1
|
Liu K, Chen C, Shen T, Wen X, Zeng M, Xu P. Multiple b value diffusion-weighted MRI of liver: A novel respiratory frequency-modulated continuous-wave radar-trigger technique and comparison with free-breathing technique. Magn Reson Imaging 2025; 117:110312. [PMID: 39694121 DOI: 10.1016/j.mri.2024.110312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/15/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
OBJECTIVE The aim of this study was to evaluate a novel respiratory frequency-modulated continuous-wave radar-trigger (FT) technique for multiple -b-value diffusion-weighted imaging (DWI) of liver and compare it with conventional free breathing (FB) DWI technique. MATERIAL AND METHODS 39 patients with focal liver lesions underwent both frequency-modulated continuous-wave radar-trigger (FT) and conventional free-breathing (FB) multi-b-value diffusion-weighted imaging (DWI,b = 0,50,400,800 s/mm2). Two abdominal radiologists independently assessed the quality of liver DWI images obtained using both techniques, measured and compared liver signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) at different b-values, as well as apparent diffusion coefficient (ADC) values calculated from all b-values. RESULTS In terms of image quality, the FT technique is superior to the conventional FB technique, with overall image quality scores (Reader 1, 3.56 ± 0.50 and Reader 2, 3.59 ± 0.55)vs (Reader 1, 2.90 ± 0.75 and Reader 2, 2.97 ± 0.71), respectively. The liver SNR (at b-values of 50,400,and 800 s/mm2) obtained by FT was (138.5 ± 43.48, 96.67 ± 31.95, 71.54 ± 22.03), respectively, which was significantly higher than that obtained by conventional FB (110.90 ± 39.28, 80.86 ± 29.13, 60.43 ± 18.61, P < 0.05). The lesion CNR with FT was significantly higher than that with conventional FB (258.99 ± 151.38 vs 174.60 ± 99.90; 164.56 ± 87.25 vs 111.12 ± 42.43; 118.83 ± 68.76 vs 76.01 ± 35.48, P < 0.001). There was no significant difference in ADC values of liver and lesions between the two techniques: ADCliver-L and ADCliver-R: (FT 1479.3 ± 270.0 vs FB 1529.3 ± 275.5 and FT 1219.6 ± 127.4 vs FB 1248.7 ± 168.2, P > 0.05); ADC lesion:FT(969.0 ± 261.3) vs FB (1017.5 ± 240.4, P > 0.05). CONCLUSION For multi-b-value liver diffusion-weighted imaging, FT technique has higher image quality and better lesion visibility than conventional FB technique and there is no significant difference in ADC values of liver and lesions between the two techniques.
Collapse
Affiliation(s)
- Kai Liu
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, China.
| | - Caizhong Chen
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, China.
| | - Tingting Shen
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, China.
| | - Xixi Wen
- Shanghai United Imaging Healthcare Co., Ltd., Shanghai, China.
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, China
| | - Pengju Xu
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, China.
| |
Collapse
|
2
|
Feng L, Chandarana H. Accelerated Abdominal MRI: A Review of Current Methods and Applications. J Magn Reson Imaging 2025. [PMID: 40103292 DOI: 10.1002/jmri.29750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 03/20/2025] Open
Abstract
MRI is widely used for the diagnosis and management of various abdominal diseases involving organs such as the liver, pancreas, and kidneys. However, one major limitation of MRI is its relatively slow imaging speed compared to other modalities. In addition, respiratory motion poses a significant challenge in abdominal MRI, often requiring patients to hold their breath multiple times during an exam. This requirement can be particularly challenging for sick, elderly, and pediatric patients, who may have reduced breath-holding capacity. As a result, rapid imaging plays an important role in routine clinical abdominal MRI exams. Accelerated data acquisition not only reduces overall exam time but also shortens breath-hold durations, thereby improving patient comfort and compliance. Over the past decade, significant advancements in rapid MRI have led to the development of various accelerated imaging techniques for routine clinical use. These methods improve abdominal MRI by enhancing imaging speed, motion compensation, and overall image quality. Integrating these techniques into clinical practice also enables new applications that were previously challenging. This paper provides a concise yet comprehensive overview of rapid imaging techniques applicable to abdominal MRI and discusses their advantages, limitations, and potential clinical applications. By the end of this review, readers are expected to learn the latest advances in accelerated abdominal MRI and explore new frontiers in this evolving field. Evidence Level: N/A Technical Efficacy: Stage 5.
Collapse
Affiliation(s)
- Li Feng
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine, New York, New York, USA
| | - Hersh Chandarana
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
3
|
Pradella M, Elbaz MSM, Lee DC, Hong K, Passman RS, Kholmovski E, Peters DC, Baraboo JJ, Herzka DA, Nezafat R, Edelman RR, Kim D. A comprehensive evaluation of the left atrium using cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2025; 27:101852. [PMID: 39920924 PMCID: PMC11889362 DOI: 10.1016/j.jocmr.2025.101852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/09/2025] [Accepted: 01/29/2025] [Indexed: 02/10/2025] Open
Abstract
Atrial disease or myopathy is a growing concept in cardiovascular medicine, particularly in the context of atrial fibrillation, as well as amyloidosis and heart failure. Among cardiac imaging modalities, cardiovascular magnetic resonance (CMR) is particularly well suited for a comprehensive assessment of atrial myopathy, including tissue characterization and hemodynamics. The goal of this review article is to describe clinical applications and make recommendations on pulse sequences as well as imaging parameters to assess the left atrium and left atrial appendage. Furthermore, we aimed to create an overview of current and promising future emerging applications of left atrium-specific CMR pulse sequences focusing on both electrophysiologic (EP) and non-EP applications.
Collapse
Affiliation(s)
- Maurice Pradella
- Department of Radiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Mohammed S M Elbaz
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Daniel C Lee
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Internal Medicine, Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - KyungPyo Hong
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rod S Passman
- Department of Internal Medicine, Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Eugene Kholmovski
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Dana C Peters
- Radiology & Biomedical Imaging, Yale University, New Haven, Connecticut, USA
| | - Justin J Baraboo
- Department of Biomedical Engineering, Northwestern University McCormick School of Engineering, Evanston, Illinois, USA
| | - Daniel A Herzka
- Department of Radiology, Case Western Reserve University and University Hospitals, Cleveland, Ohio, USA
| | - Reza Nezafat
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert R Edelman
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Radiology, Northshore University Health System, Evanston, Illinois, USA
| | - Daniel Kim
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Biomedical Engineering, Northwestern University McCormick School of Engineering, Evanston, Illinois, USA.
| |
Collapse
|
4
|
Kretzler ME, Huang SS, Sun JEP, Bittencourt LK, Chen Y, Griswold MA, Boyacioglu R. Free-breathing qRF-MRF with pilot tone respiratory motion navigator for T 1, T 2, T 2*, and off-resonance mapping of the human body at 3 T. MAGMA (NEW YORK, N.Y.) 2025; 38:85-95. [PMID: 39414686 PMCID: PMC11973999 DOI: 10.1007/s10334-024-01209-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/18/2024]
Abstract
Standard quantitative abdominal MRI techniques are time consuming, require breath-holds, and are susceptible to patient motion artifacts. Magnetic resonance fingerprinting (MRF) is naturally multi-parametric and quantifies multiple tissue properties, including T1 and T2. This work includes T2* and off-resonance mapping into a free-breathing MRF framework utilizing a pilot tone navigator. The new acquisition and reconstruction are compared to current clinical standards. Prospective. Ten volunteers. 3 T scanner, Quadratic-RF MRF, Balanced SSFP, Inversion recovery spin-echo, LiverLab. MRI ROIs were evaluated in the liver, spleen, pancreas, kidney (cortex and medulla), and paravertebral muscle by two abdominal imaging investigators for ten healthy adult volunteers for clinical standard, breath-Hold (BH) qRF-MRF, and free-breathing qRF-MRF with pilot-tone (PT) acquisitions. Bland-Altman analysis as well as Student's T tests were used to evaluate and compare the respective ROI analyses. Quantitative values between breath-Hold (BH) and free-breathing qRF-MRF with pilot-tone (PT) results show good agreement with clinical standard T1 and T2 quantitative mapping, and Dixon q-VIBE (acquired using the Siemens LiverLAB). In this work, we show free-breathing abdominal MRF (T1, T2) with T2* results that are quantitatively comparable to current breath-hold MRF and clinical techniques.
Collapse
Affiliation(s)
- Madison E Kretzler
- Dept. of Radiology, Case Western Reserve University, 11100 Euclid Ave / Bolwell B115, Cleveland, OH, 44106, USA.
| | - Sherry S Huang
- Dept. of Radiology, Case Western Reserve University, 11100 Euclid Ave / Bolwell B115, Cleveland, OH, 44106, USA
| | - Jessie E P Sun
- Dept. of Radiology, Case Western Reserve University, 11100 Euclid Ave / Bolwell B115, Cleveland, OH, 44106, USA
| | | | - Yong Chen
- Dept. of Radiology, Case Western Reserve University, 11100 Euclid Ave / Bolwell B115, Cleveland, OH, 44106, USA
| | - Mark A Griswold
- Dept. of Radiology, Case Western Reserve University, 11100 Euclid Ave / Bolwell B115, Cleveland, OH, 44106, USA
| | - Rasim Boyacioglu
- Dept. of Radiology, Case Western Reserve University, 11100 Euclid Ave / Bolwell B115, Cleveland, OH, 44106, USA
| |
Collapse
|
5
|
Lee W, Ryu K, Li Z, Oscanoa J, Wu Y, Robb F, Vasanawala S, Pauly J, Scott G. MRI Retrospective Respiratory Gating and Cardiac Sensing by CW Doppler Radar: A Feasibility Study. IEEE Trans Biomed Eng 2025; 72:112-122. [PMID: 39115989 PMCID: PMC11806077 DOI: 10.1109/tbme.2024.3440317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
OBJECTIVE This study investigates the feasibility of non-contact retrospective respiratory gating and cardiac sensing using continuous wave Doppler radar deployed in an MRI system. The proposed technique can complement existing sensors which are difficult to apply for certain patient populations. METHODS We leverage a software-defined radio for continuous wave radar at 2.4 GHz to detect in-vivo respiratory and cardiac time-scrolled signals. In-bore radar signal demodulation is verified with full electromagnetic simulations, and its functionality is validated on a test bench and within the MR bore with four normal subjects. Radar sensing was compared against well-known references: electrocardiography on a test bench, system bellows, and pulsed plethysmography sensors within the MRI bore. RESULTS The feasibility of non-contact cardiac rate sensing, dynamic breathing sequence synchronization, and in-bore motion correction for retrospective respiratory gating applications was demonstrated. Optimal radar front-end system arrangement, along with spectral isolation and narrow bandwidth of operation, enable MRI-compatible and interference-free motion sensing. The signal-to-noise-ratio degradation by the radar integration was within 4.5% on phantom images. CONCLUSION We confirmed that in-bore retrospective motion correction using CW Doppler radar is feasible without MRI system constraints. SIGNIFICANCE Non-contact motion correction sensing in MRI may provide better patient handling and throughput by complementing existing system sensors and motion correction algorithms.
