1
|
Vosshenrich J, Breit HC, Donners R, Obmann MM, Walter SS, Serfaty A, Rodrigues TC, Recht M, Stern SE, Fritz J. Clinical Implementation of Sixfold-Accelerated Deep Learning Super-Resolution Knee MRI in Under 5 Minutes: Arthroscopy-Validated Diagnostic Performance. AJR Am J Roentgenol 2025. [PMID: 40266704 DOI: 10.2214/ajr.25.32878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Background - Deep learning (DL) super-resolution image reconstruction enables higher acceleration factors for combined parallel imaging-simultaneous multislice-accelerated knee MRI but requires performance validation against external reference standards. Objective - The purpose of this study was to validate the clinical efficacy of sixfold-accelerated sub-5-minute 3-T knee MRI employing combined threefold parallel imaging (PI)-twofold simultaneous multislice (SMS) acceleration and DL super-resolution image reconstruction against arthroscopic surgery. Methods - Consecutive adult patients with painful knee conditions who underwent sixfold PI-SMS-accelerated DL super-resolution 3-T knee MRI and arthroscopic surgery between October 2022 and July 2023 were retrospectively included. Seven fellowship-trained musculoskeletal radiologists independently assessed the MRI studies for image quality parameters, presence of artifacts, structural visibility (Likert scales: 1 [very bad/severe] to 5 [very good/absent]), and the presence of cruciate ligament tears, collateral ligament tears, meniscal tears, cartilage defects, and fractures. Statistical analyses included kappa-based interreader agreements and diagnostic performance testing. Results - The final sample included 124 adult patients (mean age ± SD, 46 ± 17 years; 79 men, 45 women) who underwent knee MRI and arthroscopic surgery within a median of 28 days (range, 4-56 days). Overall image quality was good to very good (median, 4 [IQR, 4-5]) with very good interreader agreement (κ = 0.86). Motion artifacts were absent (median, 5 [IQR, 5-5]), and image noise was minimal (median, 4 [IQR, 4-5]). Visibility of anatomic structures was very good (median, 5 [IQR, 5-5]). Diagnostic performance for diagnosing arthroscopy-validated structural abnormalities was good to excellent (AUC ≥ 0.81) with at least good interreader agreement (κ ≥ 0.72). The sensitivity, specificity, accuracy, and AUC values were 100%, 99%, 99%, and 0.99, for anterior cruciate ligament tears; 100%, 100%, 100%, and 1.00 for posterior cruciate ligament tears; 90%, 95%, 94%, and 0.93 for medial meniscus tears; 76%, 97%, 90%, and 0.86 for lateral meniscus tears; and 85%, 88%, 88%, and 0.81 for articular cartilage defects, respectively. Conclusion - Sixfold PI-SMS-accelerated sub-5-minute DL super-resolution 3-T knee MRI has excellent diagnostic performance for detecting internal derangement. Clinical Impact - Sixfold PI-SMS-accelerated DL super-resolution 3-T knee MRI provides high efficiency through short scan times and high diagnostic performance.
Collapse
Affiliation(s)
- Jan Vosshenrich
- Department of Radiology, Grossman School of Medicine, New York University, New York, NY
- Department of Radiology, University Hospital Basel, Basel, Switzerland
| | | | - Ricardo Donners
- Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Markus M Obmann
- Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Sven S Walter
- Department of Radiology, University Hospital Tübingen, Tübingen, Germany
| | | | | | - Michael Recht
- Department of Radiology, Grossman School of Medicine, New York University, New York, NY
| | - Steven E Stern
- Centre for Data Analytics, Bond University, Gold Coast, Australia
| | - Jan Fritz
- Department of Radiology, Grossman School of Medicine, New York University, New York, NY
| |
Collapse
|
2
|
Smekens C, Beirinckx Q, Bosmans F, Vanhevel F, Snoeckx A, Sijbers J, Jeurissen B, Janssens T, Van Dyck P. Deep Learning-Enhanced Accelerated 2D TSE and 3D Superresolution Dixon TSE for Rapid Comprehensive Knee Joint Assessment. Invest Radiol 2025; 60:220-233. [PMID: 39190787 PMCID: PMC11801463 DOI: 10.1097/rli.0000000000001118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/09/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVES The aim of this study was to evaluate the use of a multicontrast deep learning (DL)-reconstructed 4-fold accelerated 2-dimensional (2D) turbo spin echo (TSE) protocol and the feasibility of 3-dimensional (3D) superresolution reconstruction (SRR) of DL-enhanced 6-fold accelerated 2D Dixon TSE magnetic resonance imaging (MRI) for comprehensive knee joint assessment, by comparing image quality and diagnostic performance with a conventional 2-fold accelerated 2D TSE knee MRI protocol. MATERIALS AND METHODS This prospective, ethics-approved study included 19 symptomatic adult subjects who underwent knee MRI on a clinical 3 T scanner. Every subject was scanned with 3 DL-enhanced acquisition protocols in a single session: a clinical standard 2-fold in-plane parallel imaging (PI) accelerated 2D TSE-based protocol (5 sequences, 11 minutes 23 seconds) that served as a reference, a DL-reconstructed 4-fold accelerated 2D TSE protocol combining 2-fold PI and 2-fold simultaneous multislice acceleration (5 sequences, 6 minutes 24 seconds), and a 3D SRR protocol based on DL-enhanced 6-fold accelerated (ie, 3-fold PI and 2-fold simultaneous multislice) 2D Dixon TSE MRI (6 anisotropic 2D Dixon TSE acquisitions rotated around the phase-encoding axis, 6 minutes 24 seconds). This resulted in a total of 228 knee MRI scans comprising 21,204 images. Three readers evaluated all pseudonymized and randomized images in terms of image quality using a 5-point Likert scale. Two of the readers (musculoskeletal radiologists) additionally evaluated anatomical visibility and diagnostic confidence to assess normal and pathological knee structures with a 5-point Likert scale. They recorded the presence and location of internal knee derangements, including cartilage defects, meniscal tears, tears of ligaments, tendons and muscles, and bone injuries. The statistical analysis included nonparametric Friedman tests, and interreader and intrareader agreement assessment using the weighted Fleiss-Cohen kappa (κ) statistic. P values of less than 0.05 were considered statistically significant. RESULTS The evaluated DL-enhanced 4-fold accelerated 2D TSE protocol provided very similar image quality and anatomical visibility to the standard 2D TSE protocol, whereas the 3D SRR Dixon TSE protocol scored less in terms of overall image quality due to reduced edge sharpness and the presence of artifacts ( P < 0.001). Subjective signal-to-noise ratio, contrast resolution, fluid brightness, and fat suppression were good to excellent for all protocols. For 1 reader, the Dixon method of the 3D SRR protocol provided significantly better fat suppression than the spectral fat saturation applied in the standard 2D TSE protocol ( P < 0.05). The visualization of knee structures with 3D SRR Dixon TSE was very similar to the standard protocol, except for cartilage, tendons, and bone, which were affected by the presence of reconstruction and aliasing artifacts ( P < 0.001). The diagnostic confidence of both readers was high for all protocols and all knee structures, except for cartilage and tendons. The standard 2D TSE protocol showed a significantly higher diagnostic confidence for assessing tendons than 3D SRR Dixon TSE MRI ( P < 0.01). The interreader and intrareader agreement for the assessment of internal knee derangements using any of the 3 protocols was substantial to almost perfect (κ = 0.67-1.00). For cartilage, the interreader agreement was substantial for DL-enhanced accelerated 2D TSE (κ = 0.79) and almost perfect for standard 2D TSE (κ = 0.98) and 3D SRR Dixon TSE (κ = 0.87). For menisci, the interreader agreement was substantial for 3D SRR Dixon TSE (κ = 0.70-0.80) and substantial to almost perfect for standard 2D TSE (κ = 0.80-0.99) and DL-enhanced 2D TSE (κ = 0.87-1.00). Moreover, the total acquisition time was reduced by 44% when using the DL-enhanced accelerated 2D TSE or 3D SRR Dixon TSE protocol instead of the conventional 2D TSE protocol. CONCLUSIONS The presented DL-enhanced 4-fold accelerated 2D TSE protocol provides image quality and diagnostic performance similar to the standard 2D protocol. Moreover, the 3D SRR of DL-enhanced 6-fold accelerated 2D Dixon TSE MRI is feasible for multicontrast 3D knee MRI as its diagnostic performance is comparable to standard 2-fold accelerated 2D knee MRI. However, reconstruction and aliasing artifacts need to be further addressed to guarantee a more reliable visualization and assessment of cartilage, tendons, and bone. Both the 2D and 3D SRR DL-enhanced protocols enable a 44% faster examination compared with conventional 2-fold accelerated routine 2D TSE knee MRI and thus open new paths for more efficient clinical 2D and 3D knee MRI.
Collapse
|
3
|
Vosshenrich J, Fritz J. [Accelerated musculoskeletal magnetic resonance imaging with deep learning-based image reconstruction at 0.55 T-3 T]. RADIOLOGIE (HEIDELBERG, GERMANY) 2024; 64:758-765. [PMID: 38864874 PMCID: PMC11422270 DOI: 10.1007/s00117-024-01325-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/13/2024]
Abstract
CLINICAL/METHODICAL ISSUE Magnetic resonance imaging (MRI) is a central component of musculoskeletal imaging. However, long image acquisition times can pose practical barriers in clinical practice. STANDARD RADIOLOGICAL METHODS MRI is the established modality of choice in the diagnostic workup of injuries and diseases of the musculoskeletal system due to its high spatial resolution, excellent signal-to-noise ratio (SNR), and unparalleled soft tissue contrast. METHODOLOGICAL INNOVATIONS Continuous advances in hardware and software technology over the last few decades have enabled four-fold acceleration of 2D turbo-spin-echo (TSE) without compromising image quality or diagnostic performance. The recent clinical introduction of deep learning (DL)-based image reconstruction algorithms helps to minimize further the interdependency between SNR, spatial resolution and image acquisition time and allows the use of higher acceleration factors. PERFORMANCE The combined use of advanced acceleration techniques and DL-based image reconstruction holds enormous potential to maximize efficiency, patient comfort, access, and value of musculoskeletal MRI while maintaining excellent diagnostic accuracy. ACHIEVEMENTS Accelerated MRI with DL-based image reconstruction has rapidly found its way into clinical practice and proven to be of added value. Furthermore, recent investigations suggest that the potential of this technology does not yet appear to be fully harvested. PRACTICAL RECOMMENDATIONS Deep learning-reconstructed fast musculoskeletal MRI examinations can be reliably used for diagnostic work-up and follow-up of musculoskeletal pathologies in clinical practice.
Collapse
Affiliation(s)
- Jan Vosshenrich
- Department of Radiology, Grossman School of Medicine, New York University, 660 First Avenue, 10016, New York, NY, USA.
- Klinik für Radiologie und Nuklearmedizin, Universitätsspital Basel, Petersgraben 4, 4031, Basel, Schweiz.
| | - Jan Fritz
- Department of Radiology, Grossman School of Medicine, New York University, 660 First Avenue, 10016, New York, NY, USA
| |
Collapse
|
4
|
Fritz B, de Cesar Netto C, Fritz J. Multiaxial 3D MRI of the Ankle: Advanced High-Resolution Visualization of Ligaments, Tendons, and Articular Cartilage. Clin Podiatr Med Surg 2024; 41:685-706. [PMID: 39237179 DOI: 10.1016/j.cpm.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
MRI is a valuable tool for diagnosing a broad spectrum of acute and chronic ankle disorders, including ligament tears, tendinopathy, and osteochondral lesions. Traditional two-dimensional (2D) MRI provides a high image signal and contrast of anatomic structures for accurately characterizing articular cartilage, bone marrow, synovium, ligaments, tendons, and nerves. However, 2D MRI limitations are thick slices and fixed slice orientations. In clinical practice, 2D MRI is limited to 2 to 3 mm slice thickness, which can cause blurred contours of oblique structures due to volume averaging effects within the image slice. In addition, image plane orientations are fixated and cannot be changed after the scan, resulting in 2D MRI lacking multiplanar and multiaxial reformation abilities for individualized image plane orientations along oblique and curved anatomic structures, such as ankle ligaments and tendons. In contrast, three-dimensional (3D) MRI is a newer, clinically available MRI technique capable of acquiring high-resolution ankle MRI data sets with isotropic voxel size. The inherently high spatial resolution of 3D MRI permits up to five times thinner (0.5 mm) image slices. In addition, 3D MRI can be acquired image voxel with the same edge length in all three space dimensions (isotropism), permitting unrestricted multiplanar and multiaxial image reformation and postprocessing after the MRI scan. Clinical 3D MRI of the ankle with 0.5 to 0.7 mm isotropic voxel size resolves the smallest anatomic ankle structures and abnormalities of ligament and tendon fibers, osteochondral lesions, and nerves. After acquiring the images, operators can align image planes individually along any anatomic structure of interest, such as ligaments and tendons segments. In addition, curved multiplanar image reformations can unfold the entire course of multiaxially curved structures, such as perimalleolar tendons, into one image plane. We recommend adding 3D MRI pulse sequences to traditional 2D MRI protocols to visualize small and curved ankle structures to better advantage. This article provides an overview of the clinical application of 3D MRI of the ankle, compares diagnostic performances of 2D and 3D MRI for diagnosing ankle abnormalities, and illustrates clinical 3D ankle MRI applications.
Collapse
Affiliation(s)
- Benjamin Fritz
- Department of Radiology, Balgrist University Hospital, Forchstrasse 340, Zurich 8008, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Cesar de Cesar Netto
- Department of Orthopaedics and Rehabilitation, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Jan Fritz
- Department of Radiology, Division of Musculoskeletal Radiology, NYU Grossman School of Medicine, 660 1st Avenue, New York, NY 10016, USA.
| |
Collapse
|
5
|
Chung CB, Pathria MN, Resnick D. MRI in MSK: is it the ultimate examination? Skeletal Radiol 2024; 53:1727-1735. [PMID: 38277028 DOI: 10.1007/s00256-024-04601-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Affiliation(s)
- Christine B Chung
- Department of Radiology, University of California, San Diego, CA, USA.
