2
|
Taphorn K, Kaster L, Sellerer T, Hötger A, Herzen J. Spectral X-ray dark-field signal characterization from dual-energy projection phase-stepping data with a Talbot-Lau interferometer. Sci Rep 2023; 13:767. [PMID: 36641492 PMCID: PMC9840630 DOI: 10.1038/s41598-022-27155-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/27/2022] [Indexed: 01/16/2023] Open
Abstract
Material-selective analysis of spectral X-ray imaging data requires prior knowledge of the energy dependence of the observed signal. Contrary to conventional X-ray imaging, where the material-specific attenuation coefficient is usually precisely known, the linear diffusion coefficient of the X-ray dark-field contrast does not only depend on the material and its microstructure, but also on the setup geometry and is difficult to access. Here, we present an optimization approach to retrieve the energy dependence of the X-ray dark-field signal quantitatively on the example of closed-cell foams from projection data without the need for additional hardware to a standard grating-based X-ray dark-field imaging setup. A model for the visibility is used to determine the linear diffusion coefficient with a least-squares optimization. The comparison of the results to spectrometer measurements of the linear diffusion coefficient suggests the proposed method to provide a good estimate for the energydependent dark-field signal.
Collapse
Affiliation(s)
- Kirsten Taphorn
- Research Group Biomedical imaging Physics, Department of Physics, School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany.
- Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich, 85748, Garching, Germany.
| | - Lennard Kaster
- Research Group Biomedical imaging Physics, Department of Physics, School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
- Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich, 85748, Garching, Germany
| | - Thorsten Sellerer
- Research Group Biomedical imaging Physics, Department of Physics, School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
- Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich, 85748, Garching, Germany
| | - Alexander Hötger
- Walter Schottky Institute and Physics Department, School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), 80799, Munich, Germany
| | - Julia Herzen
- Research Group Biomedical imaging Physics, Department of Physics, School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
- Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich, 85748, Garching, Germany
| |
Collapse
|
4
|
Yin M, Yuan M, Deng K, Li J, Zhang G, Zhu J, Xie W, Wu J. Subcutaneous Low-Density Foreign Bodies Detection via Grating-Based Multimodal X-ray Imaging. J Digit Imaging 2022; 35:365-373. [PMID: 35064371 PMCID: PMC8921381 DOI: 10.1007/s10278-021-00569-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/10/2021] [Accepted: 12/08/2021] [Indexed: 11/28/2022] Open
Abstract
Detecting low-density foreign bodies within soft tissues still stands for a serious challenge. Grating-based multimodal X-ray imaging typically has low hardware requirements while simultaneously providing three kinds of imaging information, i.e., absorption, phase-contrast, and dark-field. We aimed to explore the capacity of grating-based multimodal X-ray imaging technology for detecting common foreign bodies within subcutaneous tissues, and to assess the advantages as well as disadvantages of the three kinds of images obtained via grating-based X-ray multimodal technology in relation to diverse kinds of foreign bodies within different tissues. In this study, metal, glass, wood, plastic, graphite, and ceramic foreign bodies were injected into chunks of the pig adipose tissue and chicken thigh muscles. Next, a grating-based multimodal X-ray imaging device developed in our laboratory was used to detect the above foreign bodies within the adipose and muscle tissues. Our results show that grating-based multimodal X-ray imaging clearly revealed the subcutaneous foreign bodies within the adipose and muscle tissues by acquiring complementary absorption, phase-contrast, and dark-field imaging data in a single shot. Grating-based multimodal X-ray imaging has an exciting potential to detect foreign bodies underneath the epidermis.
Collapse
Affiliation(s)
- Meifang Yin
- Department of Burn and Plastic Surgery, Department of Wound Repair, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Second People's Hospital, ShenzhenShenzhen, 518035, China
| | - Mingzhou Yuan
- Department of Burn Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Kai Deng
- Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang, 621999, China
| | - Jing Li
- Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang, 621999, China
| | - Guangya Zhang
- Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang, 621999, China
| | - Jiayuan Zhu
- Department of Burn Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Weiping Xie
- Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang, 621999, China.
| | - Jun Wu
- Department of Burn and Plastic Surgery, Department of Wound Repair, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Second People's Hospital, ShenzhenShenzhen, 518035, China.