Collapse
|
6
|
Chen J, Xia D, Huang C, Shanbhogue K, Chandarana H, Feng L. Free-breathing time-resolved 4D MRI with improved T1-weighting contrast. NMR IN BIOMEDICINE 2024; 37:e5247. [PMID: 39183645 DOI: 10.1002/nbm.5247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024]
Abstract
This work proposes MP-Grasp4D (magnetization-prepared golden-angle radial sparse parallel 4D) MRI, a free-breathing, inversion recovery (IR)-prepared, time-resolved 4D MRI technique with improved T1-weighted contrast. MP-Grasp4D MRI acquisition incorporates IR preparation into a radial gradient echo sequence. MP-Grasp4D employs a golden-angle navi-stack-of-stars sampling scheme, where imaging data of rotating radial stacks and navigator stacks (acquired at a consistent rotation angle) are alternately acquired. The navigator stacks are used to estimate a temporal basis for low-rank subspace-constrained reconstruction. This allows for the simultaneous capture of both IR-induced contrast changes and respiratory motion. One temporal frame of the imaging volume in MP-Grasp4D MRI is reconstructed from a single stack and an adjacent navigator stack on average, resulting in a nominal temporal resolution of 0.16 seconds per volume. Images corresponding to the optimal inversion time (TI) can be retrospectively selected for providing the best image contrast. Reader studies were conducted to assess the performance of MP-Grasp4D MRI in liver imaging across 30 subjects in comparison with standard Grasp4D MRI without IR preparation. MP-Grasp4D MRI received significantly higher scores (P < 0.05) than Grasp4D in all assessment categories. There was a moderate to almost perfect agreement (kappa coefficient from 0.42 to 0.9) between the two readers for image quality assessment. When the scan time is reduced, MP-Grasp4D MRI preserves image contrast and quality, demonstrating additional acceleration capability. MP-Grasp4D MRI improves T1-weighted contrast for free-breathing time-resolved 4D MRI and eliminates the need for explicit motion compensation. This method is expected to be valuable in different MRI applications such as MR-guided radiotherapy.
Collapse
Affiliation(s)
- Jingjia Chen
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Ding Xia
- Icahn School of Medicine at Mount Sinai, Biomedical Engineering and Imaging Institute, New York, New York, USA
| | - Chenchan Huang
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Krishna Shanbhogue
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Hersh Chandarana
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Li Feng
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
7
|
Azour L, Rusinek H, Mikheev A, Landini N, Keerthivasan MB, Maier C, Bagga B, Bruno M, Condos R, Moore WH, Chandarana H. Quantitative Characterization of Respiratory Patterns on Dynamic Higher Temporal Resolution MRI to Stratify Postacute Covid-19 Patients by Cardiopulmonary Symptom Burden. J Magn Reson Imaging 2024; 60:2459-2469. [PMID: 38485244 PMCID: PMC11399317 DOI: 10.1002/jmri.29352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 09/16/2024] Open
Abstract
BACKGROUND Postacute Covid-19 patients commonly present with respiratory symptoms; however, a noninvasive imaging method for quantitative characterization of respiratory patterns is lacking. PURPOSE To evaluate if quantitative characterization of respiratory pattern on free-breathing higher temporal resolution MRI stratifies patients by cardiopulmonary symptom burden. STUDY TYPE Prospective analysis of retrospectively acquired data. SUBJECTS A total of 37 postacute Covid-19 patients (25 male; median [interquartile range (IQR)] age: 58 [42-64] years; median [IQR] days from acute infection: 335 [186-449]). FIELD STRENGTH/SEQUENCE 0.55 T/two-dimensional coronal true fast imaging with steady-state free precession (trueFISP) at higher temporal resolution. ASSESSMENT Patients were stratified into three groups based on presence of no (N = 11), 1 (N = 14), or ≥2 (N = 14) cardiopulmonary symptoms, assessed using a standardized symptom inventory within 1 month of MRI. An automated lung postprocessing workflow segmented each lung in each trueFISP image (temporal resolution 0.2 seconds) and respiratory curves were generated. Quantitative parameters were derived including tidal lung area, rates of inspiration and expiration, lung area coefficient of variability (CV), and respiratory incoherence (departure from sinusoidal pattern) were. Pulmonary function tests were recorded if within 1 month of MRI. Qualitative assessment of respiratory pattern and lung opacity was performed by three independent readers with 6, 9, and 23 years of experience. STATISTICAL TESTS Analysis of variance to assess differences in demographic, clinical, and quantitative MRI parameters among groups; univariable analysis and multinomial logistic regression modeling to determine features predictive of patient symptom status; Akaike information criterion to compare the quality of regression models; Cohen and Fleiss kappa (κ) to quantify inter-reader reliability. Two-sided 5% significance level was used. RESULTS Tidal area and lung area CV were significantly higher in patients with two or more symptoms than in those with one or no symptoms (area: 15.4 cm2 vs. 12.9 cm2 vs. 12.8 cm2; CV: 0.072, 0.067, and 0.058). Respiratory incoherence was significantly higher in patients with two or more symptoms than in those with one or no symptoms (0.05 vs. 0.043 vs. 0.033). There were no significant differences in patient age (P = 0.19), sex (P = 0.88), lung opacity severity (P = 0.48), or pulmonary function tests (P = 0.35-0.97) among groups. Qualitative reader assessment did not distinguish between groups and showed slight inter-reader agreement (κ = 0.05-0.11). DATA CONCLUSION Quantitative respiratory pattern measures derived from dynamic higher-temporal resolution MRI have potential to stratify patients by symptom burden in a postacute Covid-19 cohort. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Lea Azour
- Department of Radiology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Henry Rusinek
- Department of Radiology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY
| | - Artem Mikheev
- Department of Radiology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY
| | - Nicholas Landini
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I Hospital, Sapienza Rome University, Rome, Italy
| | | | - Christoph Maier
- Department of Radiology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY
| | - Barun Bagga
- Department of Radiology, New York University Grossman Long Island School of Medicine, NYU Langone Health, New York, NY
| | - Mary Bruno
- Department of Radiology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY
| | - Rany Condos
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY
| | - William H. Moore
- Department of Radiology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY
| | - Hersh Chandarana
- Department of Radiology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY
| |
Collapse
|
8
|
Anand S, Lustig M. Beat Pilot Tone (BPT): Simultaneous MRI and RF motion sensing at arbitrary frequencies. Magn Reson Med 2024; 92:1768-1787. [PMID: 38872443 PMCID: PMC11429784 DOI: 10.1002/mrm.30150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 06/15/2024]
Abstract
PURPOSE To introduce a simple system exploitation with the potential to turn MRI scanners into general-purpose radiofrequency (RF) motion monitoring systems. METHODS Inspired by Pilot Tone (PT), this work proposes Beat Pilot Tone (BPT), in which two or more RF tones at arbitrary frequencies are transmitted continuously during the scan. These tones create motion-modulated standing wave patterns that are sensed by the receiver coil array, incidentally mixed by intermodulation in the receiver chain, and digitized simultaneously with the MRI data. BPT can operate at almost any frequency as long as the intermodulation products lie within the bandwidth of the receivers. BPT's mechanism is explained in electromagnetic simulations and validated experimentally. RESULTS Phantom and volunteer experiments over a range of transmit frequencies suggest that BPT may offer frequency-dependent sensitivity to motion. Using a semi-flexible anterior receiver array, BPT appears to sense cardiac-induced body vibrations at microwave frequencies (≥ $$ \ge $$ 1.2 GHz). At lower frequencies, it exhibits a similar cardiac signal shape to PT, likely due to blood volume changes. Other volunteer experiments with respiratory, bulk, and head motion show that BPT can achieve greater sensitivity to motion than PT and greater separability between motion types. Basic multiple-input multiple-output (4 × 22 $$ 4\times 22 $$ MIMO) operation with simultaneous PT and BPT in head motion is demonstrated using two transmit antennas and a 22-channel head-neck coil. CONCLUSION BPT may offer a rich source of motion information that is frequency-dependent, simultaneous, and complementary to PT and the MRI exam.
Collapse
Affiliation(s)
- Suma Anand
- Electrical Engineering and Computer Sciences, University of California, Berkeley, California
| | - Michael Lustig
- Electrical Engineering and Computer Sciences, University of California, Berkeley, California
| |
Collapse
|
9
|
Holtackers RJ, Stuber M. Free-Running Cardiac and Respiratory Motion-Resolved Imaging: A Paradigm Shift for Managing Motion in Cardiac MRI? Diagnostics (Basel) 2024; 14:1946. [PMID: 39272732 PMCID: PMC11394669 DOI: 10.3390/diagnostics14171946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Cardiac magnetic resonance imaging (MRI) is widely used for non-invasive assessment of cardiac morphology, function, and tissue characteristics due to its exquisite soft-tissue contrast. However, it remains time-consuming and requires proficiency, making it costly and limiting its widespread use. Traditional cardiac MRI is inefficient as signal acquisition is often limited to specific cardiac phases and requires complex view planning, parameter adjustments, and management of both respiratory and cardiac motion. Recent efforts have aimed to make cardiac MRI more efficient and accessible. Among these innovations, the free-running framework enables 5D whole-heart imaging without the need for an electrocardiogram signal, respiratory breath-holding, or complex planning. It uses a fully self-gated approach to extract cardiac and respiratory signals directly from the acquired image data, allowing for more efficient coverage in time and space without the need for electrocardiogram gating, triggering, navigators, or breath-holds. This review provides a comprehensive overview of the free-running framework, detailing its history, concepts, recent improvements, and clinical applications.