- Department of Radiology, Veterans Affairs Medical Center, San Diego, CA, USA.
| | - Mini N Pathria
- Department of Radiology, University of California, San Diego, CA, USA
| | - Donald Resnick
- Department of Radiology, University of California, San Diego, CA, USA
| |
Collapse
|
6
|
Vosshenrich J, Koerzdoerfer G, Fritz J. Modern acceleration in musculoskeletal MRI: applications, implications, and challenges. Skeletal Radiol 2024; 53:1799-1813. [PMID: 38441617 DOI: 10.1007/s00256-024-04634-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 08/09/2024]
Abstract
Magnetic resonance imaging (MRI) is crucial for accurately diagnosing a wide spectrum of musculoskeletal conditions due to its superior soft tissue contrast resolution. However, the long acquisition times of traditional two-dimensional (2D) and three-dimensional (3D) fast and turbo spin-echo (TSE) pulse sequences can limit patient access and comfort. Recent technical advancements have introduced acceleration techniques that significantly reduce MRI times for musculoskeletal examinations. Key acceleration methods include parallel imaging (PI), simultaneous multi-slice acquisition (SMS), and compressed sensing (CS), enabling up to eightfold faster scans while maintaining image quality, resolution, and safety standards. These innovations now allow for 3- to 6-fold accelerated clinical musculoskeletal MRI exams, reducing scan times to 4 to 6 min for joints and spine imaging. Evolving deep learning-based image reconstruction promises even faster scans without compromising quality. Current research indicates that combining acceleration techniques, deep learning image reconstruction, and superresolution algorithms will eventually facilitate tenfold accelerated musculoskeletal MRI in routine clinical practice. Such rapid MRI protocols can drastically reduce scan times by 80-90% compared to conventional methods. Implementing these rapid imaging protocols does impact workflow, indirect costs, and workload for MRI technologists and radiologists, which requires careful management. However, the shift from conventional to accelerated, deep learning-based MRI enhances the value of musculoskeletal MRI by improving patient access and comfort and promoting sustainable imaging practices. This article offers a comprehensive overview of the technical aspects, benefits, and challenges of modern accelerated musculoskeletal MRI, guiding radiologists and researchers in this evolving field.
Collapse
Affiliation(s)
- Jan Vosshenrich
- Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Radiology, University Hospital Basel, Basel, Switzerland
| | | | - Jan Fritz
- Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Wen D, Zhou X, Hou B, Zhang Q, Raithel E, Wang Y, Wu G, Li X. 3D-DESS MRI with CAIPIRINHA two- and fourfold acceleration for quantitatively assessing knee cartilage morphology. Skeletal Radiol 2024; 53:1481-1494. [PMID: 38347270 DOI: 10.1007/s00256-024-04605-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 06/25/2024]
Abstract
OBJECTIVES This study aimed to assess the diagnostic image quality and compare the knee cartilage segmentation results using a controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA)-accelerated 3D-dual echo steady-state (DESS) research package sequence in the knee. MATERIALS AND METHODS A total of 64 subjects underwent both two- and fourfold CAIPIRINHA-accelerated 3D-DESS and DESS without parallel acceleration technique of the knee on a 3.0 T system. Two musculoskeletal radiologists evaluated the images independently for image quality and diagnostic capability following randomization and anonymization. The consistency of automatic segmentation results between sequences was explored using an automatic knee cartilage segmentation research application. The descriptive statistics and inter-observer and inter-method concordance of various acceleration sequences were investigated. P values < .05 were considered significant. RESULTS For image quality evaluation, the image signal-to-noise ratio and contrast-to-noise ratio decreased with the decrease in scanning time. However, it is accompanied by the reduction of artifacts. Using 3D-DESS without parallel acceleration technique as the standard for cartilage grading diagnosisand the diagnostic agreement of two- and fourfold CAIPIRINHA-accelerated 3D-DESS was good, kappa value was 0.860 (P < .001) and 0.804 (p < 0.001), respectively. Regarding cartilage defects, the sensitivity and specificity of the twofold acceleration 3D-CAIPIRINHA-DESS were 95.56% and 97.70%, and the fourfold CAIPIRINHA-accelerated 3D-DESS were 91.49% and 97.65%, respectively. The intraclass correlation coefficients of various sequences in cartilage segmentation were almost all greater than 0.9. CONCLUSION The CAIPIRINHA-accelerated 3D-DESS sequence maintained comparable diagnostic and segmentations performance of knee cartilage after a 60% scan time reduction.
Collapse
Affiliation(s)
- Donglin Wen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan City, 430030, Hubei Province, China
| | - Xiaoyue Zhou
- MR Collaboration, Siemens Healthineers Ltd., Shanghai, China
| | - Bowen Hou
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan City, 430030, Hubei Province, China
| | - Qiong Zhang
- Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, China
| | | | - Yi Wang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan City, 430030, Hubei Province, China
| | - Gang Wu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan City, 430030, Hubei Province, China.
| | - Xiaoming Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan City, 430030, Hubei Province, China.
| |
Collapse
|
8
|
Kakigi T, Sakamoto R, Arai R, Yamamoto A, Kuriyama S, Sano Y, Imai R, Numamoto H, Miyake KK, Saga T, Matsuda S, Nakamoto Y. Thin-slice 2D MR Imaging of the Shoulder Joint Using Denoising Deep Learning Reconstruction Provides Higher Image Quality Than 3D MR Imaging. Magn Reson Med Sci 2024:mp.2023-0115. [PMID: 38777762 DOI: 10.2463/mrms.mp.2023-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
PURPOSE This study was conducted to evaluate whether thin-slice 2D fat-saturated proton density-weighted images of the shoulder joint in three imaging planes combined with parallel imaging, partial Fourier technique, and denoising approach with deep learning-based reconstruction (dDLR) are more useful than 3D fat-saturated proton density multi-planar voxel images. METHODS Eighteen patients who underwent MRI of the shoulder joint at 3T were enrolled. The denoising effect of dDLR in 2D was evaluated using coefficient of variation (CV). Qualitative evaluation of anatomical structures, noise, and artifacts in 2D after dDLR and 3D was performed by two radiologists using a five-point Likert scale. All were analyzed statistically. Gwet's agreement coefficients were also calculated. RESULTS The CV of 2D after dDLR was significantly lower than that before dDLR (P < 0.05). Both radiologists rated 2D higher than 3D for all anatomical structures and noise (P < 0.05), except for artifacts. Both Gwet's agreement coefficients of anatomical structures, noise, and artifacts in 2D and 3D produced nearly perfect agreement between the two radiologists. The evaluation of 2D tended to be more reproducible than 3D. CONCLUSION 2D with parallel imaging, partial Fourier technique, and dDLR was proved to be superior to 3D for depicting shoulder joint structures with lower noise.
Collapse
Affiliation(s)
- Takahide Kakigi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Ryo Sakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
- Department of Real World Data Research and Development, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Ryuzo Arai
- Department of Orthopaedic Surgery, Kyoto Katsura Hospital, Kyoto, Kyoto, Japan
| | - Akira Yamamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
- Center for Medical Education, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Shinichi Kuriyama
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Yuichiro Sano
- MRI Systems Division, Canon Medical Systems Corporation, Otawara, Tochigi, Japan
| | - Rimika Imai
- MRI Systems Division, Canon Medical Systems Corporation, Otawara, Tochigi, Japan
| | - Hitomi Numamoto
- Division of Clinical Radiology Service, Kyoto University Hospital, Kyoto, Kyoto, Japan
- Department of Advanced Medical Imaging Research, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Kanae Kawai Miyake
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
- Department of Advanced Medical Imaging Research, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Tsuneo Saga
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
- Department of Advanced Medical Imaging Research, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| |
Collapse
|
9
|
Bajaj S, Chhabra A, Taneja AK. 3D isotropic MRI of ankle: review of literature with comparison to 2D MRI. Skeletal Radiol 2024; 53:825-846. [PMID: 37978990 DOI: 10.1007/s00256-023-04513-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
The ankle joint has complex anatomy with different tissue structures and is commonly involved in traumatic injuries. Magnetic resonance imaging (MRI) is the primary imaging modality used to assess the soft tissue structures around the ankle joint including the ligaments, tendons, and articular cartilage. Two-dimensional (2D) fast spin echo/turbo spin echo (FSE/TSE) sequences are routinely used for ankle joint imaging. While the 2D sequences provide a good signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) with high spatial resolution, there are some limitations to their use owing to the thick slices, interslice gaps leading to partial volume effects, limited fluid contrast, and the need to acquire separate images in different orthogonal planes. The 3D MR imaging can overcome these limitations and recent advances have led to technical improvements that enable its widespread clinical use in acceptable time periods. The volume imaging renders the advantage of reconstructing into thin continuous slices with isotropic voxels enabling multiplanar reconstructions that helps in visualizing complex anatomy of the structure of interest throughout their course with improved sharpness, definition of anatomic variants, and fluid conspicuity of lesions and injuries. Recent advances have also reduced the acquisition time of the 3D datasets making it more efficient than 2D sequences. This article reviews the recent technical developments in the domain 3D MRI, compares imaging with 3D versus 2D sequences, and demonstrates the use-case scenarios with interesting cases, and benefits of 3D MRI in evaluating various ankle joint components and their lesions.
Collapse
Affiliation(s)
- Suryansh Bajaj
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Avneesh Chhabra
- Musculoskeletal Radiology Division, Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
- Department of Orthopaedic Surgery, UT Southwestern Medical Center, Dallas, TX, USA
- Johns Hopkins University, Baltimore, MD, USA
- Walton Center of Neurosciences, Liverpool, UK
- University of Dallas, Richardson, TX, USA
| | - Atul Kumar Taneja
- Musculoskeletal Radiology Division, Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA.
| |
Collapse
|
10
|
Fritz B. [Imaging of the anterior cruciate ligament and anterolateral rotational instability of the knee joint]. RADIOLOGIE (HEIDELBERG, GERMANY) 2024; 64:261-270. [PMID: 38441595 DOI: 10.1007/s00117-024-01278-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 03/28/2024]
Abstract
The anterior cruciate ligament (ACL) is essential for the stability of the knee joint and ACL tears are one of the most common sports injuries with a high incidence, especially in sports that require rotational movements and abrupt changes in direction. Injuries of the ACL are rarely isolated and are often accompanied by meniscal and other internal knee injuries, which increase the risk of osteoarthritis. The spectrum of ACL injuries includes strains, partial tears and complete tears. Magnetic resonance imaging (MRI) plays a pivotal role in the diagnostics as it can accurately depict not only the ACL but also accompanying injuries. Proton density and T2-weighted sequences are particularly suitable for evaluating the ACL, which is usually well visible and assessable in all planes. In addition to depicting fiber disruption as a direct sign and central diagnostic indicator of an ACL tear, there are numerous other direct and indirect signs of an ACL injury in MRI. These include abnormal fiber orientations, signal increases and an anterior subluxation of the tibia relative to the femur. The bone marrow edema patterns often associated with ACL tears are indicative of the underlying injury mechanism. The treatment of ACL tears can be conservative or surgical depending on various factors, such as the patient's activity level and the presence of accompanying injuries. The precise and comprehensive description of ACL injuries by radiology is crucial for optimal treatment planning. Anterolateral rotational instability (ALRI) of the knee joint characterizes a condition of excessive lateral and rotational mobility of the tibia in relation to the femur in the anterolateral knee region. This instability is primarily caused by a rupture of the ACL, with the anterolateral ligament (ALL) that was rediscovered about 10 years ago, also being attributed a role in stabilizing the knee. Although ALRI is primarily diagnosed through clinical examinations, MRI is indispensable for detecting injuries to the ACL, ALL, and other internal knee structures, which is essential for developing an optimal treatment strategy.
Collapse
Affiliation(s)
- Benjamin Fritz
- Abteilung für Radiologie, Universitätsklinik Balgrist, Forchstr. 340, 8008, Zürich, Schweiz.
- Medizinische Fakultät, Universität Zürich, Zürich, Schweiz.
| |
Collapse
|
11
|
Roemer FW, Jarraya M, Hayashi D, Crema MD, Haugen IK, Hunter DJ, Guermazi A. A perspective on the evolution of semi-quantitative MRI assessment of osteoarthritis: Past, present and future. Osteoarthritis Cartilage 2024; 32:460-472. [PMID: 38211810 DOI: 10.1016/j.joca.2024.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/15/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
OBJECTIVE This perspective describes the evolution of semi-quantitative (SQ) magnetic resonance imaging (MRI) in characterizing structural tissue pathologies in osteoarthritis (OA) imaging research over the last 30 years. METHODS Authors selected representative articles from a PubMed search to illustrate key steps in SQ MRI development, validation, and application. Topics include main scoring systems, reading techniques, responsiveness, reliability, technical considerations, and potential impact of artificial intelligence (AI). RESULTS Based on original research published between 1993 and 2023, this article introduces available scoring systems, including but not limited to Whole-Organ Magnetic Resonance Imaging Score (WORMS) as the first system for whole-organ assessment of the knee and the now commonly used MRI Osteoarthritis Knee Score (MOAKS) instrument. Specific systems for distinct OA subtypes or applications have been developed as well as MRI scoring instruments for other joints such as the hip, the fingers or thumb base. SQ assessment has proven to be valid, reliable, and responsive, aiding OA investigators in understanding the natural history of the disease and helping to detect response to treatment. AI may aid phenotypic characterization in the future. SQ MRI assessment's role is increasing in eligibility and safety evaluation in knee OA clinical trials. CONCLUSIONS Evidence supports the validity, reliability, and responsiveness of SQ MRI assessment in understanding structural aspects of disease onset and progression. SQ scoring has helped explain associations between structural tissue damage and clinical manifestations, as well as disease progression. While AI may support human readers to more efficiently perform SQ assessment in the future, its current application in clinical trials still requires validation and regulatory approval.