| |
Collapse
|
5
|
Gassert FT, Urban T, Frank M, Willer K, Noichl W, Buchberger P, Schick R, Koehler T, von Berg J, Fingerle AA, Sauter AP, Makowski MR, Pfeiffer D, Pfeiffer F. X-ray Dark-Field Chest Imaging: Qualitative and Quantitative Results in Healthy Humans. Radiology 2021; 301:389-395. [PMID: 34427464 DOI: 10.1148/radiol.2021210963] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Background X-ray dark-field radiography takes advantage of the wave properties of x-rays, with a relatively high signal in the lungs due to the many air-tissue interfaces in the alveoli. Purpose To describe the qualitative and quantitative characteristics of x-ray dark-field images in healthy human subjects. Materials and Methods Between October 2018 and January 2020, patients of legal age who underwent chest CT as part of their diagnostic work-up were screened for study participation. Inclusion criteria were a normal chest CT scan, the ability to consent, and the ability to stand upright without help. Exclusion criteria were pregnancy, serious medical conditions, and changes in the lung tissue, such as those due to cancer, pleural effusion, atelectasis, emphysema, infiltrates, ground-glass opacities, or pneumothorax. Images of study participants were obtained by using a clinical x-ray dark-field prototype, recently constructed and commissioned at the authors' institution, to simultaneously acquire both attenuation-based and dark-field thorax radiographs. Each subject's total dark-field signal was correlated with his or her lung volume, and the dark-field coefficient was correlated with age, sex, weight, and height. Results Overall, 40 subjects were included in this study (average age, 62 years ± 13 [standard deviation]; 26 men, 14 women). Normal human lungs have high signal, while the surrounding osseous structures and soft tissue have very low and no signal, respectively. The average dark-field signal was 2.5 m-1 ± 0.4 of examined lung tissue. There was a correlation between the total dark-field signal and the lung volume (r = 0.61, P < .001). No difference was found between men and women (P = .78). Also, age (r = -0.18, P = .26), weight (r = 0.24, P = .13), and height (r = 0.01, P = .96) did not influence dark-field signal. Conclusion This study introduces qualitative and quantitative values for x-ray dark-field imaging in healthy human subjects. The quantitative x-ray dark-field coefficient is independent from demographic subject parameters, emphasizing its potential in diagnostic assessment of the lung. ©RSNA, 2021 See also the editorial by Hatabu and Madore in this issue.
Collapse
Affiliation(s)
- Florian T Gassert
- From the Department of Diagnostic and Interventional Radiology, School of Medicine & Klinikum Rechts der Isar, Technical University of Munich, Ismaningerstr 22, 81675 Munich, Germany (F.T.G., A.A.F., A.P.S., M.R.M., D.P., F.P.); Department of Physics and Munich School of BioEngineering, Technical University of Munich, Garching, Germany (T.U., M.F., K.W., W.N., P.B., R.S., F.P.); and Philips Research, Hamburg, Germany (T.K., J.v.B.)
| | - Theresa Urban
- From the Department of Diagnostic and Interventional Radiology, School of Medicine & Klinikum Rechts der Isar, Technical University of Munich, Ismaningerstr 22, 81675 Munich, Germany (F.T.G., A.A.F., A.P.S., M.R.M., D.P., F.P.); Department of Physics and Munich School of BioEngineering, Technical University of Munich, Garching, Germany (T.U., M.F., K.W., W.N., P.B., R.S., F.P.); and Philips Research, Hamburg, Germany (T.K., J.v.B.)
| | - Manuela Frank
- From the Department of Diagnostic and Interventional Radiology, School of Medicine & Klinikum Rechts der Isar, Technical University of Munich, Ismaningerstr 22, 81675 Munich, Germany (F.T.G., A.A.F., A.P.S., M.R.M., D.P., F.P.); Department of Physics and Munich School of BioEngineering, Technical University of Munich, Garching, Germany (T.U., M.F., K.W., W.N., P.B., R.S., F.P.); and Philips Research, Hamburg, Germany (T.K., J.v.B.)
| | - Konstantin Willer
- From the Department of Diagnostic and Interventional Radiology, School of Medicine & Klinikum Rechts der Isar, Technical University of Munich, Ismaningerstr 22, 81675 Munich, Germany (F.T.G., A.A.F., A.P.S., M.R.M., D.P., F.P.); Department of Physics and Munich School of BioEngineering, Technical University of Munich, Garching, Germany (T.U., M.F., K.W., W.N., P.B., R.S., F.P.); and Philips Research, Hamburg, Germany (T.K., J.v.B.)
