1
|
Fujita S, Hagiwara A, Kamagata K, Aoki S. Clinical Neuroimaging Over the Last Decade: Achievements and What Lies Ahead. Invest Radiol 2025:00004424-990000000-00324. [PMID: 40239043 DOI: 10.1097/rli.0000000000001192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
ABSTRACT The past decade has witnessed notable advancements in clinical neuroimaging facilitated by technological innovations and significant scientific discoveries. In conjunction with Investigative Radiology's 60th anniversary, this review examines key contributions from the past 10 years, emphasizing the journal's most accessed articles and their impact on clinical practice and research. Advances in imaging technologies, including photon-counting computed tomography, and innovations in low-field and high-field magnetic resonance imaging systems have expanded diagnostic capabilities. Progress in the development and translation of contrast media and rapid quantitative imaging techniques has further improved diagnostic accuracy. Additionally, the integration of advanced data analysis methods, particularly deep learning and medical informatics, has improved image interpretation and operational efficiency. Beyond technological developments, this review highlights basic neuroscience findings, such as the discovery and characterization of the glymphatic system. These insights have provided a deeper understanding of central nervous system physiology and pathology, bridging the gap between research and clinical applications. This review integrates these advancements to provide an overview of the progress and ongoing challenges in clinical neuroimaging, offering insights into its current state and potential future directions within the broader field of radiology.
Collapse
Affiliation(s)
- Shohei Fujita
- From the Department of Radiology, Juntendo University, Tokyo, Japan (S.F., A.H., K.K., S.A.); Department of Radiology, The University of Tokyo, Tokyo, Japan (S.F.); Department of Radiology, The University of Tokyo, Tokyo, Japan (A.H.); Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA (S.F.); and Department of Radiology, Harvard Medical School, Boston, MA (S.F.)
| | | | | | | |
Collapse
|
2
|
Holmgren RT, Tisell A, Warntjes MJB, Georgiopoulos C. 3D Quantitative MRI: A Fast and Reliable Method for Ventricular Volumetry. World Neurosurg 2025; 195:123661. [PMID: 39788420 DOI: 10.1016/j.wneu.2025.123661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 01/04/2025] [Indexed: 01/12/2025]
Abstract
PURPOSE Volumetry of cerebral ventricles is a far more sensitive measure for shunt-induced reduction of ventricular size than traditional 2-dimensional (2D) measures, such as Evans index. However, available ventricle segmentation methods are time-consuming, resulting in limited use in clinical practice. Quantitative MRI (qMRI) obtains objective measurements of physical tissue properties, enabling automatic segmentation of white and gray matter and intracranial cerebrospinal fluid. The aim of this study was to evaluate the reliability and processing time of both manual and manually corrected automatic ventricular volumetry through the application of 3D qMRI. METHODS An independent examiner performed manual ventricular volumetry segmentations on 45 3D qMRI acquisitions (15 healthy individuals, 15 idiopathic normal pressure hydrocephalus (iNPH) patients, 15 shunted iNPH patients) twice. Another independent examiner manually segmented 15 of these acquisitions once. An automatic ventricle segmentation algorithm generated a third set of ventricular segmentations for all 45 data sets. The automatic segmentations were then corrected by both examiners to obtain a fourth set of data. All segmentations were assessed for intra- and interobserver reliability. RESULTS Intra- and interobserver reliability for all segmentations, manual, corrected, and automatic, was excellent (intra-class correlation coefficient 1.000, 1.000 and 0.999 respectively). Ventricular volumes were on average 42 ± 18 mL (mean ± SD) in healthy individuals, 140 ± 34 mL in iNPH patients, and 113 ± 35 mL in shunted iNPH patients. CONCLUSIONS 3D qMRI is a reliable and time-efficient method to obtain relevant volumetric measures of intracranial cerebrospinal fluid spaces for both clinical and research purposes. The corrected automatic segmentations provide a feasible time expenditure for clinicians caring for patients with iNPH.