Collapse
Affiliation(s)
- Frank W Roemer
- Universitätsklinikum Erlangen & Friedrich Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA.
| | - Mohamed Jarraya
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daichi Hayashi
- Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Michel D Crema
- Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA; Institute of Sports Imaging, French National Institute of Sports (INSEP), Paris, France
| | - Ida K Haugen
- Center for Treatment of Rheumatic and Musculoskeletal Diseases (REMEDY), Diakonhjemmet Hospital, Oslo, Norway
| | - David J Hunter
- Department of Rheumatology, Royal North Shore Hospital and Sydney Musculoskeletal Health, Kolling Institute, University of Sydney, St. Leonards, NSW, Australia
| | - Ali Guermazi
- Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA; Boston VA Healthcare System, West Roxbury, MA, USA
| |
Collapse
|
12
|
Zhang R, Zhou X, Raithel E, Ren C, Zhang P, Li J, Bai L, Zhao J. A reproducibility study of knee cartilage volume and thickness values derived by fully automatic segmentation based on three-dimensional dual-echo in steady state data from 1.5 T and 3 T magnetic resonance imaging. MAGMA (NEW YORK, N.Y.) 2024; 37:69-82. [PMID: 37815638 DOI: 10.1007/s10334-023-01122-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 10/11/2023]
Abstract
OBJECTIVE To evaluate the repeatability of cartilage volume and thickness values at 1.5 T MRI using a fully automatic cartilage segmentation method and reproducibility of the method between 1.5 T and 3 T data. METHODS The study included 20 knee joints from 10 healthy subjects with each subject having undergone double-knee MRI. All knees were scanned at 1.5 T and 3 T MR scanners using a three-dimensional (3D) high-resolution dual-echo in steady state (DESS) sequence. Cartilage volume and thickness of 21 subregions were quantified using a fully automatic cartilage segmentation research application (MR Chondral Health, version 3.0, Siemens Healthcare, Erlangen, Germany). The volume and thickness values derived from fully automatically computed segmentation masks were analyzed for the scan-rescan data from the same volunteers. The accuracy of the automatic segmentation of the cartilage in 1.5 T images was evaluated by the dice similarity coefficient (DSC) and Hausdorff distance (HD) using the manually corrected segmentation as a reference. The volume and thickness values calculated from 1.5 T and 3 T were also compared. RESULTS No statistically significant differences were found for cartilage thickness or volume across all subregions between the scan-rescanned data at 1.5 T (P > 0.05). The mean DSC between the fully automatic and manually corrected knee cartilage segmentation contours at 1.5 T was 0.9946. The average value of HD was 2.41 mm. Overall, there was no statistically significant difference in the cartilage volume or thickness in most-subregions between the two field strengths (P > 0.05) except for the medial region of femur and tibia. Bland-Altman plot and intraclass correlation coefficient (ICC) showed high consistency between results obtained based on same and different scanning sequences. CONCLUSION The cartilage segmentation software had high repeatability for DESS images obtained from the same device. In addition, the overall reproducibility of the images obtained from equipment of two different field strengths was satisfactory.
Collapse
Affiliation(s)
- Ranxu Zhang
- Department of CT/MR, The Third Hospital of Hebei Medical University, Hebei Province Biomechanical Key Laboratory of Orthopedics, Shijiazhuang, 050051, China
| | - Xiaoyue Zhou
- MR Collaboration, Siemens Healthineers Ltd, Shanghai, 200126, China
| | | | - Congcong Ren
- Department of CT/MR, The Third Hospital of Hebei Medical University, Hebei Province Biomechanical Key Laboratory of Orthopedics, Shijiazhuang, 050051, China
| | - Ping Zhang
- Department of CT/MR, The Third Hospital of Hebei Medical University, Hebei Province Biomechanical Key Laboratory of Orthopedics, Shijiazhuang, 050051, China
| | - Junfei Li
- Department of CT/MR, The Third Hospital of Hebei Medical University, Hebei Province Biomechanical Key Laboratory of Orthopedics, Shijiazhuang, 050051, China
| | - Lin Bai
- Department of CT/MR, The Third Hospital of Hebei Medical University, Hebei Province Biomechanical Key Laboratory of Orthopedics, Shijiazhuang, 050051, China
| | - Jian Zhao
- Department of CT/MR, The Third Hospital of Hebei Medical University, Hebei Province Biomechanical Key Laboratory of Orthopedics, Shijiazhuang, 050051, China.
| |
Collapse
|
13
|
Khodarahmi I, Khanuja HS, Stern SE, Carrino JA, Fritz J. Compressed Sensing SEMAC MRI of Hip, Knee, and Ankle Arthroplasty Implants: A 1.5-T and 3-T Intrapatient Performance Comparison for Diagnosing Periprosthetic Abnormalities. AJR Am J Roentgenol 2023; 221:661-672. [PMID: 37255041 DOI: 10.2214/ajr.23.29380] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
BACKGROUND. The utility of 3-T MRI for diagnosing joint disorders is established, but its performance for diagnosing abnormalities around arthroplasty implants is unclear. OBJECTIVE. The purpose of this study was to compare 1.5-T and 3-T compressed sensing slice encoding for metal artifact correction (SEMAC) MRI for diagnosing peri-prosthetic abnormalities around hip, knee, and ankle arthroplasty implants. METHODS. Forty-five participants (26 women, 19 men; mean age ± SD, 71 ± 14 years) with symptomatic lower extremity arthroplasty (hip, knee, and ankle, 15 each) prospectively underwent consecutive 1.5- and 3-T MRI examinations with intermediate-weighted (IW) and STIR compressed sensing SEMAC sequences. Using a Likert scale, three radiologists evaluated the presence or absence of periprosthetic abnormalities, including bone marrow edema-like signal, osteolysis, stress reaction/fracture, synovitis, and tendon abnormalities and collections; image quality; and visibility of anatomic structures. Statistical analysis included nonparametric comparison and interchangeability testing. RESULTS. For diagnosing periprosthetic abnormalities, 1.5-T and 3-T compressed sensing SEMAC MRI were interchangeable. Across all three joints, 3-T MRI had lower noise than 1.5-T MRI (median IW and STIR scores at 3 T vs 1.5 T, 4 and 4 [range, 2-5 and 3-5] vs 3 and 3 [range, 2-5 and 2-4]; p < .01 for both), sharper edges (median IW and STIR scores at 3 T vs 1.5 T, 4 and 4 [both ranges, 2-5] vs 3 and 3 [range, 2-4 and 2-5]; p < .02 and p < .05), and more effective metal artifact reduction (median IW and STIR scores at 3 T vs 1.5 T, 4 and 4 [range, 3-5 and 2-5] vs 4 and 4 [both ranges, 3-5]; p < .02 and p = .72). Agreement was moderate to substantial for image contrast (IW and STIR, 0.66 and 0.54 [95% CI, 0.41-0.91 and 0.29-0.80]; p = .58 and p = .16) and joint capsule visualization (IW and STIR, 0.57 and 0.70 [range, 0.32-0.81 and 0.51-0.89]; p = .16 and p = .19). The bone-implant interface was more visible at 1.5 T (median IW and STIR scores, 4 and 4 [both ranges, 2-5] at 1.5 T vs 3 and 3 [both ranges, 2-5] at 3 T; p = .08 and p = .58), but periprosthetic tissues had superior visibility at 3 T (IW and STIR, 4 and 4 [both ranges, 3-5] at 3 T vs 4 and 4 [ranges, 2-5 and 3-5] at 1.5 T; p = .07 and p = .19). CONCLUSION. Optimized 1.5-T and 3-T compressed sensing SEMAC MRI are interchangeable for diagnosing periprosthetic abnormalities, although metallic artifacts are larger at 3 T. CLINICAL IMPACT. With compressed sensing SEMAC MRI, lower extremity arthroplasty implants can be imaged at 3 T rather than 1.5 T.
Collapse
Affiliation(s)
- Iman Khodarahmi
- Department of Radiology, NYU Grossman School of Medicine, 660 1st Ave, 3rd Fl, Rm 313, New York, NY 10016
| | - Harpal S Khanuja
- Department of Orthopaedic Surgery, Johns Hopkins School of Medicine, Baltimore, MD
| | - Steven E Stern
- Centre for Data Analytics, Bond University, Gold Coast, Australia
| | - John A Carrino
- Department of Radiology, Hospital for Special Surgery, New York, NY
| | - Jan Fritz
- Department of Radiology, NYU Grossman School of Medicine, 660 1st Ave, 3rd Fl, Rm 313, New York, NY 10016
| |
Collapse
|
14
|
Wirth W, Ladel C, Maschek S, Wisser A, Eckstein F, Roemer F. Quantitative measurement of cartilage morphology in osteoarthritis: current knowledge and future directions. Skeletal Radiol 2023; 52:2107-2122. [PMID: 36380243 PMCID: PMC10509082 DOI: 10.1007/s00256-022-04228-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022]
Abstract
Quantitative measures of cartilage morphology ("cartilage morphometry") extracted from high resolution 3D magnetic resonance imaging (MRI) sequences have been shown to be sensitive to osteoarthritis (OA)-related change and also to treatment interventions. Cartilage morphometry is therefore nowadays widely used as outcome measure for observational studies and randomized interventional clinical trials. The objective of this narrative review is to summarize the current status of cartilage morphometry in OA research, to provide insights into aspects relevant for the design of future studies and clinical trials, and to give an outlook on future developments. It covers the aspects related to the acquisition of MRIs suitable for cartilage morphometry, the analysis techniques needed for deriving quantitative measures from the MRIs, the quality assurance required for providing reliable cartilage measures, and the appropriate participant recruitment criteria for the enrichment of study cohorts with knees likely to show structural progression. Finally, it provides an overview over recent clinical trials that relied on cartilage morphometry as a structural outcome measure for evaluating the efficacy of disease-modifying OA drugs (DMOAD).
Collapse
Affiliation(s)
- Wolfgang Wirth
- Department of Imaging & Functional Musculoskeletal Research, Institute of Anatomy & Cell Biology, Paracelsus Medical University Salzburg & Nuremberg, Strubergasse 21, 5020 Salzburg, Austria
- Ludwig Boltzmann Inst. for Arthritis and Rehabilitation, Paracelsus Medical University Salzburg & Nuremberg, Salzburg, Austria
- Chondrometrics GmbH, Freilassing, Germany
| | | | - Susanne Maschek
- Department of Imaging & Functional Musculoskeletal Research, Institute of Anatomy & Cell Biology, Paracelsus Medical University Salzburg & Nuremberg, Strubergasse 21, 5020 Salzburg, Austria
- Chondrometrics GmbH, Freilassing, Germany
| | - Anna Wisser
- Department of Imaging & Functional Musculoskeletal Research, Institute of Anatomy & Cell Biology, Paracelsus Medical University Salzburg & Nuremberg, Strubergasse 21, 5020 Salzburg, Austria
- Ludwig Boltzmann Inst. for Arthritis and Rehabilitation, Paracelsus Medical University Salzburg & Nuremberg, Salzburg, Austria
- Chondrometrics GmbH, Freilassing, Germany
| | - Felix Eckstein
- Department of Imaging & Functional Musculoskeletal Research, Institute of Anatomy & Cell Biology, Paracelsus Medical University Salzburg & Nuremberg, Strubergasse 21, 5020 Salzburg, Austria
- Ludwig Boltzmann Inst. for Arthritis and Rehabilitation, Paracelsus Medical University Salzburg & Nuremberg, Salzburg, Austria
- Chondrometrics GmbH, Freilassing, Germany
| | - Frank Roemer
- Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, MA USA
- Department of Radiology, Universitätsklinikum Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
15
|
Fritz B, de Cesar Netto C, Fritz J. Multiaxial 3D MRI of the Ankle: Advanced High-Resolution Visualization of Ligaments, Tendons, and Articular Cartilage. Foot Ankle Clin 2023; 28:529-550. [PMID: 37536817 DOI: 10.1016/j.fcl.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
MRI is a valuable tool for diagnosing a broad spectrum of acute and chronic ankle disorders, including ligament tears, tendinopathy, and osteochondral lesions. Traditional two-dimensional (2D) MRI provides a high image signal and contrast of anatomic structures for accurately characterizing articular cartilage, bone marrow, synovium, ligaments, tendons, and nerves. However, 2D MRI limitations are thick slices and fixed slice orientations. In clinical practice, 2D MRI is limited to 2 to 3 mm slice thickness, which can cause blurred contours of oblique structures due to volume averaging effects within the image slice. In addition, image plane orientations are fixated and cannot be changed after the scan, resulting in 2D MRI lacking multiplanar and multiaxial reformation abilities for individualized image plane orientations along oblique and curved anatomic structures, such as ankle ligaments and tendons. In contrast, three-dimensional (3D) MRI is a newer, clinically available MRI technique capable of acquiring high-resolution ankle MRI data sets with isotropic voxel size. The inherently high spatial resolution of 3D MRI permits up to five times thinner (0.5 mm) image slices. In addition, 3D MRI can be acquired image voxel with the same edge length in all three space dimensions (isotropism), permitting unrestricted multiplanar and multiaxial image reformation and postprocessing after the MRI scan. Clinical 3D MRI of the ankle with 0.5 to 0.7 mm isotropic voxel size resolves the smallest anatomic ankle structures and abnormalities of ligament and tendon fibers, osteochondral lesions, and nerves. After acquiring the images, operators can align image planes individually along any anatomic structure of interest, such as ligaments and tendons segments. In addition, curved multiplanar image reformations can unfold the entire course of multiaxially curved structures, such as perimalleolar tendons, into one image plane. We recommend adding 3D MRI pulse sequences to traditional 2D MRI protocols to visualize small and curved ankle structures to better advantage. This article provides an overview of the clinical application of 3D MRI of the ankle, compares diagnostic performances of 2D and 3D MRI for diagnosing ankle abnormalities, and illustrates clinical 3D ankle MRI applications.