| | - Wolfgang Noichl
- From the Department of Diagnostic and Interventional Radiology, School of Medicine & Klinikum Rechts der Isar, Technical University of Munich, Ismaningerstr 22, 81675 Munich, Germany (F.T.G., A.A.F., A.P.S., M.R.M., D.P., F.P.); Department of Physics and Munich School of BioEngineering, Technical University of Munich, Garching, Germany (T.U., M.F., K.W., W.N., P.B., R.S., F.P.); and Philips Research, Hamburg, Germany (T.K., J.v.B.)
| | - Philipp Buchberger
- From the Department of Diagnostic and Interventional Radiology, School of Medicine & Klinikum Rechts der Isar, Technical University of Munich, Ismaningerstr 22, 81675 Munich, Germany (F.T.G., A.A.F., A.P.S., M.R.M., D.P., F.P.); Department of Physics and Munich School of BioEngineering, Technical University of Munich, Garching, Germany (T.U., M.F., K.W., W.N., P.B., R.S., F.P.); and Philips Research, Hamburg, Germany (T.K., J.v.B.)
| | - Rafael Schick
- From the Department of Diagnostic and Interventional Radiology, School of Medicine & Klinikum Rechts der Isar, Technical University of Munich, Ismaningerstr 22, 81675 Munich, Germany (F.T.G., A.A.F., A.P.S., M.R.M., D.P., F.P.); Department of Physics and Munich School of BioEngineering, Technical University of Munich, Garching, Germany (T.U., M.F., K.W., W.N., P.B., R.S., F.P.); and Philips Research, Hamburg, Germany (T.K., J.v.B.)
| | - Thomas Koehler
- From the Department of Diagnostic and Interventional Radiology, School of Medicine & Klinikum Rechts der Isar, Technical University of Munich, Ismaningerstr 22, 81675 Munich, Germany (F.T.G., A.A.F., A.P.S., M.R.M., D.P., F.P.); Department of Physics and Munich School of BioEngineering, Technical University of Munich, Garching, Germany (T.U., M.F., K.W., W.N., P.B., R.S., F.P.); and Philips Research, Hamburg, Germany (T.K., J.v.B.)
| | - Jens von Berg
- From the Department of Diagnostic and Interventional Radiology, School of Medicine & Klinikum Rechts der Isar, Technical University of Munich, Ismaningerstr 22, 81675 Munich, Germany (F.T.G., A.A.F., A.P.S., M.R.M., D.P., F.P.); Department of Physics and Munich School of BioEngineering, Technical University of Munich, Garching, Germany (T.U., M.F., K.W., W.N., P.B., R.S., F.P.); and Philips Research, Hamburg, Germany (T.K., J.v.B.)
| | - Alexander A Fingerle
- From the Department of Diagnostic and Interventional Radiology, School of Medicine & Klinikum Rechts der Isar, Technical University of Munich, Ismaningerstr 22, 81675 Munich, Germany (F.T.G., A.A.F., A.P.S., M.R.M., D.P., F.P.); Department of Physics and Munich School of BioEngineering, Technical University of Munich, Garching, Germany (T.U., M.F., K.W., W.N., P.B., R.S., F.P.); and Philips Research, Hamburg, Germany (T.K., J.v.B.)
| | - Andreas P Sauter
- From the Department of Diagnostic and Interventional Radiology, School of Medicine & Klinikum Rechts der Isar, Technical University of Munich, Ismaningerstr 22, 81675 Munich, Germany (F.T.G., A.A.F., A.P.S., M.R.M., D.P., F.P.); Department of Physics and Munich School of BioEngineering, Technical University of Munich, Garching, Germany (T.U., M.F., K.W., W.N., P.B., R.S., F.P.); and Philips Research, Hamburg, Germany (T.K., J.v.B.)
| | - Marcus R Makowski
- From the Department of Diagnostic and Interventional Radiology, School of Medicine & Klinikum Rechts der Isar, Technical University of Munich, Ismaningerstr 22, 81675 Munich, Germany (F.T.G., A.A.F., A.P.S., M.R.M., D.P., F.P.); Department of Physics and Munich School of BioEngineering, Technical University of Munich, Garching, Germany (T.U., M.F., K.W., W.N., P.B., R.S., F.P.); and Philips Research, Hamburg, Germany (T.K., J.v.B.)