Collapse
Affiliation(s)
- Rafael T Holmgren
- Departments of Neurosurgery, Biomedical and Clinical Sciences, Linköping University, Sweden.
| | - Anders Tisell
- Departments of Medical Radiation Physics, Health and Caring Sciences, Linköping University, Sweden; Center for Medical Image Science and Visualization (CMIV), Linköping University, Sweden
| | - Marcel J B Warntjes
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Sweden; SyntheticMR AB, Linköping, Sweden
| | - Charalampos Georgiopoulos
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Sweden; Diagnostic Radiology, Department of Clinical Sciences, Medical Faculty, Lund University, Sweden
| |
Collapse
|
3
|
Hagiwara A, Kamio S, Kikuta J, Nakaya M, Uchida W, Fujita S, Nikola S, Akasahi T, Wada A, Kamagata K, Aoki S. Decoding Brain Development and Aging: Pioneering Insights From MRI Techniques. Invest Radiol 2025; 60:162-174. [PMID: 39724579 PMCID: PMC11801466 DOI: 10.1097/rli.0000000000001120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/26/2024] [Indexed: 12/28/2024]
Abstract
ABSTRACT The aging process induces a variety of changes in the brain detectable by magnetic resonance imaging (MRI). These changes include alterations in brain volume, fluid-attenuated inversion recovery (FLAIR) white matter hyperintense lesions, and variations in tissue properties such as relaxivity, myelin, iron content, neurite density, and other microstructures. Each MRI technique offers unique insights into the structural and compositional changes occurring in the brain due to normal aging or neurodegenerative diseases. Age-related brain volume changes encompass a decrease in gray matter and an increase in ventricular volume, associated with cognitive decline. White matter hyperintensities, detected by FLAIR, are common and linked to cognitive impairments and increased risk of stroke and dementia. Tissue relaxometry reveals age-related changes in relaxivity, aiding the distinction between normal aging and pathological conditions. Myelin content, measurable by MRI, changes with age and is associated with cognitive and motor function alterations. Iron accumulation, detected by susceptibility-sensitive MRI, increases in certain brain regions with age, potentially contributing to neurodegenerative processes. Diffusion MRI provides detailed insights into microstructural changes such as neurite density and orientation. Neurofluid imaging, using techniques like gadolinium-based contrast agents and diffusion MRI, reveals age-related changes in cerebrospinal and interstitial fluid dynamics, crucial for brain health and waste clearance. This review offers a comprehensive overview of age-related brain changes revealed by various MRI techniques. Understanding these changes helps differentiate between normal aging and pathological conditions, aiding the development of interventions to mitigate age-related cognitive decline and other symptoms. Recent advances in machine learning and artificial intelligence have enabled novel methods for estimating brain age, offering also potential biomarkers for neurological and psychiatric disorders.
Collapse
|
4
|
Choi Y, Ko JS, Park JE, Jeong G, Seo M, Jun Y, Fujita S, Bilgic B. Beyond the Conventional Structural MRI: Clinical Application of Deep Learning Image Reconstruction and Synthetic MRI of the Brain. Invest Radiol 2025; 60:27-42. [PMID: 39159333 DOI: 10.1097/rli.0000000000001114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
ABSTRACT Recent technological advancements have revolutionized routine brain magnetic resonance imaging (MRI) sequences, offering enhanced diagnostic capabilities in intracranial disease evaluation. This review explores 2 pivotal breakthrough areas: deep learning reconstruction (DLR) and quantitative MRI techniques beyond conventional structural imaging. DLR using deep neural networks facilitates accelerated imaging with improved signal-to-noise ratio and spatial resolution, enhancing image quality with short scan times. DLR focuses on supervised learning applied to clinical implementation and applications. Quantitative MRI techniques, exemplified by 2D multidynamic multiecho, 3D quantification using interleaved Look-Locker acquisition sequences with T2 preparation pulses, and magnetic resonance fingerprinting, enable precise calculation of brain-tissue parameters and further advance diagnostic accuracy and efficiency. Potential DLR instabilities and quantification and bias limitations will be discussed. This review underscores the synergistic potential of DLR and quantitative MRI, offering prospects for improved brain imaging beyond conventional methods.