Collapse
Affiliation(s)
- Benjamin Fritz
- Department of Radiology, Balgrist University Hospital, Forchstrasse 340, Zurich 8008, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Cesar de Cesar Netto
- Department of Orthopaedics and Rehabilitation, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Jan Fritz
- Department of Radiology, Division of Musculoskeletal Radiology, NYU Grossman School of Medicine, 660 1st Avenue, New York, NY 10016, USA.
| |
Collapse
|
16
|
Sneag DB, Abel F, Potter HG, Fritz J, Koff MF, Chung CB, Pedoia V, Tan ET. MRI Advancements in Musculoskeletal Clinical and Research Practice. Radiology 2023; 308:e230531. [PMID: 37581501 PMCID: PMC10477516 DOI: 10.1148/radiol.230531] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 08/16/2023]
Abstract
Over the past decades, MRI has become increasingly important for diagnosing and longitudinally monitoring musculoskeletal disorders, with ongoing hardware and software improvements aiming to optimize image quality and speed. However, surging demand for musculoskeletal MRI and increased interest to provide more personalized care will necessitate a stronger emphasis on efficiency and specificity. Ongoing hardware developments include more powerful gradients, improvements in wide-bore magnet designs to maintain field homogeneity, and high-channel phased-array coils. There is also interest in low-field-strength magnets with inherently lower magnetic footprints and operational costs to accommodate global demand in middle- and low-income countries. Previous approaches to decrease acquisition times by means of conventional acceleration techniques (eg, parallel imaging or compressed sensing) are now largely overshadowed by deep learning reconstruction algorithms. It is expected that greater emphasis will be placed on improving synthetic MRI and MR fingerprinting approaches to shorten overall acquisition times while also addressing the demand of personalized care by simultaneously capturing microstructural information to provide greater detail of disease severity. Authors also anticipate increased research emphasis on metal artifact reduction techniques, bone imaging, and MR neurography to meet clinical needs.
Collapse
Affiliation(s)
- Darryl B. Sneag
- From the Department of Radiology and Imaging, Hospital for Special
Surgery, 535 E 70th St, New York, NY 10021 (D.B.S., F.A., H.G.P., M.F.K.,
E.T.T.); Department of Radiology, New York University Grossman School of
Medicine, New York, NY (J.F.); Department of Radiology, University of California
San Diego, La Jolla, Calif (C.B.C.); Radiology Service, Veterans Affairs San
Diego Healthcare System, La Jolla, Calif (C.B.C.); and Department of Radiology
and Biomedical Imaging, University of California San Francisco, San Francisco,
Calif (V.P.)
| | - Frederik Abel
- From the Department of Radiology and Imaging, Hospital for Special
Surgery, 535 E 70th St, New York, NY 10021 (D.B.S., F.A., H.G.P., M.F.K.,
E.T.T.); Department of Radiology, New York University Grossman School of
Medicine, New York, NY (J.F.); Department of Radiology, University of California
San Diego, La Jolla, Calif (C.B.C.); Radiology Service, Veterans Affairs San
Diego Healthcare System, La Jolla, Calif (C.B.C.); and Department of Radiology
and Biomedical Imaging, University of California San Francisco, San Francisco,
Calif (V.P.)
| | - Hollis G. Potter
- From the Department of Radiology and Imaging, Hospital for Special
Surgery, 535 E 70th St, New York, NY 10021 (D.B.S., F.A., H.G.P., M.F.K.,
E.T.T.); Department of Radiology, New York University Grossman School of
Medicine, New York, NY (J.F.); Department of Radiology, University of California
San Diego, La Jolla, Calif (C.B.C.); Radiology Service, Veterans Affairs San
Diego Healthcare System, La Jolla, Calif (C.B.C.); and Department of Radiology
and Biomedical Imaging, University of California San Francisco, San Francisco,
Calif (V.P.)
| | - Jan Fritz
- From the Department of Radiology and Imaging, Hospital for Special
Surgery, 535 E 70th St, New York, NY 10021 (D.B.S., F.A., H.G.P., M.F.K.,
E.T.T.); Department of Radiology, New York University Grossman School of
Medicine, New York, NY (J.F.); Department of Radiology, University of California
San Diego, La Jolla, Calif (C.B.C.); Radiology Service, Veterans Affairs San
Diego Healthcare System, La Jolla, Calif (C.B.C.); and Department of Radiology
and Biomedical Imaging, University of California San Francisco, San Francisco,
Calif (V.P.)
| | - Matthew F. Koff
- From the Department of Radiology and Imaging, Hospital for Special
Surgery, 535 E 70th St, New York, NY 10021 (D.B.S., F.A., H.G.P., M.F.K.,
E.T.T.); Department of Radiology, New York University Grossman School of
Medicine, New York, NY (J.F.); Department of Radiology, University of California
San Diego, La Jolla, Calif (C.B.C.); Radiology Service, Veterans Affairs San
Diego Healthcare System, La Jolla, Calif (C.B.C.); and Department of Radiology
and Biomedical Imaging, University of California San Francisco, San Francisco,
Calif (V.P.)
| | - Christine B. Chung
- From the Department of Radiology and Imaging, Hospital for Special
Surgery, 535 E 70th St, New York, NY 10021 (D.B.S., F.A., H.G.P., M.F.K.,
E.T.T.); Department of Radiology, New York University Grossman School of
Medicine, New York, NY (J.F.); Department of Radiology, University of California
San Diego, La Jolla, Calif (C.B.C.); Radiology Service, Veterans Affairs San
Diego Healthcare System, La Jolla, Calif (C.B.C.); and Department of Radiology
and Biomedical Imaging, University of California San Francisco, San Francisco,
Calif (V.P.)
| | - Valentina Pedoia
- From the Department of Radiology and Imaging, Hospital for Special
Surgery, 535 E 70th St, New York, NY 10021 (D.B.S., F.A., H.G.P., M.F.K.,
E.T.T.); Department of Radiology, New York University Grossman School of
Medicine, New York, NY (J.F.); Department of Radiology, University of California
San Diego, La Jolla, Calif (C.B.C.); Radiology Service, Veterans Affairs San
Diego Healthcare System, La Jolla, Calif (C.B.C.); and Department of Radiology
and Biomedical Imaging, University of California San Francisco, San Francisco,
Calif (V.P.)
| | - Ek T. Tan
- From the Department of Radiology and Imaging, Hospital for Special
Surgery, 535 E 70th St, New York, NY 10021 (D.B.S., F.A., H.G.P., M.F.K.,
E.T.T.); Department of Radiology, New York University Grossman School of
Medicine, New York, NY (J.F.); Department of Radiology, University of California
San Diego, La Jolla, Calif (C.B.C.); Radiology Service, Veterans Affairs San
Diego Healthcare System, La Jolla, Calif (C.B.C.); and Department of Radiology
and Biomedical Imaging, University of California San Francisco, San Francisco,
Calif (V.P.)
| |
Collapse
|
17
|
Zhou Y, Wang H, Liu C, Liao B, Li Y, Zhu Y, Hu Z, Liao J, Liang D. Recent advances in highly accelerated 3D MRI. Phys Med Biol 2023; 68:14TR01. [PMID: 36863026 DOI: 10.1088/1361-6560/acc0cd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 03/01/2023] [Indexed: 03/04/2023]
Abstract
Three-dimensional MRI has gained increasing popularity in various clinical applications due to its improved through-plane spatial resolution, which enhances the detection of subtle abnormalities and provides valuable clinical information. However, the long data acquisition time and high computational cost pose significant challenges for 3D MRI. In this comprehensive review article, we aim to summarize the latest advancements in accelerated 3D MR techniques. Covering over 200 remarkable research studies conducted over the past 20 years, we explore the development of MR signal excitation and encoding, advancements in reconstruction algorithms, and potential clinical applications. We hope that this survey serves as a valuable resource, providing insights into the current state of the field and serving as a guide for future research in accelerated 3D MRI.
Collapse
Affiliation(s)
- Yihang Zhou
- Research Centre for Medical AI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, People's Republic of China
- Research Department, Hong Kong Sanatorium and Hospital, Hong Kong SAR, People's Republic of China
| | - Haifeng Wang
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, People's Republic of China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
| | - Congcong Liu
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, People's Republic of China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
| | - Binyu Liao
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, People's Republic of China
| | - Ye Li
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, People's Republic of China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
| | - Yanjie Zhu
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, People's Republic of China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
| | - Zhangqi Hu
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Jianxiang Liao
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Dong Liang
- Research Centre for Medical AI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, People's Republic of China
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, People's Republic of China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
18
|
Park EH, de Cesar Netto C, Fritz J. MRI in Acute Ankle Sprains: Should We Be More Aggressive with Indications? Foot Ankle Clin 2023; 28:231-264. [PMID: 37137621 DOI: 10.1016/j.fcl.2023.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Acute ankle sprains are common sports injuries. MRI is the most accurate test for assessing the integrity and severity of ligament injuries in acute ankle sprains. However, MRI may not detect syndesmotic and hindfoot instability, and many ankle sprains are treated conservatively, questioning the value of MRI. In our practice, MRI adds value in confirming the absence or presence of ankle sprain-associated hindfoot and midfoot injuries, especially when clinical examinations are challenging, radiographs are inconclusive, and subtle instability is suspected. This article reviews and illustrates the MRI appearances of the spectrum of ankle sprains and associated hindfoot and midfoot injuries.
Collapse
Affiliation(s)
- Eun Hae Park
- Division of Musculoskeletal Radiology, Department of Radiology, NYU Grossman School of Medicine, 660 1St Ave, 3rd Floor, New York, NY 10016, USA; Department of Radiology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Cesar de Cesar Netto
- Department of Orthopaedics and Rehabilitation, University of Iowa, 200 Hawkins Dr, Iowa City, IA 52242, USA
| | - Jan Fritz
- Division of Musculoskeletal Radiology, Department of Radiology, NYU Grossman School of Medicine, 660 1St Ave, 3rd Floor, New York, NY 10016, USA.
| |
Collapse
|
19
|
Roemer FW, Hochberg MC, Carrino JA, Kompel AJ, Diaz L, Hayashi D, Crema MD, Guermazi A. Role of imaging for eligibility and safety of a-NGF clinical trials. Ther Adv Musculoskelet Dis 2023; 15:1759720X231171768. [PMID: 37284331 PMCID: PMC10240557 DOI: 10.1177/1759720x231171768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/05/2023] [Indexed: 06/08/2023] Open
Abstract
Nerve growth factor (a-NGF) inhibitors have been developed for pain treatment including symptomatic osteoarthritis (OA) and have proven analgesic efficacy and improvement in functional outcomes in patients with OA. However, despite initial promising data, a-NGF clinical trials focusing on OA treatment had been suspended in 2010. Reasons were based on concerns regarding accelerated OA progression but were resumed in 2015 including detailed safety mitigation based on imaging. In 2021, an FDA advisory committee voted against approving tanezumab (one of the a-NGF compounds being evaluated) and declared that the risk evaluation and mitigation strategy was not sufficient to mitigate potential safety risks. Future clinical trials evaluating the efficacy of a-NGF or comparable molecules will need to define strict eligibility criteria and will have to include strategies to monitor safety closely. While disease-modifying effects are not the focus of a-NGF treatments, imaging plays an important role to evaluate eligibility of potential participants and to monitor safety during the course of these studies. Aim is to identify subjects with on-going safety findings at the time of inclusion, define those potential participants that are at increased risk for accelerated OA progression and to withdraw subjects from on-going studies in a timely fashion that exhibit imaging-confirmed structural safety events such as rapid progressive OA. OA efficacy- and a-NGF studies apply imaging for different purposes. In OA efficacy trials image acquisition and evaluation aims at maximizing sensitivity in order to capture structural effects between treated and non-treated participants in longitudinal fashion. In contrast, the aim of imaging in a-NGF trials is to enable detection of structural tissue alterations that either increase the risk of a negative outcome (eligibility) or may result in termination of treatment (safety).
Collapse
Affiliation(s)
- Frank W. Roemer
- Department of Radiology, Universitätsklinikum Erlangen & Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Maximiliansplatz 3, 91054 Erlangen, Germany
- Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | | | - John A. Carrino
- Department of Radiology & Imaging, Hospital for Special Surgery and Weill Cornell Medicine, New York, NY, USA
| | - Andrew J. Kompel
- Chobanian & Avedisian School of Medicine, Boston University, Boston MA, USA
| | - Luis Diaz
- Chobanian & Avedisian School of Medicine, Boston University, Boston MA, USA
| | - Daichi Hayashi
- Tufts Medical Center, Tufts Medicine, Boston, MA, USA
- Chobanian & Avedisian School of Medicine, Boston University, Boston MA, USA
| | - Michel D. Crema
- Institute of Sports Imaging, French National Institute of Sports (INSEP), Paris, France
- Chobanian & Avedisian School of Medicine, Boston University, Boston MA, USA
| | - Ali Guermazi
- Chobanian & Avedisian School of Medicine, Boston University, Boston MA, USA
- Boston VA Healthcare System, West Roxbury, MA, USA
| |
Collapse
|
20
|
Guermazi A, Roemer FW, Crema MD, Jarraya M, Mobasheri A, Hayashi D. Strategic application of imaging in DMOAD clinical trials: focus on eligibility, drug delivery, and semiquantitative assessment of structural progression. Ther Adv Musculoskelet Dis 2023; 15:1759720X231165558. [PMID: 37063459 PMCID: PMC10103249 DOI: 10.1177/1759720x231165558] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/02/2023] [Indexed: 04/18/2023] Open
Abstract
Despite decades of research efforts and multiple clinical trials aimed at discovering efficacious disease-modifying osteoarthritis (OA) drugs (DMOAD), we still do not have a drug that shows convincing scientific evidence to be approved as an effective DMOAD. It has been suggested these DMOAD clinical trials were in part unsuccessful since eligibility criteria and imaging-based outcome evaluation were solely based on conventional radiography. The OA research community has been aware of the limitations of conventional radiography being used as a primary imaging modality for eligibility and efficacy assessment in DMOAD trials. An imaging modality for DMOAD trials should be able to depict soft tissue and osseous pathologies that are relevant to OA disease progression and clinical manifestations of OA. Magnetic resonance imaging (MRI) fulfills these criteria and advances in technology and increasing knowledge regarding imaging outcomes likely should play a more prominent role in DMOAD clinical trials. In this perspective article, we will describe MRI-based tools and analytic methods that can be applied to DMOAD clinical trials with a particular emphasis on knee OA. MRI should be the modality of choice for eligibility screening and outcome assessment. Optimal MRI pulse sequences must be chosen to visualize specific features of OA.