Collapse
Affiliation(s)
- Robert J Holtackers
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Rue de Bugnon 46, 1011 Lausanne, Switzerland
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Matthias Stuber
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Rue de Bugnon 46, 1011 Lausanne, Switzerland
- Center for Biomedical Imaging (CIBM), EPFL AVP CP CIBM Station 6, 1015 Lausanne, Switzerland
| |
Collapse
|
10
|
Bane O, Dwivedi DK, Francis ST, Karampinos D, Wu HH, Yokoo T. Quantitative body magnetic resonance imaging: how to make it work. MAGMA (NEW YORK, N.Y.) 2024; 37:529-533. [PMID: 39259356 DOI: 10.1007/s10334-024-01204-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/26/2024] [Indexed: 09/13/2024]
Affiliation(s)
- Octavia Bane
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | | | - Susan T Francis
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
| | - Dimitrios Karampinos
- Institute of Diagnostic and Interventional Radiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Holden H Wu
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Takeshi Yokoo
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
11
|
Zhang JH, Neumann T, Schaeffter T, Kolbitsch C, Kerkering KM. Respiratory motion-corrected T1 mapping of the abdomen. MAGMA (NEW YORK, N.Y.) 2024; 37:637-649. [PMID: 39133420 PMCID: PMC11417068 DOI: 10.1007/s10334-024-01196-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024]
Abstract
OBJECTIVE The purpose of this study was to investigate an approach for motion-corrected T1 mapping of the abdomen that allows for free breathing data acquisition with 100% scan efficiency. MATERIALS AND METHODS Data were acquired using a continuous golden radial trajectory and multiple inversion pulses. For the correction of respiratory motion, motion estimation based on a surrogate was performed from the same data used for T1 mapping. Image-based self-navigation allowed for binning and reconstruction of respiratory-resolved images, which were used for the estimation of respiratory motion fields. Finally, motion-corrected T1 maps were calculated from the data applying the estimated motion fields. The method was evaluated in five healthy volunteers. For the assessment of the image-based navigator, we compared it to a simultaneously acquired ultrawide band radar signal. Motion-corrected T1 maps were evaluated qualitatively and quantitatively for different scan times. RESULTS For all volunteers, the motion-corrected T1 maps showed fewer motion artifacts in the liver as well as sharper kidney structures and blood vessels compared to uncorrected T1 maps. Moreover, the relative error to the reference breathhold T1 maps could be reduced from up to 25% for the uncorrected T1 maps to below 10% for the motion-corrected maps for the average value of a region of interest, while the scan time could be reduced to 6-8 s. DISCUSSION The proposed approach allows for respiratory motion-corrected T1 mapping in the abdomen and ensures accurate T1 maps without the need for any breathholds.
Collapse
Affiliation(s)
- Jana Huiyue Zhang
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.
- Department of Biomedical Engineering, Technical University of Berlin, Berlin, Germany.
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
| | - Tom Neumann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Tobias Schaeffter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
- Department of Biomedical Engineering, Technical University of Berlin, Berlin, Germany
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Christoph Kolbitsch
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | | |
Collapse
|
12
|
Tibrewala R, Brantner D, Brown R, Pancoast L, Keerthivasan M, Bruno M, Block KT, Madore B, Sodickson DK, Collins CM. Preliminary Experience with Three Alternative Motion Sensors for 0.55 Tesla MR Imaging. SENSORS (BASEL, SWITZERLAND) 2024; 24:3710. [PMID: 38931494 PMCID: PMC11207459 DOI: 10.3390/s24123710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Due to limitations in current motion tracking technologies and increasing interest in alternative sensors for motion tracking both inside and outside the MRI system, in this study we share our preliminary experience with three alternative sensors utilizing diverse technologies and interactions with tissue to monitor motion of the body surface, respiratory-related motion of major organs, and non-respiratory motion of deep-seated organs. These consist of (1) a Pilot-Tone RF transmitter combined with deep learning algorithms for tracking liver motion, (2) a single-channel ultrasound transducer with deep learning for monitoring bladder motion, and (3) a 3D Time-of-Flight camera for observing the motion of the anterior torso surface. Additionally, we demonstrate the capability of these sensors to simultaneously capture motion data outside the MRI environment, which is particularly relevant for procedures like radiation therapy, where motion status could be related to previously characterized cyclical anatomical data. Our findings indicate that the ultrasound sensor can track motion in deep-seated organs (bladder) as well as respiratory-related motion. The Time-of-Flight camera offers ease of interpretation and performs well in detecting surface motion (respiration). The Pilot-Tone demonstrates efficacy in tracking bulk respiratory motion and motion of major organs (liver). Simultaneous use of all three sensors could provide complementary motion information outside the MRI bore, providing potential value for motion tracking during position-sensitive treatments such as radiation therapy.
Collapse
Affiliation(s)
- Radhika Tibrewala
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Douglas Brantner
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ryan Brown
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Leanna Pancoast
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | | | - Mary Bruno
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kai Tobias Block
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Bruno Madore
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel K. Sodickson
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Christopher M. Collins
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
13
|
Falcão MBL, Mackowiak ALC, Rossi GMC, Prša M, Tenisch E, Rumac S, Bacher M, Rutz T, van Heeswijk RB, Speier P, Markl M, Bastiaansen JAM, Stuber M, Roy CW. Combined free-running four-dimensional anatomical and flow magnetic resonance imaging with native contrast using Synchronization of Neighboring Acquisitions by Physiological Signals. J Cardiovasc Magn Reson 2024; 26:101006. [PMID: 38309581 PMCID: PMC11211232 DOI: 10.1016/j.jocmr.2024.101006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/25/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Four-dimensional (4D) flow magnetic resonance imaging (MRI) often relies on the injection of gadolinium- or iron-oxide-based contrast agents to improve vessel delineation. In this work, a novel technique is developed to acquire and reconstruct 4D flow data with excellent dynamic visualization of blood vessels but without the need for contrast injection. Synchronization of Neighboring Acquisitions by Physiological Signals (SyNAPS) uses pilot tone (PT) navigation to retrospectively synchronize the reconstruction of two free-running three-dimensional radial acquisitions, to create co-registered anatomy and flow images. METHODS Thirteen volunteers and two Marfan syndrome patients were scanned without contrast agent using one free-running fast interrupted steady-state (FISS) sequence and one free-running phase-contrast MRI (PC-MRI) sequence. PT signals spanning the two sequences were recorded for retrospective respiratory motion correction and cardiac binning. The magnitude and phase images reconstructed, respectively, from FISS and PC-MRI, were synchronized to create SyNAPS 4D flow datasets. Conventional two-dimensional (2D) flow data were acquired for reference in ascending (AAo) and descending aorta (DAo). The blood-to-myocardium contrast ratio, dynamic vessel area, net volume, and peak flow were used to compare SyNAPS 4D flow with Native 4D flow (without FISS information) and 2D flow. A score of 0-4 was given to each dataset by two blinded experts regarding the feasibility of performing vessel delineation. RESULTS Blood-to-myocardium contrast ratio for SyNAPS 4D flow magnitude images (1.5 ± 0.3) was significantly higher than for Native 4D flow (0.7 ± 0.1, p < 0.01) and was comparable to 2D flow (2.3 ± 0.9, p = 0.02). Image quality scores of SyNAPS 4D flow from the experts (M.P.: 1.9 ± 0.3, E.T.: 2.5 ± 0.5) were overall significantly higher than the scores from Native 4D flow (M.P.: 1.6 ± 0.6, p = 0.03, E.T.: 0.8 ± 0.4, p < 0.01) but still significantly lower than the scores from the reference 2D flow datasets (M.P.: 2.8 ± 0.4, p < 0.01, E.T.: 3.5 ± 0.7, p < 0.01). The Pearson correlation coefficient between the dynamic vessel area measured on SyNAPS 4D flow and that from 2D flow was 0.69 ± 0.24 for the AAo and 0.83 ± 0.10 for the DAo, whereas the Pearson correlation between Native 4D flow and 2D flow measurements was 0.12 ± 0.48 for the AAo and 0.08 ± 0.39 for the DAo. Linear correlations between SyNAPS 4D flow and 2D flow measurements of net volume (r2 = 0.83) and peak flow (r2 = 0.87) were larger than the correlations between Native 4D flow and 2D flow measurements of net volume (r2 = 0.79) and peak flow (r2 = 0.76). CONCLUSION The feasibility and utility of SyNAPS were demonstrated for joint whole-heart anatomical and flow MRI without requiring electrocardiography gating, respiratory navigators, or contrast agents. Using SyNAPS, a high-contrast anatomical imaging sequence can be used to improve 4D flow measurements that often suffer from poor delineation of vessel boundaries in the absence of contrast agents.
Collapse
Affiliation(s)
- Mariana B L Falcão
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Adèle L C Mackowiak
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Translation Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Giulia M C Rossi
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Milan Prša
- Woman, Mother, Child Department, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Estelle Tenisch
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Simone Rumac
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Mario Bacher
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; Siemens Healthcare GmbH, Erlangen, Germany
| | - Tobias Rutz
- Service of Cardiology, Centre de Resonance Magnétique Cardiaque (CRMC), Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ruud B van Heeswijk
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | | | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, USA
| | - Jessica A M Bastiaansen
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Translation Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Matthias Stuber
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - Christopher W Roy
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
| |
Collapse
|
14
|
Pan Y, Varghese J, Tong MS, Yildiz VO, Azzu A, Gatehouse P, Wage R, Nielles-Vallespin S, Pennell DJ, Jin N, Bacher M, Hayes C, Speier P, Simonetti OP. Two-center validation of Pilot Tone based cardiac triggering of a comprehensive cardiovascular magnetic resonance examination. Int J Cardiovasc Imaging 2024; 40:261-273. [PMID: 38082073 PMCID: PMC11742245 DOI: 10.1007/s10554-023-03002-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/31/2023] [Indexed: 12/26/2023]
Abstract
The electrocardiogram (ECG) signal is prone to distortions from gradient and radiofrequency interference and the magnetohydrodynamic effect during cardiovascular magnetic resonance imaging (CMR). Although Pilot Tone Cardiac (PTC) triggering has the potential to overcome these limitations, effectiveness across various CMR techniques has yet to be established. To evaluate the performance of PTC triggering in a comprehensive CMR exam. Fifteen volunteers and 20 patients were recruited at two centers. ECG triggered images were collected for comparison in a subset of sequences. The PTC trigger accuracy was evaluated against ECG in cine acquisitions. Two experienced readers scored image quality in PTC-triggered cine, late gadolinium enhancement (LGE), and T1- and T2-weighted dark-blood turbo spin echo (DB-TSE) images. Quantitative cardiac function, flow, and parametric mapping values obtained using PTC and ECG triggered sequences were compared. Breath-held segmented cine used for trigger timing analysis was collected in 15 volunteers and 14 patients. PTC calibration failed in three volunteers and one patient; ECG trigger recording failed in one patient. Out of 1987 total heartbeats, three mismatched trigger PTC-ECG pairs were found. Image quality scores showed no significant difference between PTC and ECG triggering. There was no significant difference found in quantitative measurements in volunteers. In patients, the only significant difference was found in post-contrast T1 (p = 0.04). ICC showed moderate to excellent agreement in all measurements. PTC performance was equivalent to ECG in terms of triggering consistency, image quality, and quantitative image measurements across multiple CMR applications.