Collapse
Affiliation(s)
- Yangsean Choi
- From the Department of Radiology and Research Institute of Radiology, Asan Medical Center, Seoul, Republic of Korea (Y.C., J.S.K., J.E.P.); AIRS Medical LLC, Seoul, Republic of Korea (G.J.); Department of Radiology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea (M.S.); Department of Radiology, Harvard Medical School, Boston, MA (Y.J., S.F., B.B.); Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA (Y.J., S.F., B.B.); and Harvard/MIT Health Sciences and Technology, Cambridge, MA (B.B.)
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Jin J, Zhou Y, Chen L, Chen Z. Ultrafast T 2 and T 2* mapping using single-shot spatiotemporally encoded MRI with reduced field of view and spiral out-in-out-in trajectory. Med Phys 2024; 51:7308-7319. [PMID: 38896823 DOI: 10.1002/mp.17268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/15/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND T2 and T2* mapping are crucial components of quantitative magnetic resonance imaging, offering valuable insights into tissue characteristics and pathology. Single-shot methods can achieve ultrafast T2 or T2* mapping by acquiring multiple readout echo trains. However, the extended echo trains pose challenges, such as compromised image quality and diminished quantification accuracy. PURPOSE In this study, we develop a single-shot method for ultrafast T2 and T2* mapping with reduced echo train length. METHODS The proposed method is based on ultrafast single-shot spatiotemporally encoded (SPEN) MRI combined with reduced field of view (FOV) and spiral out-in-out-in (OIOI) trajectory. Specifically, a biaxial SPEN excitation scheme was employed to excite the spin signal into the spatiotemporal encoding domain. The OIOI trajectory with high acquisition efficiency was employed to acquire signals within targeted reduced FOV. Through non-Cartesian super-resolved (SR) reconstruction, 12 aliasing-free images with different echo times were obtained within 150 ms. These images were subsequently fitted to generate T2 or T2* mapping simultaneously using a derived model. RESULTS Accurate and co-registered T2 and T2* maps were generated, closely resembling the reference maps. Numerical simulations demonstrated substantial consistency (R2 > 0.99) with the ground truth values. A mean difference of 0.6% and 1.7% was observed in T2 and T2*, respectively, in in vivo rat brain experiments compared to the reference. Moreover, the proposed method successfully obtained T2 and T2* mappings of rat kidney in free-breathing mode, demonstrating its superiority over multishot methods lacking respiratory navigation. CONCLUSIONS The results suggest that the proposed method can achieve ultrafast and accurate T2 and T2* mapping, potentially facilitating the application of T2 and T2* mapping in scenarios requiring high temporal resolution.
Collapse
Affiliation(s)
- Junxian Jin
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Yang Zhou
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Lin Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| |
Collapse
|
6
|
Jun Y, Arefeen Y, Cho J, Fujita S, Wang X, Ellen Grant P, Gagoski B, Jaimes C, Gee MS, Bilgic B. Zero-DeepSub: Zero-shot deep subspace reconstruction for rapid multiparametric quantitative MRI using 3D-QALAS. Magn Reson Med 2024; 91:2459-2482. [PMID: 38282270 PMCID: PMC11005062 DOI: 10.1002/mrm.30018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/15/2023] [Accepted: 01/06/2024] [Indexed: 01/30/2024]
Abstract
PURPOSE To develop and evaluate methods for (1) reconstructing 3D-quantification using an interleaved Look-Locker acquisition sequence with T2 preparation pulse (3D-QALAS) time-series images using a low-rank subspace method, which enables accurate and rapid T1 and T2 mapping, and (2) improving the fidelity of subspace QALAS by combining scan-specific deep-learning-based reconstruction and subspace modeling. THEORY AND METHODS A low-rank subspace method for 3D-QALAS (i.e., subspace QALAS) and zero-shot deep-learning subspace method (i.e., Zero-DeepSub) were proposed for rapid and high fidelity T1 and T2 mapping and time-resolved imaging using 3D-QALAS. Using an ISMRM/NIST system phantom, the accuracy and reproducibility of the T1 and T2 maps estimated using the proposed methods were evaluated by comparing them with reference techniques. The reconstruction performance of the proposed subspace QALAS using Zero-DeepSub was evaluated in vivo and compared with conventional QALAS at high reduction factors of up to nine-fold. RESULTS Phantom experiments showed that subspace QALAS had good linearity with respect to the reference methods while reducing biases and improving precision compared to conventional QALAS, especially for T2 maps. Moreover, in vivo results demonstrated that subspace QALAS had better g-factor maps and could reduce voxel blurring, noise, and artifacts compared to conventional QALAS and showed robust performance at up to nine-fold acceleration with Zero-DeepSub, which enabled whole-brain T1, T2, and PD mapping at 1 mm isotropic resolution within 2 min of scan time. CONCLUSION The proposed subspace QALAS along with Zero-DeepSub enabled high fidelity and rapid whole-brain multiparametric quantification and time-resolved imaging.
