
- Department of Radiology, Oregon Health & Science University, Portland, Oregon, USA
| | - Xin Li
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Heather L McConnell
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Leslie L Muldoon
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Gary Nesbit
- Department of Radiology, Oregon Health & Science University, Portland, Oregon, USA
| | - Joao P Netto
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA; Department of Radiology, Oregon Health & Science University, Portland, Oregon, USA
| | - David Petterson
- Department of Radiology, Oregon Health & Science University, Portland, Oregon, USA
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Daniel Schwartz
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA; Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Laszlo Szidonya
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Edward A Neuwelt
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA; Department of Neurosurgery, Oregon Health & Science University, Portland, Oregon, USA; Portland Veterans Affairs Medical Center, Portland, Oregon, USA.
| |
Collapse
|