Collapse
Affiliation(s)
- Yue Pan
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Juliet Varghese
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Matthew S Tong
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Vedat O Yildiz
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Alessia Azzu
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, UK
| | - Peter Gatehouse
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, UK
| | - Rick Wage
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, UK
| | | | - Dudley J Pennell
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, UK
| | - Ning Jin
- Cardiovascular MR R&D, Siemens Medical Solutions USA, Malvern, PA, USA
| | - Mario Bacher
- Siemens Healthineers AG, Erlangen, Germany
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | | | - Orlando P Simonetti
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
15
|
Tian Y, Nayak KS. New clinical opportunities of low-field MRI: heart, lung, body, and musculoskeletal. MAGMA (NEW YORK, N.Y.) 2024; 37:1-14. [PMID: 37902898 PMCID: PMC10876830 DOI: 10.1007/s10334-023-01123-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 11/01/2023]
Abstract
Contemporary whole-body low-field MRI scanners (< 1 T) present new and exciting opportunities for improved body imaging. The fundamental reason is that the reduced off-resonance and reduced SAR provide substantially increased flexibility in the design of MRI pulse sequences. Promising body applications include lung parenchyma imaging, imaging adjacent to metallic implants, cardiac imaging, and dynamic imaging in general. The lower cost of such systems may make MRI favorable for screening high-risk populations and population health research, and the more open configurations allowed may prove favorable for obese subjects and for pregnant women. This article summarizes promising body applications for contemporary whole-body low-field MRI systems, with a focus on new platforms developed within the past 5 years. This is an active area of research, and one can expect many improvements as MRI physicists fully explore the landscape of pulse sequences that are feasible, and as clinicians apply these to patient populations.
Collapse
Affiliation(s)
- Ye Tian
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, 3740 McClintock Ave, EEB 406, Los Angeles, CA, 90089-2564, USA.
| | - Krishna S Nayak
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, 3740 McClintock Ave, EEB 406, Los Angeles, CA, 90089-2564, USA
| |
Collapse
|
16
|
Chen C, Liu Y, Simonetti OP, Tong M, Jin N, Bacher M, Speier P, Ahmad R. Cardiac and respiratory motion extraction for MRI using pilot tone-a patient study. Int J Cardiovasc Imaging 2024; 40:93-105. [PMID: 37874445 PMCID: PMC10842141 DOI: 10.1007/s10554-023-02966-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/21/2023] [Indexed: 10/25/2023]
Abstract
This study aims to evaluate the accuracy and reliability of the cardiac and respiratory signals extracted from Pilot Tone (PT) in patients clinically referred for cardiovascular MRI. Twenty-three patients were scanned under free-breathing conditions using a balanced steady-state free-precession real-time (RT) cine sequence on a 1.5T scanner. The PT signal was generated by a built-in PT transmitter integrated within the body array coil, and retrospectively processed to extract respiratory and cardiac signals. For comparison, ECG and BioMatrix (BM) respiratory sensor signals were also synchronously recorded. To assess the performances of PT, ECG, and BM, cardiac and respiratory signals extracted from the RT cine images were used as the ground truth. The respiratory motion extracted from PT correlated positively with the image-derived respiratory signal in all cases and showed a stronger correlation (absolute coefficient: 0.95 ± 0.09) than BM (0.72 ± 0.24). For the cardiac signal, PT trigger jitter (standard deviation of PT trigger locations relative to ECG triggers) ranged from 6.6 to 83.3 ms, with a median of 21.8 ms. The mean absolute difference between the PT and corresponding ECG cardiac cycle duration was less than 5% of the average ECG RR interval for 21 out of 23 patients. We did not observe a significant linear dependence (p > 0.28) of PT delay and PT jitter on the patients' BMI or cardiac cycle duration. This study demonstrates the potential of PT to monitor both respiratory and cardiac motion in patients clinically referred for cardiovascular MRI.
Collapse
Affiliation(s)
- Chong Chen
- Department of Biomedical Engineering, The Ohio State University, Columbus, US.
| | - Yingmin Liu
- Davis Heart & Lung Research Institute, The Ohio State University, Columbus, US
| | - Orlando P Simonetti
- Davis Heart & Lung Research Institute, The Ohio State University, Columbus, US
| | - Matthew Tong
- Davis Heart & Lung Research Institute, The Ohio State University, Columbus, US
| | - Ning Jin
- Siemens Medical Solutions USA, Inc, Columbus, US
| | | | | | - Rizwan Ahmad
- Department of Biomedical Engineering, The Ohio State University, Columbus, US
| |
Collapse
|
17
|
Veit-Haibach P, Ahlström H, Boellaard R, Delgado Bolton RC, Hesse S, Hope T, Huellner MW, Iagaru A, Johnson GB, Kjaer A, Law I, Metser U, Quick HH, Sattler B, Umutlu L, Zaharchuk G, Herrmann K. International EANM-SNMMI-ISMRM consensus recommendation for PET/MRI in oncology. Eur J Nucl Med Mol Imaging 2023; 50:3513-3537. [PMID: 37624384 PMCID: PMC10547645 DOI: 10.1007/s00259-023-06406-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
PREAMBLE The Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and professional organization founded in 1954 to promote the science, technology, and practical application of nuclear medicine. The European Association of Nuclear Medicine (EANM) is a professional non-profit medical association that facilitates communication worldwide between individuals pursuing clinical and research excellence in nuclear medicine. The EANM was founded in 1985. The merged International Society for Magnetic Resonance in Medicine (ISMRM) is an international, nonprofit, scientific association whose purpose is to promote communication, research, development, and applications in the field of magnetic resonance in medicine and biology and other related topics and to develop and provide channels and facilities for continuing education in the field.The ISMRM was founded in 1994 through the merger of the Society of Magnetic Resonance in Medicine and the Society of Magnetic Resonance Imaging. SNMMI, ISMRM, and EANM members are physicians, technologists, and scientists specializing in the research and practice of nuclear medicine and/or magnetic resonance imaging. The SNMMI, ISMRM, and EANM will periodically define new guidelines for nuclear medicine practice to help advance the science of nuclear medicine and/or magnetic resonance imaging and to improve the quality of service to patients throughout the world. Existing practice guidelines will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated. Each practice guideline, representing a policy statement by the SNMMI/EANM/ISMRM, has undergone a thorough consensus process in which it has been subjected to extensive review. The SNMMI, ISMRM, and EANM recognize that the safe and effective use of diagnostic nuclear medicine imaging and magnetic resonance imaging requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guideline by those entities not providing these services is not authorized. These guidelines are an educational tool designed to assist practitioners in providing appropriate care for patients. They are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care. For these reasons and those set forth below, the SNMMI, the ISMRM, and the EANM caution against the use of these guidelines in litigation in which the clinical decisions of a practitioner are called into question. The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by the physician or medical physicist in light of all the circumstances presented. Thus, there is no implication that an approach differing from the guidelines, standing alone, is below the standard of care. To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set forth in the guidelines when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations of available resources, or advances in knowledge or technology subsequent to publication of the guidelines. The practice of medicine includes both the art and the science of the prevention, diagnosis, alleviation, and treatment of disease. The variety and complexity of human conditions make it impossible to always reach the most appropriate diagnosis or to predict with certainty a particular response to treatment. Therefore, it should be recognized that adherence to these guidelines will not ensure an accurate diagnosis or a successful outcome. All that should be expected is that the practitioner will follow a reasonable course of action based on current knowledge, available resources, and the needs of the patient to deliver effective and safe medical care. The sole purpose of these guidelines is to assist practitioners in achieving this objective.
Collapse
Affiliation(s)
- Patrick Veit-Haibach
- Joint Department Medical Imaging, University Health Network, Mount Sinai Hospital and Women's College Hospital, Toronto General Hospital, 1 PMB-275, 585 University Avenue, Toronto, Ontario, M5G 2N2, Canada
- Joint Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Håkan Ahlström
- Department of Surgical Sciences, Uppsala University, 751 85, Uppsala, Sweden
- Antaros Medical AB, BioVenture Hub, 431 53, Mölndal, Sweden
| | - Ronald Boellaard
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Roberto C Delgado Bolton
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), Logroño, La Rioja, Spain
| | - Swen Hesse
- Department of Nuclear Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Thomas Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Martin W Huellner
- Department of Nuclear Medicine, University Hospital Zürich, University of Zürich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Andrei Iagaru
- Department of Radiology, Division of Nuclear Medicine, Stanford University Medical Center, Stanford, CA, USA
| | - Geoffrey B Johnson
- Division of Nuclear Medicine, Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Copenhagen, Denmark
| | - Ur Metser
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women's College Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Harald H Quick
- High-Field and Hybrid MR Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany
| | - Bernhard Sattler
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Greg Zaharchuk
- Division of Neuroradiology, Department of Radiology, Stanford University, 300 Pasteur Drive, Room S047, Stanford, CA, 94305-5105, USA
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany.
| |
Collapse
|
18
|
Sheagren CD, Cao T, Patel JH, Chen Z, Lee HL, Wang N, Christodoulou AG, Wright GA. Motion-compensated T 1 mapping in cardiovascular magnetic resonance imaging: a technical review. Front Cardiovasc Med 2023; 10:1160183. [PMID: 37790594 PMCID: PMC10542904 DOI: 10.3389/fcvm.2023.1160183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/22/2023] [Indexed: 10/05/2023] Open
Abstract
T 1 mapping is becoming a staple magnetic resonance imaging method for diagnosing myocardial diseases such as ischemic cardiomyopathy, hypertrophic cardiomyopathy, myocarditis, and more. Clinically, most T 1 mapping sequences acquire a single slice at a single cardiac phase across a 10 to 15-heartbeat breath-hold, with one to three slices acquired in total. This leaves opportunities for improving patient comfort and information density by acquiring data across multiple cardiac phases in free-running acquisitions and across multiple respiratory phases in free-breathing acquisitions. Scanning in the presence of cardiac and respiratory motion requires more complex motion characterization and compensation. Most clinical mapping sequences use 2D single-slice acquisitions; however newer techniques allow for motion-compensated reconstructions in three dimensions and beyond. To further address confounding factors and improve measurement accuracy, T 1 maps can be acquired jointly with other quantitative parameters such as T 2 , T 2 ∗ , fat fraction, and more. These multiparametric acquisitions allow for constrained reconstruction approaches that isolate contributions to T 1 from other motion and relaxation mechanisms. In this review, we examine the state of the literature in motion-corrected and motion-resolved T 1 mapping, with potential future directions for further technical development and clinical translation.