Collapse
Affiliation(s)
- Yohan Jun
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Yamin Arefeen
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas, Austin, TX, United States
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jaejin Cho
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Shohei Fujita
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Xiaoqing Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - P. Ellen Grant
- Department of Radiology, Harvard Medical School, Boston, MA, United States
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, Boston, MA, United States
| | - Borjan Gagoski
- Department of Radiology, Harvard Medical School, Boston, MA, United States
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, Boston, MA, United States
| | - Camilo Jaimes
- Department of Radiology, Harvard Medical School, Boston, MA, United States
- Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
| | - Michael S. Gee
- Department of Radiology, Harvard Medical School, Boston, MA, United States
- Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
- Harvard/MIT Health Sciences and Technology, Cambridge, MA, United States
| |
Collapse
|
7
|
Heydari A, Ahmadi A, Kim TH, Bilgic B. Joint MAPLE: Accelerated joint T 1 and T 2 * $$ {{\mathrm{T}}_2}^{\ast } $$ mapping with scan-specific self-supervised networks. Magn Reson Med 2024; 91:2294-2309. [PMID: 38181183 PMCID: PMC11007829 DOI: 10.1002/mrm.29989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/30/2023] [Accepted: 12/11/2023] [Indexed: 01/07/2024]
Abstract
PURPOSE Quantitative MRI finds important applications in clinical and research studies. However, it is encoding intensive and may suffer from prohibitively long scan times. Accelerated MR parameter mapping techniques have been developed to help address these challenges. Here, an accelerated joint T1,T 2 * $$ {{\mathrm{T}}_2}^{\ast } $$ , frequency and proton density mapping technique with scan-specific self-supervised network reconstruction is proposed to synergistically combine parallel imaging, model-based, and deep learning approaches to speed up parameter mapping. METHODS Proposed framework, Joint MAPLE, includes parallel imaging, signal modeling, and data consistency blocks which are optimized jointly in a combined loss function. A scan-specific self-supervised reconstruction is embedded into the framework, which takes advantage of multi-contrast data from a multi-echo, multi-flip angle, gradient echo acquisition. RESULTS In comparison with parallel reconstruction techniques powered by low-rank methods, emerging scan specific networks, and model-basedT 2 * $$ {{\mathrm{T}}_2}^{\ast } $$ estimation approaches, the proposed framework reduces the reconstruction error in parameter maps by approximately two-fold on average at acceleration rates as high as R = 16 with uniform sampling. It can outperform evaluated parallel reconstruction techniques up to four-fold on average in the presence of challenging sub-sampling masks. It is observed that Joint MAPLE performs well at extreme acceleration rates of R = 25 and R = 36 with error values less than 20%. CONCLUSION Joint MAPLE enables higher fidelity parameter estimation at high acceleration rates by synergistically combining parallel imaging and model-based parameter mapping and exploiting multi-echo, multi-flip angle datasets. Utilizing a scan-specific self-supervised reconstruction obviates the need for large data sets for training while improving the parameter estimation ability.