Collapse
Affiliation(s)
- Ali Guermazi
- Department of Radiology, School of Medicine, Boston University, Boston, MA 02132, USA
- VA Boston Healthcare System, 1400 VFW Parkway, West Roxbury, MA, USA
| | - Frank W. Roemer
- Department of Radiology, Universitätsklinikum Erlangen & Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Department of Radiology, School of Medicine, Boston University, Boston, MA, USA
| | - Michel D. Crema
- Institute of Sports Imaging, Sports Medicine Department, French National Institute of Sports (INSEP), Paris, France
- Department of Radiology, School of Medicine, Boston University, Boston, MA, USA
| | - Mohamed Jarraya
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ali Mobasheri
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- World Health Organization Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, Liege, Belgium
| | - Daichi Hayashi
- Department of Radiology, Tufts Medical Center, Tufts Medicine, Boston, MA, USA
- Department of Radiology, School of Medicine, Boston University, Boston, MA, USA
| |
Collapse
|
21
|
Hung TNK, Vy VPT, Tri NM, Hoang LN, Tuan LV, Ho QT, Le NQK, Kang JH. Automatic Detection of Meniscus Tears Using Backbone Convolutional Neural Networks on Knee MRI. J Magn Reson Imaging 2023; 57:740-749. [PMID: 35648374 DOI: 10.1002/jmri.28284] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Timely diagnosis of meniscus injuries is key for preventing knee joint dysfunction and improving patient outcomes because it decreases morbidity and facilitates treatment planning. PURPOSE To train and evaluate a deep learning model for automated detection of meniscus tears on knee magnetic resonance imaging (MRI). STUDY TYPE Bicentric retrospective study. SUBJECTS In total, 584 knee MRI studies, divided among training (n = 234), testing (n = 200), and external validation (n = 150) data sets, were used in this study. The public data set MRNet was used as a second external validation data set to evaluate the performance of the model. SEQUENCE A 3 T, coronal, and sagittal images from T1-weighted proton density (PD) fast spin-echo (FSE) with fat saturation and T2-weighted FSE with fat saturation sequences. ASSESSMENT The detection system for meniscus tear was based on the improved YOLOv4 model with Darknet-53 as the backbone. The performance of the model was also compared with that of three radiologists of varying levels of experience. The determination of the presence of a meniscus tear from surgery reports was used as the ground truth for the images. STATISTICAL TESTS Sensitivity, specificity, prevalence, positive predictive value, negative predictive value, accuracy, and receiver operating characteristic curve were used to evaluate the performance of the detection model. Two-way analysis of variance, Wilcoxon signed-rank test, and Tukey's multiple tests were used to evaluate differences in performance between the model and radiologists. RESULTS The overall accuracies for detecting meniscus tears using our model on the internal testing, internal validation, and external validation data sets were 95.4%, 95.8%, and 78.8%, respectively. One radiologist had significantly lower performance than our model in detecting meniscal tears (accuracy: 0.9025 ± 0.093 vs. 0.9580 ± 0.025). DATA CONCLUSION The proposed model had high sensitivity, specificity, and accuracy for detecting meniscus tears on knee MRIs. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Truong Nguyen Khanh Hung
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Orthopedic and Trauma, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Vu Pham Thao Vy
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Radiology, Thai Nguyen National Hospital, Thai Nguyen City, Vietnam
| | - Nguyen Minh Tri
- Advance Program in Computer Science, University of Science, Ho Chi Minh City, Vietnam
| | - Le Ngoc Hoang
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Le Van Tuan
- Department of Orthopedic and Trauma, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Quang Thai Ho
- Department of Computer Science and Engineering, Yuan Ze University, Chung-Li, Taiwan
| | - Nguyen Quoc Khanh Le
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jiunn-Horng Kang
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei, Taiwan.,Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
22
|
Dung NT, Thuan NH, Van Dung T, Van Nho L, Tri NM, Vy VPT, Hoang LN, Phat NT, Chuong DA, Dang LH. End-to-end deep learning model for segmentation and severity staging of anterior cruciate ligament injuries from MRI. Diagn Interv Imaging 2023; 104:133-141. [PMID: 36328943 DOI: 10.1016/j.diii.2022.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE The purpose of this study was to develop a semi-supervised segmentation and classification deep learning model for the diagnosis of anterior cruciate ligament (ACL) tears on MRI based on a semi-supervised framework, double-linear layers U-Net (DCLU-Net). MATERIALS AND METHODS A total of 297 participants who underwent of total of 303 MRI examination of the knee with fat-saturated proton density (PD) fast spin-echo (FSE) sequence in the sagittal plane were included. There were 214 men and 83 women, with a mean age of 37.46 ± 1.40 (standard deviation) years (range: 29-44 years). Of these, 107 participants had intact ACL (36%), 98 had partially torn ACL (33%), and 92 had fully ruptured ACL (31%). The DCLU-Net was combined with radiomic features for enhancing performances in the diagnosis of ACL tear. The different evaluation metrics for both classification (accuracy, sensitivity, accuracy) and segmentation (mean Dice similarity coefficient and root mean square error) were compared individually for each image class across the three phases of the model, with each value being compared to its respective value from the previous phase. Findings at arthroscopic knee surgery were used as the standard of reference. RESULTS With the addition of radiomic features, the final model yielded accuracies of 90% (95% CI: 83-92), 82% (95% CI: 73-86), and 92% (95% CI: 87-94) for classifying ACL as intact, partially torn and fully ruptured, respectively. The DCLU-Net achieved mean Dice similarity coefficient and root mean square error of 0.78 (95% CI: 0.71-0.80) and 0.05 (95% CI: 0.06-0.07), respectively, when segmenting the three ACL conditions with pseudo data (P < 0.001). CONCLUSION A dual-modules deep learning model with segmentation and classification capabilities was successfully developed. In addition, the use of semi-supervised techniques significantly reduced the amount of manual segmentation data without compromising performance.
Collapse
Affiliation(s)
- Nguyen Tan Dung
- Department of Rehabilitation, Da Nang C Hospital, Da Nang City 50000, Viet Nam; Department of Rehabilitation, Da Nang University of Medical Technology and Pharmacy, Da Nang City 50000, Viet Nam
| | - Ngo Huu Thuan
- Department of Radiology, Da Nang C Hospital, Da Nang city 50000, Viet Nam; Department of Medical Imaging, Da Nang University of Medical Technology and Pharmacy, Da Nang city, 50000, Viet Nam
| | - Truong Van Dung
- Department of Rehabilitation, Da Nang C Hospital, Da Nang City 50000, Viet Nam
| | - Le Van Nho
- Faculty of Medicine, Da Nang University of Medical Technology and Pharmacy, Da Nang City, 50000, Viet Nam
| | - Nguyen Minh Tri
- Advance Program in Computer Science, University of Science, Ho Chi Minh City 70000, Viet Nam; YRDx-AI Lab, Ho Chi Minh City 70000, Viet Nam
| | - Vu Pham Thao Vy
- YRDx-AI Lab, Ho Chi Minh City 70000, Viet Nam; International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Le Ngoc Hoang
- YRDx-AI Lab, Ho Chi Minh City 70000, Viet Nam; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Nguyen Thuan Phat
- YRDx-AI Lab, Ho Chi Minh City 70000, Viet Nam; Department of Computer Science, Vietnamese German University, Ho Chi Minh City 70000, Viet Nam
| | | | - Luong Huu Dang
- Department of Otolaryngology, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 70000, Viet Nam
| |
Collapse
|
23
|
Abstract
Acute knee injury ranges among the most common joint injuries in professional and recreational athletes. Radiographs can detect joint effusion, fractures, deformities, and malalignment; however, MR imaging is most accurate for radiographically occult fractures, chondral injury, and soft tissue injuries. Using a structured checklist approach for systematic MR imaging evaluation and reporting, this article reviews the MR imaging appearances of the spectrum of traumatic knee injuries, including osteochondral injuries, cruciate ligament tears, meniscus tears and ramp lesions, anterolateral complex and collateral ligament injuries, patellofemoral translation, extensor mechanism tears, and nerve and vascular injuries.
Collapse
|
24
|
MRI underestimates presence and size of knee osteophytes using CT as a reference standard. Osteoarthritis Cartilage 2023; 31:656-668. [PMID: 36796577 DOI: 10.1016/j.joca.2023.01.575] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 02/18/2023]
Abstract
OBJECTIVE To explore the diagnostic performance of routine magnetic resonance imaging (MRI) for the cross-sectional assessment of osteophytes (OPs) in all three knee compartments using computed tomography (CT) as a reference standard. METHODS The Strontium Ranelate Efficacy in Knee Osteoarthritis (SEKOIA) trial explored the effect of 3 years of treatment with strontium ranelate in patients with primary knee OA. OPs were scored for the baseline visit only using a modified MRI Osteoarthritis Knee Score (MOAKS) scoring system in the patellofemoral (PFJ), the medial tibiofemoral (TFJ) and the lateral TFJ. Size was assessed from 0 to 3 in 18 locations. Descriptive statistics were used to describe differences in ordinal grading between CT and MRI. In addition, weighted-kappa statistics were employed to assess agreement between scoring using the two methods. Sensitivity, specificity, positive predictive value and negative predictive value as well as area under the curve (AUC) measures of diagnostic performance were employed using CT as the reference standard. RESULTS Included were 74 patients with available MRI and CT data. Mean age was 62.9 ± 7.5 years. Altogether 1,332 locations were evaluated. For the PFJ, MRI detected 141 (72%) of 197 CT-defined OPs with a w-kappa of 0.58 (95% CI [0.52-0.65]). In the medial TFJ, MRI detected 178 (81%) of 219 CT-OPs with a w-kappa of 0.58 (95% CI [0.51-0.64]). For the lateral compartment these numbers were 84 (70%) of 120 CT-OPs with a w-kappa of 0.58 (95% CI [0.50-0.66]). CONCLUSION MRI underestimates presence of osteophytes in all three knee compartments. CT may be helpful particularly regarding assessment of small osteophytes particularly in early disease.
Collapse
|
25
|
Fritz B, Fritz J. MR Imaging–Ultrasonography Correlation of Acute and Chronic Foot and Ankle Conditions. Magn Reson Imaging Clin N Am 2023; 31:321-335. [PMID: 37019553 DOI: 10.1016/j.mric.2023.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Foot and ankle injuries are common musculoskeletal disorders. In the acute setting, ligamentous injuries are most common, whereas fractures, osseous avulsion injuries, tendon and retinaculum tears, and osteochondral injuries are less common. The most common chronic and overuse injuries include osteochondral and articular cartilage defects, tendinopathies, stress fractures, impingement syndromes, and neuropathies. Common forefoot conditions include traumatic and stress fractures, metatarsophalangeal and plantar plate injuries and degenerations, intermittent bursitis, and perineural fibrosis. Ultrasonography is well-suited for evaluating superficial tendons, ligaments, and muscles. MR imaging is best for deeper-located soft tissue structures, articular cartilage, and cancellous bone.
Collapse
|
26
|
Burke CJ, Fritz J, Samim M. Musculoskeletal Soft-tissue Masses. Magn Reson Imaging Clin N Am 2023; 31:285-308. [PMID: 37019551 DOI: 10.1016/j.mric.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Evaluation of soft-tissue masses has become a common clinical practice indication for imaging with both ultrasound and MR imaging. We illustrate the ultrasonography and MR imaging appearances of soft-tissue masses based on the various categories, updates, and reclassifications of the 2020 World Health Organization classification.
Collapse
Affiliation(s)
- Christopher J Burke
- NYU Langone Orthopedic Hospital, 301 East 17th Street, New York, NY 10003, USA.
| | - Jan Fritz
- NYU Langone Orthopedic Hospital, 301 East 17th Street, New York, NY 10003, USA
| | - Mohammad Samim
- NYU Langone Orthopedic Hospital, 301 East 17th Street, New York, NY 10003, USA
| |
Collapse
|
27
|
Akai H, Yasaka K, Sugawara H, Tajima T, Kamitani M, Furuta T, Akahane M, Yoshioka N, Ohtomo K, Abe O, Kiryu S. Acceleration of knee magnetic resonance imaging using a combination of compressed sensing and commercially available deep learning reconstruction: a preliminary study. BMC Med Imaging 2023; 23:5. [PMID: 36624404 PMCID: PMC9827641 DOI: 10.1186/s12880-023-00962-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
PURPOSE To evaluate whether deep learning reconstruction (DLR) accelerates the acquisition of 1.5-T magnetic resonance imaging (MRI) knee data without image deterioration. MATERIALS AND METHODS Twenty-one healthy volunteers underwent MRI of the right knee on a 1.5-T MRI scanner. Proton-density-weighted images with one or four numbers of signal averages (NSAs) were obtained via compressed sensing, and DLR was applied to the images with 1 NSA to obtain 1NSA-DLR images. The 1NSA-DLR and 4NSA images were compared objectively (by deriving the signal-to-noise ratios of the lateral and the medial menisci and the contrast-to-noise ratios of the lateral and the medial menisci and articular cartilages) and subjectively (in terms of the visibility of the anterior cruciate ligament, the medial collateral ligament, the medial and lateral menisci, and bone) and in terms of image noise, artifacts, and overall diagnostic acceptability. The paired t-test and Wilcoxon signed-rank test were used for statistical analyses. RESULTS The 1NSA-DLR images were obtained within 100 s. The signal-to-noise ratios (lateral: 3.27 ± 0.30 vs. 1.90 ± 0.13, medial: 2.71 ± 0.24 vs. 1.80 ± 0.15, both p < 0.001) and contrast-to-noise ratios (lateral: 2.61 ± 0.51 vs. 2.18 ± 0.58, medial 2.19 ± 0.32 vs. 1.97 ± 0.36, both p < 0.001) were significantly higher for 1NSA-DLR than 4NSA images. Subjectively, all anatomical structures (except bone) were significantly clearer on the 1NSA-DLR than on the 4NSA images. Also, in the former images, the noise was lower, and the overall diagnostic acceptability was higher. CONCLUSION Compared with the 4NSA images, the 1NSA-DLR images exhibited less noise, higher overall image quality, and allowed more precise visualization of the menisci and ligaments.