Collapse
Affiliation(s)
- Calder D. Sheagren
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Tianle Cao
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Bioengineering, University of California, Los Angeles, CA, United States
| | - Jaykumar H. Patel
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Zihao Chen
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Bioengineering, University of California, Los Angeles, CA, United States
| | - Hsu-Lei Lee
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Nan Wang
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Anthony G. Christodoulou
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Bioengineering, University of California, Los Angeles, CA, United States
| | - Graham A. Wright
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| |
Collapse
|
19
|
Pan Y, Varghese J, Tong MS, Yildiz VO, Azzu A, Gatehouse P, Wage R, Nielles-Vallespin S, Pennell D, Jin N, Bacher M, Hayes C, Speier P, Simonetti OP. Two-center validation of Pilot Tone Based Cardiac Triggering of a Comprehensive Cardiovascular Magnetic Resonance Examination. RESEARCH SQUARE 2023:rs.3.rs-3121723. [PMID: 37461505 PMCID: PMC10350216 DOI: 10.21203/rs.3.rs-3121723/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Background The electrocardiogram (ECG) signal is prone to distortions from gradient and radiofrequency interference and the magnetohydrodynamic effect during cardiovascular magnetic resonance imaging (CMR). Although Pilot Tone Cardiac (PTC) triggering has the potential to overcome these limitations, effectiveness across various CMR techniques has yet to be established. Purpose To evaluate the performance of PTC triggering in a comprehensive CMR exam. Methods Fifteen volunteers and twenty patients were recruited at two centers. ECG triggered images were collected for comparison in a subset of sequences. The PTC trigger accuracy was evaluated against ECG in cine acquisitions. Two experienced readers scored image quality in PTC-triggered cine, late gadolinium enhancement (LGE), and T1- and T2-weighted dark-blood turbo spin echo (DB-TSE) images. Quantitative cardiac function, flow, and parametric mapping values obtained using PTC and ECG triggered sequences were compared. Results Breath-held segmented cine used for trigger timing analysis was collected in 15 volunteers and 14 patients. PTC calibration failed in three volunteers and one patient; ECG trigger recording failed in one patient. Out of 1987 total heartbeats, three mismatched trigger PTC-ECG pairs were found. Image quality scores showed no significant difference between PTC and ECG triggering. There was no significant difference found in quantitative measurements in volunteers. In patients, the only significant difference was found in post-contrast T1 (p = 0.04). ICC showed moderate to excellent agreement in all measurements. Conclusion PTC performance was equivalent to ECG in terms of triggering consistency, image quality, and quantitative image measurements across multiple CMR applications.
Collapse
|
20
|
Lin K, Sarnari R, Speier P, Hayes C, Davids R, Carr JC, Markl M. Pilot Tone-Triggered MRI for Quantitative Assessment of Cardiac Function, Motion, and Structure. Invest Radiol 2023; 58:239-243. [PMID: 36070525 PMCID: PMC10016086 DOI: 10.1097/rli.0000000000000922] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of this study was to test the hypothesis that there are good agreements between cardiac functional and structural indices derived from magnetic resonance imaging (MRI) sequences triggered with pilot tone (PT) and electrocardiogram (ECG). MATERIALS AND METHODS Sixteen healthy volunteers (11 male, age 21-76 years) underwent a cardiac MRI scan. Cine MRI, T1, and T2 mapping were acquired by using PT and ECG triggering. Quantitative measurements, including left and right ventricular end-diastolic volume, end-systolic volume, stroke volume, ejection fraction, longitudinal strain, left ventricular T1 and T2 values, left and right atrial longitudinal strain, and maximal/minimal volumes, were measured. The interclass correlation coefficient, coefficient of variation, and Bland-Altman plots were used to evaluate the agreements between measurements derived by MRI sequences triggered with 2 methods. RESULTS There were no significant differences among end-diastolic volume, end-systolic volume, stroke volume, ejection fraction, left ventricle mass, T1 and T2 values, or longitudinal strains acquired using PT and ECG. There were good agreements and low variations between the levels of these indices acquired with PT and ECG. Interclass correlation coefficients mainly ranged from 0.73 to 0.98. The coefficients of variation ranged from 1.4% to 22.6%. CONCLUSIONS Pilot tone-triggered MRI provides comparable measurements of cardiac function, motion, and structure as ECG-triggered MRI. Pilot tone has the potential to become a backup of ECG gating in cardiovascular imaging.
Collapse
Affiliation(s)
- Kai Lin
- Department of Radiology, Northwestern University, Chicago, IL
| | - Roberto Sarnari
- Department of Radiology, Northwestern University, Chicago, IL
| | | | | | | | - James C. Carr
- Department of Radiology, Northwestern University, Chicago, IL
| | - Michael Markl
- Department of Radiology, Northwestern University, Chicago, IL
| |
Collapse
|
21
|
Ludwig J, Kerkering KM, Speier P, Schaeffter T, Kolbitsch C. Pilot tone-based prospective correction of respiratory motion for free-breathing myocardial T1 mapping. MAGMA (NEW YORK, N.Y.) 2023; 36:135-150. [PMID: 35921020 PMCID: PMC9992053 DOI: 10.1007/s10334-022-01032-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/22/2022] [Accepted: 07/10/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To provide respiratory motion correction for free-breathing myocardial T1 mapping using a pilot tone (PT) and a continuous golden-angle radial acquisition. MATERIALS AND METHODS During a 45 s prescan the PT is acquired together with a dynamic sagittal image covering multiple respiratory cycles. From these images, the respiratory heart motion in head-feet and anterior-posterior direction is estimated and two linear models are derived between the PT and heart motion. In the following scan through-plane motion is corrected prospectively with slice tracking based on the PT. In-plane motion is corrected for retrospectively. Our method was evaluated on a motion phantom and 11 healthy subjects. RESULTS Non-motion corrected measurements using a moving phantom showed T1 errors of 14 ± 4% (p < 0.05) compared to a reference measurement. The proposed motion correction approach reduced this error to 3 ± 4% (p < 0.05). In vivo the respiratory motion led to an overestimation of T1 values by 26 ± 31% compared to breathhold T1 maps, which was successfully corrected to an average difference of 3 ± 2% (p < 0.05) between our free-breathing approach and breathhold data. DISCUSSION Our proposed PT-based motion correction approach allows for T1 mapping during free-breathing with the same accuracy as a corresponding breathhold T1 mapping scan.
Collapse
Affiliation(s)
- Juliane Ludwig
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Abbestr. 2-12, 10587, Berlin, Germany.
| | - Kirsten Miriam Kerkering
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Abbestr. 2-12, 10587, Berlin, Germany
| | | | - Tobias Schaeffter
- Department of Biomedical Engineering, Technische Universität Berlin, Berlin, Germany
| | - Christoph Kolbitsch
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Abbestr. 2-12, 10587, Berlin, Germany
| |
Collapse
|
22
|
Feng L. 4D Golden-Angle Radial MRI at Subsecond Temporal Resolution. NMR IN BIOMEDICINE 2023; 36:e4844. [PMID: 36259951 PMCID: PMC9845193 DOI: 10.1002/nbm.4844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 05/14/2023]
Abstract
Intraframe motion blurring, as a major challenge in free-breathing dynamic MRI, can be reduced if high temporal resolution can be achieved. To address this challenge, this work proposes a highly accelerated 4D (3D + time) dynamic MRI framework with subsecond temporal resolution that does not require explicit motion compensation. The method combines standard stack-of-stars golden-angle radial sampling and tailored GRASP-Pro (Golden-angle RAdial Sparse Parallel imaging with imProved performance) reconstruction. Specifically, 4D dynamic MRI acquisition is performed continuously without motion gating or sorting. The k-space centers in stack-of-stars radial data are organized to guide estimation of a temporal basis, with which GRASP-Pro reconstruction is employed to enforce joint low-rank subspace and sparsity constraints. This new basis estimation strategy is the new feature proposed for subspace-based reconstruction in this work to achieve high temporal resolution (e.g., subsecond/3D volume). It does not require sequence modification to acquire additional navigation data, it is compatible with commercially available stack-of-stars sequences, and it does not need an intermediate reconstruction step. The proposed 4D dynamic MRI approach was tested in abdominal motion phantom, free-breathing abdominal MRI, and dynamic contrast-enhanced MRI (DCE-MRI). Our results have shown that GRASP-Pro reconstruction with the new basis estimation strategy enables highly-accelerated 4D dynamic imaging at subsecond temporal resolution (with five spokes or less for each dynamic frame per image slice) for both free-breathing non-DCE-MRI and DCE-MRI. In the abdominal phantom, better image quality with lower root mean square error and higher structural similarity index was achieved using GRASP-Pro compared with standard GRASP. With the ability to acquire each 3D image in less than 1 s, intraframe respiratory blurring can be intrinsically reduced for body applications with our approach, which eliminates the need for explicit motion detection and motion compensation.