Collapse
Affiliation(s)
- Amir Heydari
- Department of Industrial Engineering and Management Systems, Amirkabir University of Technology, Tehran, Iran
| | - Abbas Ahmadi
- Department of Industrial Engineering and Management Systems, Amirkabir University of Technology, Tehran, Iran
| | - Tae Hyung Kim
- Department of Computer Engineering, Hongik University, Seoul, Korea
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
- Radiology, Harvard Medical School, Boston, MA, United States
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
- Radiology, Harvard Medical School, Boston, MA, United States
- Harvard/MIT Health Sciences and Technology, Cambridge, MA, United States
| |
Collapse
|
8
|
Fujita S, Gagoski B, Hwang KP, Hagiwara A, Warntjes M, Fukunaga I, Uchida W, Saito Y, Sekine T, Tachibana R, Muroi T, Akatsu T, Kasahara A, Sato R, Ueyama T, Andica C, Kamagata K, Amemiya S, Takao H, Hoshino Y, Tomizawa Y, Yokoyama K, Bilgic B, Hattori N, Abe O, Aoki S. Cross-vendor multiparametric mapping of the human brain using 3D-QALAS: A multicenter and multivendor study. Magn Reson Med 2024; 91:1863-1875. [PMID: 38192263 DOI: 10.1002/mrm.29939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE To evaluate a vendor-agnostic multiparametric mapping scheme based on 3D quantification using an interleaved Look-Locker acquisition sequence with a T2 preparation pulse (3D-QALAS) for whole-brain T1, T2, and proton density (PD) mapping. METHODS This prospective, multi-institutional study was conducted between September 2021 and February 2022 using five different 3T systems from four prominent MRI vendors. The accuracy of this technique was evaluated using a standardized MRI system phantom. Intra-scanner repeatability and inter-vendor reproducibility of T1, T2, and PD values were evaluated in 10 healthy volunteers (6 men; mean age ± SD, 28.0 ± 5.6 y) who underwent scan-rescan sessions on each scanner (total scans = 100). To evaluate the feasibility of 3D-QALAS, nine patients with multiple sclerosis (nine women; mean age ± SD, 48.2 ± 11.5 y) underwent imaging examination on two 3T MRI systems from different manufacturers. RESULTS Quantitative maps obtained with 3D-QALAS showed high linearity (R2 = 0.998 and 0.998 for T1 and T2, respectively) with respect to reference measurements. The mean intra-scanner coefficients of variation for each scanner and structure ranged from 0.4% to 2.6%. The mean structure-wise test-retest repeatabilities were 1.6%, 1.1%, and 0.7% for T1, T2, and PD, respectively. Overall, high inter-vendor reproducibility was observed for all parameter maps and all structure measurements, including white matter lesions in patients with multiple sclerosis. CONCLUSION The vendor-agnostic multiparametric mapping technique 3D-QALAS provided reproducible measurements of T1, T2, and PD for human tissues within a typical physiological range using 3T scanners from four different MRI manufacturers.
Collapse
Affiliation(s)
- Shohei Fujita
- Department of Radiology, Juntendo University, Tokyo, Japan
- Department of Radiology, The University of Tokyo, Tokyo, Japan
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Borjan Gagoski
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Ken-Pin Hwang
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Marcel Warntjes
- SyntheticMR, Linköping, Sweden
- Center for Medical Imaging Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Issei Fukunaga
- Department of Radiology, Juntendo University, Tokyo, Japan
| | - Wataru Uchida
- Department of Radiology, Juntendo University, Tokyo, Japan
| | - Yuya Saito
- Department of Radiology, Juntendo University, Tokyo, Japan
| | - Towa Sekine
- Department of Radiology, Juntendo University, Tokyo, Japan
| | - Rina Tachibana
- Department of Radiology, Juntendo University, Tokyo, Japan
| | - Tomoya Muroi
- Department of Radiology, Juntendo University, Tokyo, Japan
| | - Toshiya Akatsu
- Department of Radiology, Juntendo University, Tokyo, Japan
| | | | - Ryo Sato