Collapse
Affiliation(s)
- Hiroyuki Akai
- grid.26999.3d0000 0001 2151 536XDepartment of Radiology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639 Japan ,Present Address: Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba 286-0124 Japan
| | - Koichiro Yasaka
- Present Address: Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba 286-0124 Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Radiology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Haruto Sugawara
- grid.26999.3d0000 0001 2151 536XDepartment of Radiology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639 Japan
| | - Taku Tajima
- Present Address: Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba 286-0124 Japan ,grid.415958.40000 0004 1771 6769Department of Radiology, International University of Health and Welfare Mita Hospital, 1-4-3 Mita, Minato-ku, Tokyo, 108-8329 Japan
| | - Masaru Kamitani
- grid.26999.3d0000 0001 2151 536XDepartment of Radiology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639 Japan
| | - Toshihiro Furuta
- grid.26999.3d0000 0001 2151 536XDepartment of Radiology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639 Japan
| | - Masaaki Akahane
- Present Address: Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba 286-0124 Japan
| | - Naoki Yoshioka
- Present Address: Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba 286-0124 Japan
| | - Kuni Ohtomo
- grid.411731.10000 0004 0531 3030International University of Health and Welfare, 2600-1 Kiakanemaru, Ohtawara, Tochigi 324-8501 Japan
| | - Osamu Abe
- grid.26999.3d0000 0001 2151 536XDepartment of Radiology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Shigeru Kiryu
- Present Address: Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba 286-0124 Japan
| |
Collapse
|
28
|
Modern Low-Field MRI of the Musculoskeletal System: Practice Considerations, Opportunities, and Challenges. Invest Radiol 2023; 58:76-87. [PMID: 36165841 DOI: 10.1097/rli.0000000000000912] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ABSTRACT Magnetic resonance imaging (MRI) provides essential information for diagnosing and treating musculoskeletal disorders. Although most musculoskeletal MRI examinations are performed at 1.5 and 3.0 T, modern low-field MRI systems offer new opportunities for affordable MRI worldwide. In 2021, a 0.55 T modern low-field, whole-body MRI system with an 80-cm-wide bore was introduced for clinical use in the United States and Europe. Compared with current higher-field-strength MRI systems, the 0.55 T MRI system has a lower total ownership cost, including purchase price, installation, and maintenance. Although signal-to-noise ratios scale with field strength, modern signal transmission and receiver chains improve signal yield compared with older low-field magnetic resonance scanner generations. Advanced radiofrequency coils permit short echo spacing and overall compacter echo trains than previously possible. Deep learning-based advanced image reconstruction algorithms provide substantial improvements in perceived signal-to-noise ratios, contrast, and spatial resolution. Musculoskeletal tissue contrast evolutions behave differently at 0.55 T, which requires careful consideration when designing pulse sequences. Similar to other field strengths, parallel imaging and simultaneous multislice acquisition techniques are vital for efficient musculoskeletal MRI acquisitions. Pliable receiver coils with a more cost-effective design offer a path to more affordable surface coils and improve image quality. Whereas fat suppression is inherently more challenging at lower field strengths, chemical shift selective fat suppression is reliable and homogeneous with modern low-field MRI technology. Dixon-based gradient echo pulse sequences provide efficient and reliable multicontrast options, including postcontrast MRI. Metal artifact reduction MRI benefits substantially from the lower field strength, including slice encoding for metal artifact correction for effective metal artifact reduction of high-susceptibility metallic implants. Wide-bore scanner designs offer exciting opportunities for interventional MRI. This review provides an overview of the economical aspects, signal and image quality considerations, technological components and coils, musculoskeletal tissue relaxation times, and image contrast of modern low-field MRI and discusses the mainstream and new applications, challenges, and opportunities of musculoskeletal MRI.
Collapse
|
29
|
Ibad HA, de Cesar Netto C, Shakoor D, Sisniega A, Liu S, Siewerdsen JH, Carrino JA, Zbijewski W, Demehri S. Computed Tomography: State-of-the-Art Advancements in Musculoskeletal Imaging. Invest Radiol 2023; 58:99-110. [PMID: 35976763 PMCID: PMC9742155 DOI: 10.1097/rli.0000000000000908] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ABSTRACT Although musculoskeletal magnetic resonance imaging (MRI) plays a dominant role in characterizing abnormalities, novel computed tomography (CT) techniques have found an emerging niche in several scenarios such as trauma, gout, and the characterization of pathologic biomechanical states during motion and weight-bearing. Recent developments and advancements in the field of musculoskeletal CT include 4-dimensional, cone-beam (CB), and dual-energy (DE) CT. Four-dimensional CT has the potential to quantify biomechanical derangements of peripheral joints in different joint positions to diagnose and characterize patellofemoral instability, scapholunate ligamentous injuries, and syndesmotic injuries. Cone-beam CT provides an opportunity to image peripheral joints during weight-bearing, augmenting the diagnosis and characterization of disease processes. Emerging CBCT technologies improved spatial resolution for osseous microstructures in the quantitative analysis of osteoarthritis-related subchondral bone changes, trauma, and fracture healing. Dual-energy CT-based material decomposition visualizes and quantifies monosodium urate crystals in gout, bone marrow edema in traumatic and nontraumatic fractures, and neoplastic disease. Recently, DE techniques have been applied to CBCT, contributing to increased image quality in contrast-enhanced arthrography, bone densitometry, and bone marrow imaging. This review describes 4-dimensional CT, CBCT, and DECT advances, current logistical limitations, and prospects for each technique.
Collapse
Affiliation(s)
- Hamza Ahmed Ibad
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cesar de Cesar Netto
- Department of Orthopaedics and Rehabilitation, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Delaram Shakoor
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Alejandro Sisniega
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Stephen Liu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jeffrey H Siewerdsen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - John A. Carrino
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY, USA
| | - Wojciech Zbijewski
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Shadpour Demehri
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
30
|
Radiomics and Deep Learning for Disease Detection in Musculoskeletal Radiology: An Overview of Novel MRI- and CT-Based Approaches. Invest Radiol 2023; 58:3-13. [PMID: 36070548 DOI: 10.1097/rli.0000000000000907] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ABSTRACT Radiomics and machine learning-based methods offer exciting opportunities for improving diagnostic performance and efficiency in musculoskeletal radiology for various tasks, including acute injuries, chronic conditions, spinal abnormalities, and neoplasms. While early radiomics-based methods were often limited to a smaller number of higher-order image feature extractions, applying machine learning-based analytic models, multifactorial correlations, and classifiers now permits big data processing and testing thousands of features to identify relevant markers. A growing number of novel deep learning-based methods describe magnetic resonance imaging- and computed tomography-based algorithms for diagnosing anterior cruciate ligament tears, meniscus tears, articular cartilage defects, rotator cuff tears, fractures, metastatic skeletal disease, and soft tissue tumors. Initial radiomics and deep learning techniques have focused on binary detection tasks, such as determining the presence or absence of a single abnormality and differentiation of benign versus malignant. Newer-generation algorithms aim to include practically relevant multiclass characterization of detected abnormalities, such as typing and malignancy grading of neoplasms. So-called delta-radiomics assess tumor features before and after treatment, with temporal changes of radiomics features serving as surrogate markers for tumor responses to treatment. New approaches also predict treatment success rates, surgical resection completeness, and recurrence risk. Practice-relevant goals for the next generation of algorithms include diagnostic whole-organ and advanced classification capabilities. Important research objectives to fill current knowledge gaps include well-designed research studies to understand how diagnostic performances and suggested efficiency gains of isolated research settings translate into routine daily clinical practice. This article summarizes current radiomics- and machine learning-based magnetic resonance imaging and computed tomography approaches for musculoskeletal disease detection and offers a perspective on future goals and objectives.
Collapse
|
31
|
Artificial Intelligence-Driven Ultra-Fast Superresolution MRI: 10-Fold Accelerated Musculoskeletal Turbo Spin Echo MRI Within Reach. Invest Radiol 2023; 58:28-42. [PMID: 36355637 DOI: 10.1097/rli.0000000000000928] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
ABSTRACT Magnetic resonance imaging (MRI) is the keystone of modern musculoskeletal imaging; however, long pulse sequence acquisition times may restrict patient tolerability and access. Advances in MRI scanners, coil technology, and innovative pulse sequence acceleration methods enable 4-fold turbo spin echo pulse sequence acceleration in clinical practice; however, at this speed, conventional image reconstruction approaches the signal-to-noise limits of temporal, spatial, and contrast resolution. Novel deep learning image reconstruction methods can minimize signal-to-noise interdependencies to better advantage than conventional image reconstruction, leading to unparalleled gains in image speed and quality when combined with parallel imaging and simultaneous multislice acquisition. The enormous potential of deep learning-based image reconstruction promises to facilitate the 10-fold acceleration of the turbo spin echo pulse sequence, equating to a total acquisition time of 2-3 minutes for entire MRI examinations of joints without sacrificing spatial resolution or image quality. Current investigations aim for a better understanding of stability and failure modes of image reconstruction networks, validation of network reconstruction performance with external data sets, determination of diagnostic performances with independent reference standards, establishing generalizability to other centers, scanners, field strengths, coils, and anatomy, and building publicly available benchmark data sets to compare methods and foster innovation and collaboration between the clinical and image processing community. In this article, we review basic concepts of deep learning-based acquisition and image reconstruction techniques for accelerating and improving the quality of musculoskeletal MRI, commercially available and developing deep learning-based MRI solutions, superresolution, denoising, generative adversarial networks, and combined strategies for deep learning-driven ultra-fast superresolution musculoskeletal MRI. This article aims to equip radiologists and imaging scientists with the necessary practical knowledge and enthusiasm to meet this exciting new era of musculoskeletal MRI.
Collapse
|
32
|
Deep Learning-Enhanced Parallel Imaging and Simultaneous Multislice Acceleration Reconstruction in Knee MRI. Invest Radiol 2022; 57:826-833. [PMID: 35776434 DOI: 10.1097/rli.0000000000000900] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVES This study aimed to examine various combinations of parallel imaging (PI) and simultaneous multislice (SMS) acceleration imaging using deep learning (DL)-enhanced and conventional reconstruction. The study also aimed at comparing the diagnostic performance of the various combinations in internal knee derangement and provided a quantitative evaluation of image sharpness and noise using edge rise distance (ERD) and noise power (NP), respectively. MATERIALS AND METHODS The data from adult patients who underwent knee magnetic resonance imaging using various DL-enhanced acquisitions between June 2021 and January 2022 were retrospectively analyzed. The participants underwent conventional 2-fold PI and DL protocols with 4- to 8-fold acceleration imaging (P2S2 [2-fold PI with 2-fold SMS], P3S2, and P4S2). Three readers evaluated the internal knee derangement and the overall image quality. The diagnostic performance was calculated using consensus reading as a standard reference, and we conducted comparative evaluations. We calculated the ERD and NP for quantitative evaluations of image sharpness and noise, respectively. Interreader and intermethod agreements were calculated using Fleiss κ. RESULTS A total of 33 patients (mean age, 49 ± 19 years; 20 women) were included in this study. The diagnostic performance for internal knee derangement and the overall image quality were similar among the evaluated protocols. The NP values were significantly lower using the DL protocols than with conventional imaging ( P < 0.001), whereas the ERD values were similar among these methods ( P > 0.12). Interreader and intermethod agreements were moderate-to-excellent (κ = 0.574-0.838) and good-to-excellent (κ = 0.755-1.000), respectively. In addition, the mean acquisition time was reduced by 47% when using DL with P2S2, by 62% with P3S2, and by 71% with P4S2, compared with conventional P2 imaging (2 minutes and 55 seconds). CONCLUSIONS The combined use of DL-enhanced 8-fold acceleration imaging (4-fold PI with 2-fold SMS) showed comparable performance with conventional 2-fold PI for the evaluation of internal knee derangement, with a 71% reduction in acquisition time.