Collapse
Affiliation(s)
- Li Feng
- Biomedical Engineering and Imaging Institute and Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
23
|
Yoon JH, Bae JS, Jeon S, Chang W, Lee SM, Park JY, Lee JS, Lee ES, Cho IR, Lee SH, Lee JM. Accelerated Pancreatobiliary MRI for Pancreatic Cancer Surveillance in Patients With Pancreatic Cystic Neoplasms. J Magn Reson Imaging 2022; 56:1757-1768. [PMID: 35388939 DOI: 10.1002/jmri.28189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Pancreatobiliary MRI is often recommended for patients at risk of developing pancreas cancer. But the surveillance MRI protocol has not yet been widely accepted. PURPOSE To establish an accelerated MRI protocol targeting the table time of 15 minutes for pancreatic cancer surveillance and test its performance in lesion characterization. STUDY TYPE Prospective. POPULATION A total of 30 participants were enrolled, who were undergoing follow-up care for intraductal papillary mucinous neoplasms or newly diagnosed pancreatic cysts (≥10 mm) and were scheduled for or had recently undergone contrast-enhanced CT (CECT). FIELD STRENGTH/SEQUENCE A 3 T; heavily T2WI, 3D MRCP, DWI, dynamic T1WI, two-point Dixon. ASSESSMENT In-room time and table time were measured. Seven radiologists independently reviewed image quality of MRI and then the presence of high-risk stigmata and worrisome features in addition to diagnostic confidence for accelerated MRI, CECT, and the noncontrast part of accelerated MRI (NC-MRI). STATISTICAL ANALYSIS Fisher's exact test was used for categorical variables and either the Student's t-test or Mann-Whitney test was performed for continuous variables. The generalized estimated equation was used to compare the diagnostic performance of examinations on a per-patient basis. Interobserver agreement was evaluated via Fleiss kappa. A P value of <0.05 was considered to be statistically significant. RESULTS The in-room time was 18.5 ± 2.6 minutes (range: 13.7-24.9) and the table time was 13.9 ± 1.9 minutes (range: 10.7-17.5). There was no significant difference between the diagnostic performances of the three examinations (pooled sensitivity: 75% for accelerated MRI and CECT, 68% for NC-MRI, P = 0.95), with the highest significant diagnostic confidence for accelerated MRI (4.2 ± 0.1). With accelerated MRI, the interobserver agreement was fair to excellent for high-risk stigmata (κ = 0.34-0.98). DATA CONCLUSION Accelerated MRI protocol affords a table time of 15 minutes, making it potentially suitable for cancer surveillance in patients at risk of developing pancreatic cancer. EVIDENCE LEVEL 2 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Jeong Hee Yoon
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03087, Republic of Korea
| | - Jae Seok Bae
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03087, Republic of Korea
| | - Sunkyung Jeon
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03087, Republic of Korea
| | - Won Chang
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam-si 13620, Republic of Korea
| | - Sang Min Lee
- Department of Radiology, Hallym University Sacred Heart Hospital, Anyang, 14068, Republic of Korea
| | - Jin Young Park
- Department of Radiology, Inje University Busan Paik Hospital, Bokji-ro 75, Busangjin-gu, Busan, 47392, Republic of Korea
| | - Jeong Sub Lee
- Department of Radiology, Jeju National University Hospital, Jeju-si, 63241, Republic of Korea
| | - Eun Sun Lee
- Department of Radiology, Chung-Ang University Hospital, 101 Heukseok-ro, Dongjak-gu, Seoul, 06973, Republic of Korea
| | - In Rae Cho
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Sang-Hyub Lee
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03087, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, 103 Daehak-ro, Jongno-gu, Seoul 03087, Republic of Korea
| |
Collapse
|
24
|
Chen S, Fraum TJ, Eldeniz C, Mhlanga J, Gan W, Vahle T, Krishnamurthy UB, Faul D, Gach HM, Binkley MM, Kamilov US, Laforest R, An H. MR-assisted PET respiratory motion correction using deep-learning based short-scan motion fields. Magn Reson Med 2022; 88:676-690. [PMID: 35344592 PMCID: PMC11459372 DOI: 10.1002/mrm.29233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/03/2022] [Accepted: 02/23/2022] [Indexed: 11/11/2022]
Abstract
PURPOSE We evaluated the impact of PET respiratory motion correction (MoCo) in a phantom and patients. Moreover, we proposed and examined a PET MoCo approach using motion vector fields (MVFs) from a deep-learning reconstructed short MRI scan. METHODS The evaluation of PET MoCo was performed in a respiratory motion phantom study with varying lesion sizes and tumor to background ratios (TBRs) using a static scan as the ground truth. MRI-based MVFs were derived from either 2000 spokes (MoCo2000 , 5-6 min acquisition time) using a Fourier transform reconstruction or 200 spokes (MoCoP2P200 , 30-40 s acquisition time) using a deep-learning Phase2Phase (P2P) reconstruction and then incorporated into PET MoCo reconstruction. For six patients with hepatic lesions, the performance of PET MoCo was evaluated using quantitative metrics (SUVmax , SUVpeak , SUVmean , lesion volume) and a blinded radiological review on lesion conspicuity. RESULTS MRI-assisted PET MoCo methods provided similar results to static scans across most lesions with varying TBRs in the phantom. Both MoCo2000 and MoCoP2P200 PET images had significantly higher SUVmax , SUVpeak , SUVmean and significantly lower lesion volume than non-motion-corrected (non-MoCo) PET images. There was no statistical difference between MoCo2000 and MoCoP2P200 PET images for SUVmax , SUVpeak , SUVmean or lesion volume. Both radiological reviewers found that MoCo2000 and MoCoP2P200 PET significantly improved lesion conspicuity. CONCLUSION An MRI-assisted PET MoCo method was evaluated using the ground truth in a phantom study. In patients with hepatic lesions, PET MoCo images improved quantitative and qualitative metrics based on only 30-40 s of MRI motion modeling data.
Collapse
Affiliation(s)
- Sihao Chen
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Tyler J. Fraum
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Cihat Eldeniz
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Joyce Mhlanga
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Weijie Gan
- Department of Computer Science & Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | | | | | - David Faul
- Siemens Medical Solutions USA, Inc., Malvern, PA, USA
| | - H. Michael Gach
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael M. Binkley
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Ulugbek S. Kamilov
- Department of Computer Science & Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Electrical & Systems Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Richard Laforest
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Hongyu An
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Electrical & Systems Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
25
|
Grootjans W, Rietbergen DDD, van Velden FHP. Added Value of Respiratory Gating in Positron Emission Tomography for the Clinical Management of Lung Cancer Patients. Semin Nucl Med 2022; 52:745-758. [DOI: 10.1053/j.semnuclmed.2022.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/21/2022] [Indexed: 12/24/2022]
|
26
|
Feng L. Golden-Angle Radial MRI: Basics, Advances, and Applications. J Magn Reson Imaging 2022; 56:45-62. [PMID: 35396897 PMCID: PMC9189059 DOI: 10.1002/jmri.28187] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/21/2022] Open
Abstract
In recent years, golden‐angle radial sampling has received substantial attention and interest in the magnetic resonance imaging (MRI) community, and it has become a popular sampling trajectory for both research and clinical use. However, although the number of relevant techniques and publications has grown rapidly, there is still a lack of a review paper that provides a comprehensive overview and summary of the basics of golden‐angle rotation, the advantages and challenges/limitations of golden‐angle radial sampling, and recommendations in using different types of golden‐angle radial trajectories for MRI applications. Such a review paper is expected to be helpful both for clinicians who are interested in learning the potential benefits of golden‐angle radial sampling and for MRI physicists who are interested in exploring this research direction. The main purpose of this review paper is thus to present an overview and summary about golden‐angle radial MRI sampling. The review consists of three sections. The first section aims to answer basic questions such as: what is a golden angle; how is the golden angle calculated; why is golden‐angle radial sampling useful, and what are its limitations. The second section aims to review more advanced trajectories of golden‐angle radial sampling, including tiny golden‐angle rotation, stack‐of‐stars golden‐angle radial sampling, and three‐dimensional (3D) kooshball golden‐angle radial sampling. Their respective advantages and limitations and potential solutions to address these limitations are also discussed. Finally, the third section reviews MRI applications that can benefit from golden‐angle radial sampling and provides recommendations to readers who are interested in implementing golden‐angle radial trajectories in their MRI studies.
Collapse
Affiliation(s)
- Li Feng
- BioMedical Engineering and Imaging Institute (BMEII) and Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
27
|
Ismail TF, Strugnell W, Coletti C, Božić-Iven M, Weingärtner S, Hammernik K, Correia T, Küstner T. Cardiac MR: From Theory to Practice. Front Cardiovasc Med 2022; 9:826283. [PMID: 35310962 PMCID: PMC8927633 DOI: 10.3389/fcvm.2022.826283] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/17/2022] [Indexed: 01/10/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading single cause of morbidity and mortality, causing over 17. 9 million deaths worldwide per year with associated costs of over $800 billion. Improving prevention, diagnosis, and treatment of CVD is therefore a global priority. Cardiovascular magnetic resonance (CMR) has emerged as a clinically important technique for the assessment of cardiovascular anatomy, function, perfusion, and viability. However, diversity and complexity of imaging, reconstruction and analysis methods pose some limitations to the widespread use of CMR. Especially in view of recent developments in the field of machine learning that provide novel solutions to address existing problems, it is necessary to bridge the gap between the clinical and scientific communities. This review covers five essential aspects of CMR to provide a comprehensive overview ranging from CVDs to CMR pulse sequence design, acquisition protocols, motion handling, image reconstruction and quantitative analysis of the obtained data. (1) The basic MR physics of CMR is introduced. Basic pulse sequence building blocks that are commonly used in CMR imaging are presented. Sequences containing these building blocks are formed for parametric mapping and functional imaging techniques. Commonly perceived artifacts and potential countermeasures are discussed for these methods. (2) CMR methods for identifying CVDs are illustrated. Basic anatomy and functional processes are described to understand the cardiac pathologies and how they can be captured by CMR imaging. (3) The planning and conduct of a complete CMR exam which is targeted for the respective pathology is shown. Building blocks are illustrated to create an efficient and patient-centered workflow. Further strategies to cope with challenging patients are discussed. (4) Imaging acceleration and reconstruction techniques are presented that enable acquisition of spatial, temporal, and parametric dynamics of the cardiac cycle. The handling of respiratory and cardiac motion strategies as well as their integration into the reconstruction processes is showcased. (5) Recent advances on deep learning-based reconstructions for this purpose are summarized. Furthermore, an overview of novel deep learning image segmentation and analysis methods is provided with a focus on automatic, fast and reliable extraction of biomarkers and parameters of clinical relevance.