- Department of Radiology, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Ueyama
- Department of Radiology, The University of Tokyo, Tokyo, Japan
| | - Christina Andica
- Department of Radiology, Juntendo University, Tokyo, Japan
- Faculty of Health Data Science, Juntendo University, Chiba, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University, Tokyo, Japan
| | - Shiori Amemiya
- Department of Radiology, The University of Tokyo, Tokyo, Japan
| | - Hidemasa Takao
- Department of Radiology, The University of Tokyo, Tokyo, Japan
| | | | - Yuji Tomizawa
- Department of Neurology, Juntendo University, Tokyo, Japan
| | | | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard/MIT Health Sciences and Technology, Cambridge, Massachusetts, USA
| | | | - Osamu Abe
- Department of Radiology, The University of Tokyo, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University, Tokyo, Japan
| |
Collapse
|
9
|
Yazici I, Krieger B, Bellenberg B, Ladopoulos T, Gold R, Schneider R, Lukas C. Automatic estimation of brain parenchymal fraction in patients with multple sclerosis: a comparison between synthetic MRI and an established automated brain segmentation software based on FSL. Neuroradiology 2024; 66:193-205. [PMID: 38110539 PMCID: PMC10805841 DOI: 10.1007/s00234-023-03264-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023]
Abstract
PURPOSE We aimed to validate the estimation of the brain parenchymal fraction (BPF) in patients with multiple sclerosis (MS) using synthetic magnetic resonance imaging (SyMRI) by comparison with software tools of the FMRIB Software Library (FSL). In addition to a cross-sectional method comparison, longitudinal volume changes were assessed to further elucidate the suitability of SyMRI for quantification of disease-specific changes. METHODS MRI data from 216 patients with MS and 28 control participants were included for volume estimation by SyMRI and FSL-SIENAX. Moreover, longitudinal data from 35 patients with MS were used to compare registration-based percentage brain volume changes estimated using FSL-SIENA to difference-based calculations of volume changes using SyMRI. RESULTS We observed strong correlations of estimated brain volumes between the two methods. While SyMRI overestimated grey matter and BPF compared to FSL-SIENAX, indicating a systematic bias, there was excellent agreement according to intra-class correlation coefficients for grey matter and good agreement for BPF and white matter. Bland-Altman plots suggested that the inter-method differences in BPF were smaller in patients with brain atrophy compared to those without atrophy. Longitudinal analyses revealed a tendency for higher atrophy rates for SyMRI than for SIENA, but SyMRI had a robust correlation and a good agreement with SIENA. CONCLUSION In summary, BPF based on data from SyMRI and FSL-SIENAX is not directly transferable because an overestimation and higher variability of SyMRI values were observed. However, the consistency and correlations between the two methods were satisfactory, and SyMRI was suitable to quantify disease-specific atrophy in MS.
Collapse
Affiliation(s)
- Ilyas Yazici
- Institute of Neuroradiology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstrasse 56, 44791, Bochum, Germany
| | - Britta Krieger
- Institute of Neuroradiology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstrasse 56, 44791, Bochum, Germany
| | - Barbara Bellenberg
- Institute of Neuroradiology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstrasse 56, 44791, Bochum, Germany
| | - Theodoros Ladopoulos
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791, Bochum, Germany
| | - Ralf Gold
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791, Bochum, Germany
| | - Ruth Schneider
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791, Bochum, Germany
| | - Carsten Lukas
- Institute of Neuroradiology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstrasse 56, 44791, Bochum, Germany.
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791, Bochum, Germany.