Collapse
|
33
|
Postoperative MRI of the Ankle and Foot. Magn Reson Imaging Clin N Am 2022; 30:733-755. [DOI: 10.1016/j.mric.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Patterns of progression differ between Kellgren-Lawrence 2 and 3 knees fulfilling different definitions of a cartilage-meniscus phenotype in the Foundation for National Institutes of Health Osteoarthritis Biomarkers study (FNIH). OSTEOARTHRITIS AND CARTILAGE OPEN 2022; 4:100284. [DOI: 10.1016/j.ocarto.2022.100284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/23/2022] [Accepted: 06/02/2022] [Indexed: 01/18/2023] Open
|
35
|
Kakigi T, Sakamoto R, Tagawa H, Kuriyama S, Goto Y, Nambu M, Sagawa H, Numamoto H, Miyake KK, Saga T, Matsuda S, Nakamoto Y. Diagnostic advantage of thin slice 2D MRI and multiplanar reconstruction of the knee joint using deep learning based denoising approach. Sci Rep 2022; 12:10362. [PMID: 35725760 PMCID: PMC9209466 DOI: 10.1038/s41598-022-14190-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study is to evaluate whether thin-slice high-resolution 2D fat-suppressed proton density-weighted image of the knee joint using denoising approach with deep learning-based reconstruction (dDLR) with MPR is more useful than 3D FS-PD multi planar voxel image. Twelve patients who underwent MRI of the knee at 3T and 13 knees were enrolled. Denoising effect was quantitatively evaluated by comparing the coefficient of variation (CV) before and after dDLR. For the qualitative assessment, two radiologists evaluated image quality, artifacts, anatomical structures, and abnormal findings using a 5-point Likert scale between 2D and 3D. All of them were statistically analyzed. Gwet's agreement coefficients were also calculated. For the scores of abnormal findings, we calculated the percentages of the cases with agreement with high confidence. The CV after dDLR was significantly lower than the one before dDLR (p < 0.05). As for image quality, artifacts and anatomical structure, no significant differences were found except for flow artifact (p < 0.05). The agreement was significantly higher in 2D than in 3D in abnormal findings (p < 0.05). In abnormal findings, the percentage with high confidence was higher in 2D than in 3D (p < 0.05). By applying dDLR to 2D, almost equivalent image quality to 3D could be obtained. Furthermore, abnormal findings could be depicted with greater confidence and consistency, indicating that 2D with dDLR can be a promising imaging method for the knee joint disease evaluation.
Collapse
Affiliation(s)
- Takahide Kakigi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Ryo Sakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Preemptive Medicine and Lifestyle-Related Disease Research Center, Kyoto University Hospital, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hiroshi Tagawa
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Shinichi Kuriyama
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yoshihito Goto
- Department of Health Informatics, Kyoto University Graduate School of Medicine/School of Public Health, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Masahito Nambu
- MRI Systems Division, Canon Medical Systems Corporation, 1385 Shimoishigami, Otawara, Tochigi, 324-8550, Japan
| | - Hajime Sagawa
- Division of Clinical Radiology Service, Kyoto University Hospital, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hitomi Numamoto
- Department of Advanced Medical Imaging Research, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kanae Kawai Miyake
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Advanced Medical Imaging Research, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tsuneo Saga
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Advanced Medical Imaging Research, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
36
|
3D CAIPIRINHA SPACE versus standard 2D TSE for routine knee MRI: a large-scale interchangeability study. Eur Radiol 2022; 32:6456-6467. [PMID: 35353196 DOI: 10.1007/s00330-022-08715-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/03/2022] [Accepted: 03/05/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To perform a large-scale interchangeability study comparing 3D controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) sampling perfection with application optimized contrast using different flip angle evolutions (SPACE) TSE with standard 2D TSE for knee MRI. METHODS In this prospective study, 250 patients underwent 3 T knee MRI, including a multicontrast 3D CAIPIRINHA SPACE TSE (9:26 min) and a standard 2D TSE protocol (12:14 min). Thirty-three (13%) patients had previous anterior cruciate ligament and/or meniscus surgery. Two radiologists assessed MRIs for image quality and identified pathologies of menisci, ligaments, and cartilage by using a 4-point Likert scale according to the level of diagnostic confidence. Interchangeability of the protocols was tested under the same-reader scenario using a bootstrap percentile confidence interval. Interreader reliability and intermethod concordance were also evaluated. RESULTS Despite higher image quality and diagnostic confidence for standard 2D TSE compared to 3D CAIPIRINHA SPACE TSE, the protocols were found interchangeable for diagnosing knee abnormalities, except for patellar (6.8% difference; 95% CI: 4.0, 9.6) and trochlear (3.6% difference; 95% CI: 0.8, 6.6) cartilage defects. The interreader reliability was substantial to almost perfect for 2D and 3D MRI (range κ, 0.785-1 and κ, 0.725-0.964, respectively). Intermethod concordance was almost perfect for all diagnoses (range κ, 0.817-0.986). CONCLUSION Multicontrast 3D CAIPIRINHA SPACE TSE and standard 2D TSE protocols perform interchangeably for diagnosing knee abnormalities, except for patellofemoral cartilage defects. Despite the radiologist's preference for 2D TSE imaging, a pursuit towards time-saving 3D TSE knee MRI is justified for routine practice. KEY POINTS • Multicontrast 3D CAIPIRINHA SPACE and standard 2D TSE protocols perform interchangeably for diagnosing knee abnormalities, except for patellofemoral cartilage defects. • Radiologists are more confident in diagnosing knee abnormalities on 2D TSE than on 3D CAIPIRINHA SPACE TSE MRI. • Despite the radiologist's preference for 2D TSE, a pursuit towards accelerated 3D TSE knee MRI is justified for routine practice.
Collapse
|
37
|
Feasibility of an accelerated 2D-multi-contrast knee MRI protocol using deep-learning image reconstruction: a prospective intraindividual comparison with a standard MRI protocol. Eur Radiol 2022; 32:6215-6229. [PMID: 35389046 PMCID: PMC9381615 DOI: 10.1007/s00330-022-08753-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 01/19/2023]
Abstract
OBJECTIVES The aim of this study was to evaluate the image quality and diagnostic performance of a deep-learning (DL)-accelerated two-dimensional (2D) turbo spin echo (TSE) MRI of the knee at 1.5 and 3 T in clinical routine in comparison to standard MRI. MATERIAL AND METHODS Sixty participants, who underwent knee MRI at 1.5 and 3 T between October/2020 and March/2021 with a protocol using standard 2D-TSE (TSES) and DL-accelerated 2D-TSE sequences (TSEDL), were enrolled in this prospective institutional review board-approved study. Three radiologists assessed the sequences regarding structural abnormalities and evaluated the images concerning overall image quality, artifacts, noise, sharpness, subjective signal-to-noise ratio, and diagnostic confidence using a Likert scale (1-5, 5 = best). RESULTS Overall image quality for TSEDL was rated to be excellent (median 5, IQR 4-5), significantly higher compared to TSES (median 5, IQR 4 - 5, p < 0.05), showing significantly lower extents of noise and improved sharpness (p < 0.001). Inter- and intra-reader agreement was almost perfect (κ = 0.92-1.00) for the detection of internal derangement and substantial to almost perfect (κ = 0.58-0.98) for the assessment of cartilage defects. No difference was found concerning the detection of bone marrow edema and fractures. The diagnostic confidence of TSEDL was rated to be comparable to that of TSES (median 5, IQR 5-5, p > 0.05). Time of acquisition could be reduced to 6:11 min using TSEDL compared to 11:56 min for a protocol using TSES. CONCLUSION TSEDL of the knee is clinically feasible, showing excellent image quality and equivalent diagnostic performance compared to TSES, reducing the acquisition time about 50%. KEY POINTS • Deep-learning reconstructed TSE imaging is able to almost halve the acquisition time of a three-plane knee MRI with proton density and T1-weighted images, from 11:56 min to 6:11 min at 3 T. • Deep-learning reconstructed TSE imaging of the knee provided significant improvement of noise levels (p < 0.001), providing higher image quality (p < 0.05) compared to conventional TSE imaging. • Deep-learning reconstructed TSE imaging of the knee had similar diagnostic performance for internal derangement of the knee compared to standard TSE.
Collapse
|
38
|
Comparison of compressed sensing-sensitivity encoding (CS-SENSE) accelerated 3D T2W TSE sequence versus conventional 3D and 2D T2W TSE sequences in rectal cancer: a prospective study. Abdom Radiol (NY) 2022; 47:3660-3670. [PMID: 35997800 PMCID: PMC9560929 DOI: 10.1007/s00261-022-03636-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE This study aimed to evaluate the image quality and diagnostic value of compressed sensing-sensitivity encoding (CS-SENSE) accelerated 3-dimensional (3D) T2-weighted turbo spin-echo (T2W TSE) sequence in patients with rectal cancer compared with conventional 3D and 2-dimensional (2D) sequences. METHODS A total of 54 patients who underwent the above three sequences were enrolled. Two radiologists independently reviewed the image quality using an ordinal 5-point Likert scale. The quantitative measurement was performed to calculate the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). The diagnostic value was assessed using TN staging, extramural vascular invasion and mesorectal fascia status. Friedman and McNemar's tests were applied for comparative analysis. RESULTS Forty-two patients were successfully included. Compared with 3D and 2D sequences, the CS-SENSE 3D sequence speeded up by 39% and 23%, respectively. The edge sharpness of CS-SENSE 3D images was similar to that of 3D and 2D images. The noise of CS-SENSE 3D images was comparable to that of 3D images but higher than that of 2D images. The SNRtumor and SNRrectal wall of CS-SENSE 3D images were considerably lower than those of 3D and 2D images. The CNR of CS-SENSE 3D images was similar to that of 3D images but lower than that of 2D images. However, no considerable differences were noted in diagnostic value among the three sequences. CONCLUSIONS CS-SENSE 3D T2 sequence provided comparable diagnostic performance, with substantially reduced imaging time and no significant sacrifices in image quality. This technique may serve as a reliable tool for evaluating rectal cancer.
Collapse
|
39
|
Liu L, Wu G. Three-dimensional SPACE MR with CAIPIRINHA fourfold acceleration for assessing long head of biceps tendon. Acta Radiol 2021:2841851211055324. [PMID: 34854744 DOI: 10.1177/02841851211055324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Data regarding controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) T2-weighted sampling perfection with application optimized contrast evolution (SPACE) with fourfold acceleration factor for assessing long head of biceps tendon (LHBT) disorder is lacking. PURPOSE To investigate the feasibility of 3D CAIPIRINHA SPACE with fourfold acceleration in assessing LHBT disorder. MATERIAL AND METHODS A total of 42 consecutive patients underwent shoulder magnetic resonance (MR) examinations including CAIPIRINHA SPACE with fourfold acceleration, and non-CAIPIRINHA SPACE with twofold acceleration, and 2D fast spin echo (FSE). A subjective score of depiction of LHBT was given to 3D sequence according to a 4-point scale (0-3, "poor" to "excellent"). The Wilcoxon signed rank test was used to compare depiction scores between 3D sequences. Three statuses of LHBT were defined in the study: normal, tendonitis, and tear. McNemar's test was used compare diagnostic accuracy. RESULTS LHBT was better depicted with CAIPIRINHA SPACE versus non-CAIPIRINHA SPACE (2.1 ± 0.4 vs. 1.5 ± 0.4; P < 0.001). Inter-modality agreement between CAIPIRINHA SPACE and 2D FSE was almost perfect (kappa = 0.884 ± 0.064). The sensitivity and specificity in detecting LHBT disorder were 95% (20/21) and 95% (20/21), respectively, for CAIPIRINHA SPACE, and 71% (15/21) and 76% (16/21), respectively, for non-CAIPIRINHA SPACE (P = 0.039). CONCLUSION Fourfold acceleration CAIPIRINHA is feasible in reducing the acquisition time of SPACE MR in the shoulder. 3D CAIPIRINHA SPACE with fourfold acceleration is highly accurate in detecting LHBT disorder.
Collapse
Affiliation(s)
- Liangjin Liu
- Department of Radiology, Hubei No.3 People’s Hospital of Jianghan University, Wuhan, China
| | - Gang Wu
- Department of Radiology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, PR China
| |
Collapse
|
40
|
Khodarahmi I, Fritz J. The Value of 3 Tesla Field Strength for Musculoskeletal Magnetic Resonance Imaging. Invest Radiol 2021; 56:749-763. [PMID: 34190717 DOI: 10.1097/rli.0000000000000801] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Musculoskeletal magnetic resonance imaging (MRI) is a careful negotiation between spatial, temporal, and contrast resolution, which builds the foundation for diagnostic performance and value. Many aspects of musculoskeletal MRI can improve the image quality and increase the acquisition speed; however, 3.0-T field strength has the highest impact within the current diagnostic range. In addition to the favorable attributes of 3.0-T field strength translating into high temporal, spatial, and contrast resolution, many 3.0-T MRI systems yield additional gains through high-performance gradients systems and radiofrequency pulse transmission technology, advanced multichannel receiver technology, and high-end surface coils. Compared with 1.5 T, 3.0-T MRI systems yield approximately 2-fold higher signal-to-noise ratios, enabling 4 times faster data acquisition or double the matrix size. Clinically, 3.0-T field strength translates into markedly higher scan efficiency, better image quality, more accurate visualization of small anatomic structures and abnormalities, and the ability to offer high-end applications, such as quantitative MRI and magnetic resonance neurography. Challenges of 3.0-T MRI include higher magnetic susceptibility, chemical shift, dielectric effects, and higher radiofrequency energy deposition, which can be managed successfully. The higher total cost of ownership of 3.0-T MRI systems can be offset by shorter musculoskeletal MRI examinations, higher-quality examinations, and utilization of advanced MRI techniques, which then can achieve higher gains and value than lower field systems. We provide a practice-focused review of the value of 3.0-T field strength for musculoskeletal MRI, practical solutions to challenges, and illustrations of a wide spectrum of gainful clinical applications.
Collapse
Affiliation(s)
- Iman Khodarahmi
- From the Division of Musculoskeletal Radiology, Department of Radiology, NYU Grossman School of Medicine, New York, NY
| | | |
Collapse
|
41
|
Dalili D, Fritz J, Isaac A. 3D MRI of the Hand and Wrist: Technical Considerations and Clinical Applications. Semin Musculoskelet Radiol 2021; 25:501-513. [PMID: 34547815 DOI: 10.1055/s-0041-1731652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In the last few years, major developments have been observed in the field of magnetic resonance imaging (MRI). Advances in both scanner hardware and software technologies have witnessed great leaps, enhancing the diagnostic quality and, therefore, the value of MRI. In musculoskeletal radiology, three-dimensional (3D) MRI has become an integral component of the diagnostic pathway at our institutions. This technique is particularly relevant in patients with hand and wrist symptoms, due to the intricate nature of the anatomical structures and the wide range of differential diagnoses for most presentations. We review the benefits of 3D MRI of the hand and wrist, commonly used pulse sequences, clinical applications, limitations, and future directions. We offer guidance for enhancing the image quality and tips for image interpretation of 3D MRI of the hand and wrist.