Collapse
Affiliation(s)
- Tevfik F. Ismail
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Cardiology Department, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Wendy Strugnell
- Queensland X-Ray, Mater Hospital Brisbane, Brisbane, QLD, Australia
| | - Chiara Coletti
- Magnetic Resonance Systems Lab, Delft University of Technology, Delft, Netherlands
| | - Maša Božić-Iven
- Magnetic Resonance Systems Lab, Delft University of Technology, Delft, Netherlands
- Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany
| | | | - Kerstin Hammernik
- Lab for AI in Medicine, Technical University of Munich, Munich, Germany
- Department of Computing, Imperial College London, London, United Kingdom
| | - Teresa Correia
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Centre of Marine Sciences, Faro, Portugal
| | - Thomas Küstner
- Medical Image and Data Analysis (MIDAS.lab), Department of Diagnostic and Interventional Radiology, University Hospital of Tübingen, Tübingen, Germany
| |
Collapse
|
28
|
Falcão MBL, Di Sopra L, Ma L, Bacher M, Yerly J, Speier P, Rutz T, Prša M, Markl M, Stuber M, Roy CW. Pilot tone navigation for respiratory and cardiac motion-resolved free-running 5D flow MRI. Magn Reson Med 2021; 87:718-732. [PMID: 34611923 PMCID: PMC8627452 DOI: 10.1002/mrm.29023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/17/2021] [Accepted: 09/03/2021] [Indexed: 11/07/2022]
Abstract
Purpose In this work, we integrated the pilot tone (PT) navigation system into a reconstruction framework for respiratory and cardiac motion‐resolved 5D flow. We tested the hypotheses that PT would provide equivalent respiratory curves, cardiac triggers, and corresponding flow measurements to a previously established self‐gating (SG) technique while being independent from changes to the acquisition parameters. Methods Fifteen volunteers and 9 patients were scanned with a free‐running 5D flow sequence, with PT integrated. Respiratory curves and cardiac triggers from PT and SG were compared across all subjects. Flow measurements from 5D flow reconstructions using both PT and SG were compared to each other and to a reference electrocardiogram‐gated and respiratory triggered 4D flow acquisition. Radial trajectories with variable readouts per interleave were also tested in 1 subject to compare cardiac trigger quality between PT and SG. Results The correlation between PT and SG respiratory curves were 0.95 ± 0.06 for volunteers and 0.95 ± 0.04 for patients. Heartbeat duration measurements in volunteers and patients showed a bias to electrocardiogram measurements of, respectively, 0.16 ± 64.94 ms and 0.01 ± 39.29 ms for PT versus electrocardiogram and of 0.24 ± 63.68 ms and 0.09 ± 32.79 ms for SG versus electrocardiogram. No significant differences were reported for the flow measurements between 5D flow PT and from 5D flow SG. A decrease in the cardiac triggering quality of SG was observed for increasing readouts per interleave, whereas PT quality remained constant. Conclusion PT has been successfully integrated in 5D flow MRI and has shown equivalent results to the previously described 5D flow SG technique, while being completely acquisition‐independent.
Collapse
Affiliation(s)
- Mariana B L Falcão
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Lorenzo Di Sopra
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Liliana Ma
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, USA
| | - Mario Bacher
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Siemens Healthcare GmbH, Erlangen, Germany.,Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Jérôme Yerly
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | | | - Tobias Rutz
- Service of Cardiology, Centre de Resonance Magnétique Cardiaque (CRMC), Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Milan Prša
- Woman-Mother-Child Department, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, USA
| | - Matthias Stuber
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - Christopher W Roy
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
29
|
Zhang C, O'Shea A, Parente CA, Amorim BJ, Caravan P, Ferrone CR, Blaszkowsky LS, Soricelli A, Salvatore M, Groshar D, Bernstine H, Domachevsky L, Canamaque LG, Umutlu L, Ken H, Catana C, Mahmood U, Catalano OA. Evaluation of the Diagnostic Performance of Positron Emission Tomography/Magnetic Resonance for the Diagnosis of Liver Metastases. Invest Radiol 2021; 56:621-628. [PMID: 33813576 DOI: 10.1097/rli.0000000000000782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE The aim of this study was to compare the performance of positron emission tomography (PET)/magnetic resonance (MR) versus stand-alone PET and stand-alone magnetic resonance imaging (MRI) in the detection and characterization of suspected liver metastases. MATERIALS AND METHODS This multi-institutional retrospective performance study was approved by the institutional review boards and was Health Insurance Portability and Accountability Act compliant, with waiver of informed consent. Seventy-nine patients with confirmed solid extrahepatic malignancies who underwent upper abdominal PET/MR between February 2017 and June 2018 were included. Where focal hepatic lesions were identified, the likelihood of a diagnosis of a liver metastasis was defined on an ordinal scale for MRI, PET, and PET/MRI by 3 readers: 1 nuclear medicine physician and 2 radiologists. The number of lesions per patient, lesion size, and involved hepatic segments were recorded. Proof of metastases was based on histopathologic correlation or clinical/imaging follow-up. Diagnostic performance was assessed using sensitivity, specificity, positive and negative predictive values, and receiver operator characteristic curve analysis. RESULTS A total of 79 patients (53 years, interquartile range, 50-68; 43 men) were included. PET/MR had a sensitivity of 95%, specificity of 97%, positive predictive value of 97%, and negative predictive value of 95%. The sensitivity, specificity, positive predictive value, and negative predictive value of MRI were 88%, 98%, 98%, and 90% and for PET were 83%, 97%, 97%, and 86%, respectively. The areas under the curve for PET/MRI, MRI, and PET were 95%, 92%, and 92%, respectively. CONCLUSIONS Contrast-enhanced PET/MR has a higher sensitivity and negative predictive value than either PET or MRI alone in the setting of suspected liver metastases. Fewer lesions were characterized as indeterminate by PET/MR in comparison with PET and MRI. This superior performance could potentially impact treatment and management decisions for patients with suspected liver metastases.
Collapse
Affiliation(s)
- Caiyuan Zhang
- From The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, and Department of Radiology, Xinhua Hospital, affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aileen O'Shea
- Department of Radiology, Division of Abdominal Imaging, Massachusetts General Hospital, Boston
| | - Chiara Anna Parente
- IRCCS, Department of Radiology, The Institute for Hospitalization and Healthcare (IRCCS) SDN, Napoli, Italy
| | - Barbara Juarez Amorim
- Division of Nuclear Medicine, Department of Radiology, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Peter Caravan
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston
| | | | | | - Andrea Soricelli
- The Institute for Hospitalization and Healthcare (IRCCS) SDN, Napoli, Italy
| | - Marco Salvatore
- Department of Radiology and Nuclear Medicine, University Suor Orsola Benincasa and SDN IRCCS, Napoli, Italy
| | - David Groshar
- Department of Radiology and Nuclear Medicine, Assuta Medical Center and School of Medicine, Tel Aviv University, TLV, Israel
| | - Hanna Bernstine
- Department of Radiology and Nuclear Medicine, Assuta Medical Center and School of Medicine, Tel Aviv University, TLV, Israel
| | - Liran Domachevsky
- Department of Nuclear Medicine, The Chaim Sheba Medical Center Tel Hashomer Israel
| | | | - Lale Umutlu
- Institute of Diagnostic and Interventional Radiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Herrmann Ken
- Institute of Diagnostic and Interventional Radiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ciprian Catana
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Umar Mahmood
- Department of Radiology and Nuclear Medicine, Massachusetts General Hospital, Boston, MA
| | | |
Collapse
|
30
|
Lennie E, Tsoumpas C, Sourbron S. Multimodal phantoms for clinical PET/MRI. EJNMMI Phys 2021; 8:62. [PMID: 34436671 PMCID: PMC8390737 DOI: 10.1186/s40658-021-00408-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/10/2021] [Indexed: 12/02/2022] Open
Abstract
Phantoms are commonly used throughout medical imaging and medical physics for a multitude of applications, the designs of which vary between modalities and clinical or research requirements. Within positron emission tomography (PET) and nuclear medicine, phantoms have a well-established role in the validation of imaging protocols so as to reduce the administration of radioisotope to volunteers. Similarly, phantoms are used within magnetic resonance imaging (MRI) to perform quality assurance on clinical scanners, and gel-based phantoms have a longstanding use within the MRI research community as tissue equivalent phantoms. In recent years, combined PET/MRI scanners for simultaneous acquisition have entered both research and clinical use. This review explores the designs and applications of phantom work within the field of simultaneous acquisition PET/MRI as published over the period of a decade. Common themes in the design, manufacture and materials used within phantoms are identified and the solutions they provided to research in PET/MRI are summarised. Finally, the challenges remaining in creating multimodal phantoms for use with simultaneous acquisition PET/MRI are discussed. No phantoms currently exist commercially that have been designed and optimised for simultaneous PET/MRI acquisition. Subsequently, commercially available PET and nuclear medicine phantoms are often utilised, with CT-based attenuation maps substituted for MR-based attenuation maps due to the lack of MR visibility in phantom housing. Tissue equivalent and anthropomorphic phantoms are often developed by research groups in-house and provide customisable alternatives to overcome barriers such as MR-based attenuation correction, or to address specific areas of study such as motion correction. Further work to characterise materials and manufacture methods used in phantom design would facilitate the ability to reproduce phantoms across sites.
Collapse
Affiliation(s)
- Eve Lennie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Charalampos Tsoumpas
- Biomedical Imaging Science Department, University of Leeds, Leeds, UK
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Steven Sourbron
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| |
Collapse
|
31
|
Polycarpou I, Soultanidis G, Tsoumpas C. Synergistic motion compensation strategies for positron emission tomography when acquired simultaneously with magnetic resonance imaging. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200207. [PMID: 34218675 PMCID: PMC8255946 DOI: 10.1098/rsta.2020.0207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 05/04/2023]
Abstract
Subject motion in positron emission tomography (PET) is a key factor that degrades image resolution and quality, limiting its potential capabilities. Correcting for it is complicated due to the lack of sufficient measured PET data from each position. This poses a significant barrier in calculating the amount of motion occurring during a scan. Motion correction can be implemented at different stages of data processing either during or after image reconstruction, and once applied accurately can substantially improve image quality and information accuracy. With the development of integrated PET-MRI (magnetic resonance imaging) scanners, internal organ motion can be measured concurrently with both PET and MRI. In this review paper, we explore the synergistic use of PET and MRI data to correct for any motion that affects the PET images. Different types of motion that can occur during PET-MRI acquisitions are presented and the associated motion detection, estimation and correction methods are reviewed. Finally, some highlights from recent literature in selected human and animal imaging applications are presented and the importance of motion correction for accurate kinetic modelling in dynamic PET-MRI is emphasized. This article is part of the theme issue 'Synergistic tomographic image reconstruction: part 2'.