| | - Daniela Pfeiffer
- From the Department of Diagnostic and Interventional Radiology, School of Medicine & Klinikum Rechts der Isar, Technical University of Munich, Ismaningerstr 22, 81675 Munich, Germany (F.T.G., A.A.F., A.P.S., M.R.M., D.P., F.P.); Department of Physics and Munich School of BioEngineering, Technical University of Munich, Garching, Germany (T.U., M.F., K.W., W.N., P.B., R.S., F.P.); and Philips Research, Hamburg, Germany (T.K., J.v.B.)
| | - Franz Pfeiffer
- From the Department of Diagnostic and Interventional Radiology, School of Medicine & Klinikum Rechts der Isar, Technical University of Munich, Ismaningerstr 22, 81675 Munich, Germany (F.T.G., A.A.F., A.P.S., M.R.M., D.P., F.P.); Department of Physics and Munich School of BioEngineering, Technical University of Munich, Garching, Germany (T.U., M.F., K.W., W.N., P.B., R.S., F.P.); and Philips Research, Hamburg, Germany (T.K., J.v.B.)
| |
Collapse
|
8
|
Bopp J, Ludwig V, Seifert M, Pelzer G, Maier A, Anton G, Riess C. Simulation study on X-ray phase contrast imaging with dual-phase gratings. Int J Comput Assist Radiol Surg 2018; 14:3-10. [PMID: 30349975 DOI: 10.1007/s11548-018-1872-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/10/2018] [Indexed: 11/24/2022]
Abstract
PURPOSE Two phase gratings in an X-ray grating interferometers can solve several technical challenges for clinical use of X-ray phase contrast. In this work, we adapt and evaluate this setup design to clinical X-ray sources and detectors in a simulation study. METHODS For a given set of gratings, we optimize the remaining parameter space of a dual-phase grating setup using a numerical wave front simulation. The simulation results are validated with experimentally obtained visibility measurements on a setup with a microfocus tube and a clinical X-ray detector. We then confirm by simulation that the Lau condition for the [Formula: see text] grating also holds for two phase gratings. Furthermore, we use a [Formula: see text] grating with a fixed period to search for periods of matching phase grating configurations. RESULTS Simulated and experimental visibilities agree very well. We show that the Lau condition for a dual-phase grating setup requires the interference patterns of the first phase grating to constructively overlay at the second phase grating. Furthermore, a total of three setup variants for given [Formula: see text] periods were designed with the simulation, resulting in visibilities between 4.5 and 9.1%. CONCLUSION Dual-phase gratings can be used and optimized for a medical X-ray source and detector. The obtained visibilities are somewhat lower than for other Talbot-Lau interferometers and are a tradeoff between setup length and spatial resolution (or additional phase stepping, respectively). However, these disadvantage appears minor compared to the overall better photon statistics, and the fact that dual-phase grating setups can be expected to scale to higher X-ray energies.
Collapse
Affiliation(s)
- Johannes Bopp
- Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-University Erlangen-Nuremberg, Martensstr. 3, 91058, Erlangen, Germany.
| | - Veronika Ludwig
- Erlangen Centre for Astroparticle Physics, Department of Physics, Friedrich-Alexander-University Erlangen-Nuremberg, Erwin-Rommel-Str. 1, 91058, Erlangen, Germany
| | - Maria Seifert
- Erlangen Centre for Astroparticle Physics, Department of Physics, Friedrich-Alexander-University Erlangen-Nuremberg, Erwin-Rommel-Str. 1, 91058, Erlangen, Germany
| | - Georg Pelzer
- Erlangen Centre for Astroparticle Physics, Department of Physics, Friedrich-Alexander-University Erlangen-Nuremberg, Erwin-Rommel-Str. 1, 91058, Erlangen, Germany
| | - Andreas Maier
- Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-University Erlangen-Nuremberg, Martensstr. 3, 91058, Erlangen, Germany
| | - Gisela Anton
- Erlangen Centre for Astroparticle Physics, Department of Physics, Friedrich-Alexander-University Erlangen-Nuremberg, Erwin-Rommel-Str. 1, 91058, Erlangen, Germany
| | - Christian Riess
- Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-University Erlangen-Nuremberg, Martensstr. 3, 91058, Erlangen, Germany
| |
Collapse
|