Collapse
Affiliation(s)
- Danoob Dalili
- Epsom and St Helier University Hospitals, London, United Kingdom
| | - Jan Fritz
- NYU Grossman School of Medicine, New York University, New York, New York
| | - Amanda Isaac
- Guy's and St. Thomas' Hospitals NHS Foundation Trust, London, United Kingdom.,School of Biomedical Engineering and Imaging Sciences, King's College London (KCL), London, United Kingdom
| |
Collapse
|
42
|
Altahawi F, Pierce J, Aslan M, Li X, Winalski CS, Subhas N. 3D MRI of the Knee. Semin Musculoskelet Radiol 2021; 25:455-467. [PMID: 34547811 DOI: 10.1055/s-0041-1730400] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Three-dimensional (3D) magnetic resonance imaging (MRI) of the knee is widely used in musculoskeletal (MSK) imaging. Currently, 3D sequences are most commonly used for morphological imaging. Isotropic 3D MRI provides higher out-of-plane resolution than standard two-dimensional (2D) MRI, leading to reduced partial volume averaging artifacts and allowing for multiplanar reconstructions in any plane with any thickness from a single high-resolution isotropic acquisition. Specifically, isotropic 3D fast spin-echo imaging, with options for tissue weighting similar to those used in multiplanar 2D FSE imaging, is of particular interest to MSK radiologists. New applications for 3D spatially encoded sequences are also increasingly available for clinical use. These applications offer advantages over standard 2D techniques for metal artifact reduction, quantitative cartilage imaging, nerve imaging, and bone shape analysis. Emerging fast imaging techniques can be used to overcome the long acquisition times that have limited the adoption of 3D imaging in clinical protocols.
Collapse
Affiliation(s)
- Faysal Altahawi
- Section of Musculoskeletal Imaging, Imaging Institute, Cleveland Clinic, Cleveland, Ohio
| | - Jason Pierce
- Diagnostic Radiology Residency, Imaging Institute, Cleveland Clinic, Cleveland, Ohio
| | - Mercan Aslan
- Section of Musculoskeletal Imaging, Imaging Institute, Cleveland Clinic, Cleveland, Ohio
| | - Xiaojuan Li
- Section of Musculoskeletal Imaging, Imaging Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Carl S Winalski
- Section of Musculoskeletal Imaging, Imaging Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Naveen Subhas
- Section of Musculoskeletal Imaging, Imaging Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
43
|
Ashikyan O, Wells J, Chhabra A. 3D MRI of the Hip Joint: Technical Considerations, Advantages, Applications, and Current Perspectives. Semin Musculoskelet Radiol 2021; 25:488-500. [PMID: 34547814 DOI: 10.1055/s-0041-1730910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Magnetic resonance imaging (MRI) is a common choice among various imaging modalities for the evaluation of hip conditions. Conventional MRI with two-dimensional acquisitions requires a significant amount of time and is limited by partial-volume artifacts and suboptimal fluid-to-cartilage contrast. Recent hardware and software advances have resulted in development of novel isotropic three-dimensional (3D) single-acquisition protocols that cover the volume of the entire hip and can be reconstructed in arbitrary planes for submillimeter assessment of bony and labro-cartilaginous structures in their planes of orientation. This technique facilitates superior identification of small labral tears and other hip lesions with better correlations with arthroscopy. In this review, we discuss technical details related to 3D MRI of the hip, its advantages, and its role in commonly encountered painful conditions that can be evaluated with great precision using this technology. The entities described are femoroacetabular impingement with acetabular labral tears, acetabular dysplasia, avascular necrosis, regional tendinopathies and tendon tears, bursitis, and other conditions.
Collapse
Affiliation(s)
| | - Joel Wells
- Department of Orthopedic Surgery, UT Southwestern, Dallas, Texas
| | - Avneesh Chhabra
- Department of Radiology, UT Southwestern, Dallas, Texas.,Department of Orthopedic Surgery, UT Southwestern, Dallas, Texas
| |
Collapse
|
44
|
Ezzati F, Chalian M, Pezeshk P. 3D MRI of the Rheumatic Diseases. Semin Musculoskelet Radiol 2021; 25:425-432. [PMID: 34547808 DOI: 10.1055/s-0041-1731058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Magnetic resonance imaging (MRI) is commonly used to evaluate musculoskeletal pathologies due to its high spatial resolution and excellent tissue contrast. The diagnosis of rheumatic diseases can often be challenging. Investigation with conventional two-dimensional MRI is helpful for diagnosis and monitoring treatment. In the past few years, three-dimensional (3D) MRI has been more commonly used to assess joint pathologies including inflammatory and rheumatic diseases. This review discusses the techniques and protocols of 3D MRI and its diagnostic yield in the assessment of rheumatic diseases, along with different examples.
Collapse
Affiliation(s)
- Fatemeh Ezzati
- Division of Rheumatic and Autoimmune Diseases, Department of Medicine, UT Southwestern Medical Center, Dallas, Texas
| | - Majid Chalian
- Division of Musculoskeletal Radiology, Department of Radiology, University of Washington, Seattle, Washington
| | - Parham Pezeshk
- Division of Musculoskeletal Radiology, Department of Radiology, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
45
|
Del Grande F, Hinterholzer N, Nanz D. 3D MRI: Technical Considerations and Practical Integration. Semin Musculoskelet Radiol 2021; 25:381-387. [PMID: 34547803 DOI: 10.1055/s-0041-1731059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
One of the main advantages of three-dimensional (3D) magnetic resonance imaging (MRI) is the possibility of isotropic voxels and reconstructed planar cuts through the volumetric data set in any orientation with multiplanar reformation software through real-time evaluation. For example, reformats by the radiologist during reporting allows exploitation of the full potential of isotropic 3D volumetric acquisition or through standardized retrospective reformats of thicker predefined slices of an isotropic volumetric data set by technologists. The main challenges for integrating 3D fast spin echo (FSE) and turbo spin-echo (TSE) MRI in clinical practice are a long acquisition time and some artifacts, whereas for integrating 3D gradient-recalled echo protocols, the main challenges are lower signal-to-noise ratios (SNRs) and the inability to produce intermediate, and T2-weighted contrast. The implementation of bidirectional parallel imaging acquisition and random undersampling acceleration strategies of 3D TSE pulse sequences substantially shortens the examination time with only minor SNR reductions. This article provides an overview of general technical considerations of 3D FSE and TSE sequences in musculoskeletal MRI. It also describes how these sequences achieve efficient data acquisition and reviews the main advantages and challenges for their introduction to clinical practice.
Collapse
Affiliation(s)
- Filippo Del Grande
- Clinica di Radiologia EOC, Istituto di Imaging della Svizzera Italiana (IIMSI), Lugano, Svizzera
| | - Natalie Hinterholzer
- SCMI, Swiss Center for Musculoskeletal Imaging, Balgrist Campus AG, Zürich, Switzerland
| | - Daniel Nanz
- SCMI, Swiss Center for Musculoskeletal Imaging, Balgrist Campus AG, Zürich, Switzerland.,University of Zürich, Zürich, Switzerland
| |
Collapse
|
46
|
Fritz B, Fritz J, Sutter R. 3D MRI of the Ankle: A Concise State-of-the-Art Review. Semin Musculoskelet Radiol 2021; 25:514-526. [PMID: 34547816 DOI: 10.1055/s-0041-1731332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Magnetic resonance imaging (MRI) is a powerful imaging modality for visualizing a wide range of ankle disorders that affect ligaments, tendons, and articular cartilage. Standard two-dimensional (2D) fast spin-echo (FSE) and turbo spin-echo (TSE) pulse sequences offer high signal-to-noise and contrast-to-noise ratios, but slice thickness limitations create partial volume effects. Modern three-dimensional (3D) FSE/TSE pulse sequences with isotropic voxel dimensions can achieve higher spatial resolution and similar contrast resolutions in ≤ 5 minutes of acquisition time. Advanced acceleration schemes have reduced the blurring effects of 3D FSE/TSE pulse sequences by affording shorter echo train lengths. The ability for thin-slice partitions and multiplanar reformation capabilities eliminate relevant partial volume effects and render modern 3D FSE/TSE pulse sequences excellently suited for MRI visualization of several oblique and curved structures around the ankle. Clinical efficiency gains can be achieved by replacing two or three 2D FSE/TSE sequences within an ankle protocol with a single isotropic 3D FSE/TSE pulse sequence. In this article, we review technical pulse sequence properties for 3D MRI of the ankle, discuss practical considerations for clinical implementation and achieving the highest image quality, compare diagnostic performance metrics of 2D and 3D MRI for major ankle structures, and illustrate a broad spectrum of ankle abnormalities.
Collapse
Affiliation(s)
- Benjamin Fritz
- Department of Radiology, University Hospital Balgrist, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Jan Fritz
- New York University Grossman School of Medicine, New York University, New York, New York
| | - Reto Sutter
- Department of Radiology, University Hospital Balgrist, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
47
|
Abstract
Osteoarthritis, characterized by the breakdown of articular cartilage and other joint structures, is one of the most prevalent and disabling chronic diseases in the United States. Magnetic resonance imaging is a commonly used imaging modality to evaluate patients with joint pain. Both two-dimensional fast spin-echo sequences (2D-FSE) and three-dimensional (3D) sequences are used in clinical practice to evaluate articular cartilage. The 3D sequences have many advantages compared with 2D-FSE sequences, such as their high in-plane spatial resolution, thin continuous slices that reduce the effects of partial volume averaging, and ability to create multiplanar reformat images following a single acquisition. This article reviews the different 3D imaging techniques available for evaluating cartilage morphology, illustrates the strengths and weaknesses of 3D approaches compared with 2D-FSE approaches for cartilage imaging, and summarizes the diagnostic performance of 2D-FSE and 3D sequences for detecting cartilage lesions within the knee and hip joints.
Collapse
Affiliation(s)
- Richard Kijowski
- Department of Radiology, New York University Grossman School of Medicine, New York, New York
| |
Collapse
|
48
|
Abstract
Three-dimensional (3D) magnetic resonance imaging of the spine is now clinically feasible due to technological advancements. Its advantages over two-dimensional imaging include higher in-plane spatial resolution and the ability for reformation in any plane that enables time savings in image acquisition and aids more accurate interpretation. Multispectral 3D techniques for imaging around metal are sometimes useful for evaluating anatomy adjacent to spinal fixation hardware. 3D gradient-recalled echo sequences, including ultrashort or zero time to echo sequences, can provide osseous detail similar to conventional computed tomography.
Collapse
Affiliation(s)
- Meghan Sahr
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York
| | - Ek Tsoon Tan
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York
| | - Darryl B Sneag
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York
| |
Collapse
|
49
|
Abstract
Advances in magnetic resonance imaging (MRI) technology now enable the feasible three-dimensional (3D) acquisition of images. With respect to the imaging of musculoskeletal (MSK) tumors, literature is beginning to accumulate on the use of 3D MRI acquisition for tumor detection and characterization. The benefits of 3D MRI, including general advantages, such as decreased acquisition time, isotropic resolution, and increased image quality, are not only inherently useful for tumor imaging, but they also contribute to the feasibility of more specialized tumor-imaging techniques, such as whole-body MRI, and are reviewed here. Disadvantages of 3D acquisition, such as motion artifact and equipment requirements, do exist and are also discussed. Although further study is needed, 3D MRI acquisition will likely prove increasingly useful in the evaluation of patients with tumors of the MSK system.
Collapse
Affiliation(s)
- Blake C Jones
- Department of Radiology, Medical College of Wisconsin, Froedtert Memorial Lutheran Hospital, Milwaukee, Wisconsin
| | - Shivani Ahlawat
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Laura M Fayad
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
50
|
Pasoglou V, Van Nieuwenhove S, Peeters F, Duchêne G, Kirchgesner T, Lecouvet FE. 3D Whole-Body MRI of the Musculoskeletal System. Semin Musculoskelet Radiol 2021; 25:441-454. [PMID: 34547810 DOI: 10.1055/s-0041-1730401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
With its outstanding soft tissue contrast, spatial resolution, and multiplanar capacities, magnetic resonance imaging (MRI) has become a widely used technique. Whole-body MRI (WB-MRI) has been introduced among diagnostic methods for the staging and follow-up assessment in oncologic patients, and international guidelines recommend its use. In nononcologic applications, WB-MRI is as a promising imaging tool in inflammatory diseases, such as seronegative arthritis and inflammatory myopathies. Technological advances have facilitated the introduction of three-dimensional (3D) almost isotropic sequences in MRI examinations covering the whole body. The possibility to reformat 3D images in any plane with equal or almost equal resolution offers comprehensive understanding of the anatomy, easier disease detection and characterization, and finally contributes to correct treatment planning. This article illustrates the basic principles, advantages, and limitations of the 3D approach in WB-MRI examinations and provides a short review of the literature.
Collapse
Affiliation(s)
- Vassiliki Pasoglou
- Department of Radiology and Medical Imaging, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Sandy Van Nieuwenhove
- Department of Radiology and Medical Imaging, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Frank Peeters
- Department of Radiology and Medical Imaging, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Gaetan Duchêne
- MR applications, General Electric Healthcare, Diegem, Belgium
| | - Thomas Kirchgesner
- Department of Radiology and Medical Imaging, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Frederic E Lecouvet
- Department of Radiology and Medical Imaging, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|