Collapse
Affiliation(s)
- Irene Polycarpou
- Department of Health Sciences, European University of Cyprus, Nicosia, Cyprus
| | - Georgios Soultanidis
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charalampos Tsoumpas
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Biomedical Imaging Science Department, University of Leeds, West Yorkshire, UK
- Invicro, London, UK
| |
Collapse
|
32
|
Huang SS, Boyacioglu R, Bolding R, MacAskill C, Chen Y, Griswold MA. Free-Breathing Abdominal Magnetic Resonance Fingerprinting Using a Pilot Tone Navigator. J Magn Reson Imaging 2021; 54:1138-1151. [PMID: 33949741 DOI: 10.1002/jmri.27673] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Quantitative T1 and T2 mapping in the abdomen provides valuable information in tissue characterization but is technically challenging due to respiratory motions. The proposed technique integrates magnetic resonance fingerprinting (MRF) and pilot tone (PT) navigator with retrospective gating to provide simultaneous quantification of multiple tissue properties in a single acquisition without breath-holding or patient set-up. PURPOSE To develop a free-breathing abdominal MRF technique for quantitative mapping in the abdomen. STUDY TYPE Prospective. POPULATION Twelve healthy volunteers. FIELD STRENGTH/SEQUENCE A 3 T, two-dimensional (2D) and three-dimensional (3D) spiral MRF sequence with fast imaging with steady-state free precession (FISP) readout. ASSESSMENT The PT navigator was compared to standard respiratory belt performance. The T1 and T2 values acquired using 2D and 3D MRF with and without PT were obtained in a phantom and compared to reference values. Digital phantom simulation was performed to evaluate PT MRF reconstruction with varying breathing patterns. In the in vivo studies, T1 and T2 values derived from PT 2D MRF were compared to 2D breath-hold MRF. T1 and T2 values derived from PT 3D MRF were compared to published values. STATISTICAL TESTS Principal component analysis (PCA), linear regression, relative error, Pearson correlation, paired Student's t-test, Bland-Altman Analysis. RESULTS The phantom study showed PT MRF T1 values had a mean difference of 0.2% ± 0.1%, and T2 values had a mean difference of 0.1% ± 0.4% when compared to no-PT MRF values. The digital phantom experiment suggested the T1 and T2 maps at both end-exhalation and end-inhalation states resemble the corresponding ground-truth maps. DATA CONCLUSION The phantom study showed good agreement between MRF T1 and T2 values and with reference values. In vivo studies demonstrated that 2D and 3D quantitative imaging in the abdomen could be achieved with integration of PT navigation with MRF reconstruction using retrospective gating of respiratory motion. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Sherry S Huang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Rasim Boyacioglu
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Reid Bolding
- Department of Physics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Christina MacAskill
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yong Chen
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark A Griswold
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
33
|
Heerfordt J, Whitehead KK, Bastiaansen JAM, Di Sopra L, Roy CW, Yerly J, Milani B, Fogel MA, Stuber M, Piccini D. Similarity-driven multi-dimensional binning algorithm (SIMBA) for free-running motion-suppressed whole-heart MRA. Magn Reson Med 2021; 86:213-229. [PMID: 33624348 DOI: 10.1002/mrm.28713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/19/2020] [Accepted: 01/11/2021] [Indexed: 12/27/2022]
Abstract
PURPOSE Whole-heart MRA techniques typically target predetermined motion states, address cardiac and respiratory dynamics independently, and require either complex planning or computationally demanding reconstructions. In contrast, we developed a fast data-driven reconstruction algorithm with minimal physiological assumptions and compatibility with ungated free-running sequences. THEORY AND METHODS We propose a similarity-driven multi-dimensional binning algorithm (SIMBA) that clusters continuously acquired k-space data to find a motion-consistent subset for whole-heart MRA reconstruction. Free-running 3D radial data sets from 12 non-contrast-enhanced scans of healthy volunteers and six ferumoxytol-enhanced scans of pediatric cardiac patients were reconstructed with non-motion-suppressed regridding of all the acquired data ("All Data"), with SIMBA, and with a previously published free-running framework (FRF) that uses cardiac and respiratory self-gating and compressed sensing. Images were compared for blood-myocardium sharpness and contrast ratio, visibility of coronary artery ostia, and right coronary artery sharpness. RESULTS Both the 20-second SIMBA reconstruction and FRF provided significantly higher blood-myocardium sharpness than All Data in both patients and volunteers (P < .05). The SIMBA reconstruction provided significantly sharper blood-myocardium interfaces than FRF in volunteers (P < .001) and higher blood-myocardium contrast ratio than All Data and FRF, both in volunteers and patients (P < .05). Significantly more ostia could be visualized with both SIMBA (31 of 36) and FRF (34 of 36) than with All Data (4 of 36) (P < .001). Inferior right coronary artery sharpness using SIMBA versus FRF was observed (volunteers: SIMBA 36.1 ± 8.1%, FRF 40.4 ± 8.9%; patients: SIMBA 35.9 ± 7.7%, FRF 40.3 ± 6.1%, P = not significant). CONCLUSION The SIMBA technique enabled a fast, data-driven reconstruction of free-running whole-heart MRA with image quality superior to All Data and similar to the more time-consuming FRF reconstruction.
Collapse
Affiliation(s)
- John Heerfordt
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Kevin K Whitehead
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jessica A M Bastiaansen
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Lorenzo Di Sopra
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Christopher W Roy
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jérôme Yerly
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Center for Biomedical Imaging, Lausanne, Switzerland
| | - Bastien Milani
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Mark A Fogel
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Matthias Stuber
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Center for Biomedical Imaging, Lausanne, Switzerland
| | - Davide Piccini
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| |
Collapse
|
34
|
Solomon E, Rigie DS, Vahle T, Paška J, Bollenbeck J, Sodickson DK, Boada FE, Block KT, Chandarana H. Free-breathing radial imaging using a pilot-tone radiofrequency transmitter for detection of respiratory motion. Magn Reson Med 2020; 85:2672-2685. [PMID: 33306216 DOI: 10.1002/mrm.28616] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/14/2020] [Accepted: 11/05/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE To describe an approach for detection of respiratory signals using a transmitted radiofrequency (RF) reference signal called Pilot-Tone (PT) and to use the PT signal for creation of motion-resolved images based on 3D stack-of-stars imaging under free-breathing conditions. METHODS This work explores the use of a reference RF signal generated by a small RF transmitter, placed outside the MR bore. The reference signal is received in parallel to the MR signal during each readout. Because the received PT amplitude is modulated by the subject's breathing pattern, a respiratory signal can be obtained by detecting the strength of the received PT signal over time. The breathing-induced PT signal modulation can then be used for reconstructing motion-resolved images from free-breathing scans. The PT approach was tested in volunteers using a radial stack-of-stars 3D gradient echo (GRE) sequence with golden-angle acquisition. RESULTS Respiratory signals derived from the proposed PT method were compared to signals from a respiratory cushion sensor and k-space-center-based self-navigation under different breathing conditions. Moreover, the accuracy was assessed using a modified acquisition scheme replacing the golden-angle scheme by a zero-angle acquisition. Incorporating the PT signal into eXtra-Dimensional (XD) motion-resolved reconstruction led to improved image quality and clearer anatomical depiction of the lung and liver compared to k-space-center signal and motion-averaged reconstruction, when binned into 6, 8, and 10 motion states. CONCLUSION PT is a novel concept for tracking respiratory motion. Its small dimension (8 cm), high sampling rate, and minimal interaction with the imaging scan offers great potential for resolving respiratory motion.
Collapse
Affiliation(s)
- Eddy Solomon
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - David S Rigie
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | | | - Jan Paška
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | | | - Daniel K Sodickson
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Fernando E Boada
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Kai Tobias Block
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA.,Siemens Healthcare GmbH, Erlangen, Germany
| | - Hersh Chandarana
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
35
|
Ludwig J, Speier P, Seifert F, Schaeffter T, Kolbitsch C. Pilot tone-based motion correction for prospective respiratory compensated cardiac cine MRI. Magn Reson Med 2020; 85:2403-2416. [PMID: 33226699 DOI: 10.1002/mrm.28580] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/24/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022]
Abstract
PURPOSE To evaluate prospective motion correction using the pilot tone (PT) as a quantitative respiratory motion signal with high temporal resolution for cardiac cine images during free breathing. METHODS Before cine data acquisition, a short prescan was performed, calibrating the PT to the respiratory-induced heart motion using respiratory-resolved real-time images. The calibrated PT was then applied for nearly real-time prospective motion correction of cine MRI through slice tracking (ie, updating the slice position before every readout). Additionally, in-plane motion correction was performed retrospectively also based on the calibrated PT data. The proposed method was evaluated in a moving phantom and 10 healthy volunteers. RESULTS The PT showed very good correlation to the phantom motion. In volunteer studies using a long-term scan over 7.96 ± 1.40 min, the mean absolute error between registered and predicted motion from the PT was 1.44 ± 0.46 mm in head-feet and 0.46 ± 0.07 mm in anterior-posterior direction. Irregular breathing could also be corrected well with the PT. The PT motion correction leads to a significant improvement of contrast-to-noise ratio by 68% (P ≤ .01) between blood pool and myocardium and sharpness of endocardium by 24% (P = .04) in comparison to uncorrected data. The image score, which refers to the cine image quality, has improved with the utilization of the proposed PT motion correction. CONCLUSION The proposed approach provides respiratory motion-corrected cine images of the heart with improved image quality and a high scan efficiency using the PT. The PT is independent of the MR acquisition, making this a very flexible motion-correction approach.
Collapse
Affiliation(s)
- Juliane Ludwig
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | | | - Frank Seifert
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Tobias Schaeffter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.,Technische Universität Berlin, Biomedical Engineering, Berlin, Germany
| | - Christoph Kolbitsch
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| |
Collapse
|
36
|
Navest RJM, Mandija S, Zijlema SE, Stemkens B, Andreychenko A, Lagendijk JJW, van den Berg CAT. The noise navigator for MRI-guided radiotherapy: an independent method to detect physiological motion. Phys Med Biol 2020; 65:12NT01. [PMID: 32330921 DOI: 10.1088/1361-6560/ab8cd8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Motion is problematic during radiotherapy as it could lead to potential underdosage of the tumor, and/or overdosage in organs-at-risk. A solution is adaptive radiotherapy guided by magnetic resonance imaging (MRI). MRI allows for imaging of target volumes and organs-at-risk before and during treatment delivery with superb soft tissue contrast in any desired orientation, enabling motion management by means of (real-time) adaptive radiotherapy. The noise navigator, which is independent of the MR signal, could serve as a secondary motion detection method in synergy with MR imaging. The feasibility of respiratory motion detection by means of the noise navigator was demonstrated previously. Furthermore, from electromagnetic simulations we know that the noise navigator is sensitive to tissue displacement and thus could in principle be used for the detection of various types of motion. In this study we demonstrate the detection of various types of motion for three anatomical use cases of MRI-guided radiotherapy, i.e. torso (bulk movement and variable breathing), head-and-neck (swallowing) and cardiac. Furthermore, it is shown that the noise navigator can detect bulk movement, variable breathing and swallowing on a hybrid 1.5 T MRI-linac system. Cardiac activity detection through the noise navigator seems feasible in an MRI-guided radiotherapy setting, but needs further optimization. The noise navigator is a versatile and fast (millisecond temporal resolution) motion detection method independent of MR signal that could serve as an independent verification method to detect the occurrence of motion in synergy with real-time MRI-guided radiotherapy.
Collapse
Affiliation(s)
- R J M Navest
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, Netherlands. Computational Imaging Group for MRI Diagnostics & Therapy, Centre for Image Sciences, Universiy Medical Center Utrecht, Utrecht, Netherlands
| | | | | | | | | | | | | |
Collapse
|