| |
Collapse
|
10
|
Cho J, Gagoski B, Kim TH, Wang F, Manhard MK, Dean D, Kecskemeti S, Caprihan A, Lo WC, Splitthoff DN, Liu W, Polak D, Cauley S, Setsompop K, Grant PE, Bilgic B. Time-efficient, high-resolution 3T whole-brain relaxometry using 3D-QALAS with wave-CAIPI readouts. Magn Reson Med 2024; 91:630-639. [PMID: 37705496 DOI: 10.1002/mrm.29865] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/16/2023] [Accepted: 08/25/2023] [Indexed: 09/15/2023]
Abstract
PURPOSE Volumetric, high-resolution, quantitative mapping of brain-tissue relaxation properties is hindered by long acquisition times and SNR challenges. This study combines time-efficient wave-controlled aliasing in parallel imaging (wave-CAIPI) readouts with the 3D quantification using an interleaved Look-Locker acquisition sequence with a T2 preparation pulse (3D-QALAS), enabling full-brain quantitative T1 , T2 , and proton density (PD) maps at 1.15-mm3 isotropic voxels in 3 min. METHODS Wave-CAIPI readouts were embedded in the standard 3D-QALAS encoding scheme, enabling full-brain quantitative parameter maps (T1 , T2 , and PD) at acceleration factors of R = 3 × 2 with minimum SNR loss due to g-factor penalties. The quantitative parameter maps were estimated using a dictionary-based mapping algorithm incorporating inversion efficiency and B1 -field inhomogeneity effects. The parameter maps using the accelerated protocol were quantitatively compared with those obtained from the conventional 3D-QALAS sequence using GRAPPA acceleration of R = 2 in the ISMRM/NIST phantom, and in 10 healthy volunteers. RESULTS When tested in both the ISMRM/NIST phantom and 10 healthy volunteers, the quantitative maps using the accelerated protocol showed excellent agreement against those obtained from conventional 3D-QALAS at RGRAPPA = 2. CONCLUSION Three-dimensional QALAS enhanced with wave-CAIPI readouts enables time-efficient, full-brain quantitative T1 , T2 , and PD mapping at 1.15 mm3 in 3 min at R = 3 × 2 acceleration. The quantitative maps obtained from the accelerated wave-CAIPI 3D-QALAS protocol showed very similar values to those from the standard 3D-QALAS (R = 2) protocol, alluding to the robustness and reliability of the proposed method.
Collapse
Affiliation(s)
- Jaejin Cho
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Borjan Gagoski
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Tae Hyung Kim
- Department of Computer Engineering, Hongik University, Seoul, South Korea
| | - Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Mary Kate Manhard
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Douglas Dean
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Steven Kecskemeti
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Wei-Ching Lo
- Siemens Medical Solutions USA, Inc., Charlestown, Massachusetts, USA
| | | | - Wei Liu
- Siemens Healthcare GmbH, Erlangen, Germany
| | | | - Stephen Cauley
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kawin Setsompop
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Patricia Ellen Grant
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard/MIT Health Sciences and Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
11
|
Amano M, Fujita S, Takei N, Sano K, Wada A, Sato K, Kikuta J, Kuwatsuru Y, Tachibana R, Sekine T, Horimoto Y, Aoki S. Feasibility of Quantitative MRI Using 3D-QALAS for Discriminating Immunohistochemical Status in Invasive Ductal Carcinoma of the Breast. J Magn Reson Imaging 2023; 58:1752-1759. [PMID: 36951614 DOI: 10.1002/jmri.28683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Two-dimensional synthetic MRI of the breast has limited spatial coverage. Three-dimensional (3D) synthetic MRI could provide volumetric quantitative parameters that may reflect the immunohistochemical (IHC) status in invasive ductal carcinoma (IDC) of the breast. PURPOSE To evaluate the feasibility of 3D synthetic MRI using an interleaved Look-Locker acquisition sequence with a T2 preparation pulse (QALAS) for discriminating the IHC status, including hormone receptor (HR), human epidermal growth factor receptor 2 (HER 2), and Ki-67 expression in IDC. STUDY TYPE Prospective observational study. POPULATION A total of 33 females with IDC of the breast (mean, 52.3 years). FIELD STRENGTH/SEQUENCE A 3-T, 3D-QALAS gradient-echo and fat-suppressed T1-weighted 3D fast spoiled gradient-echo sequences. ASSESSMENT Two radiologists semiautomatically delineated 3D regions of interest (ROIs) of the whole tumors on the dynamic MRI that was registered to the synthetic T1-weighted images acquired from 3D-QALAS. The mean T1 and T2 were measured for each IDC. STATISTICAL TESTS Intraclass correlation coefficient for assessing interobserver agreement. Mann-Whitney U test to determine the relationship between the mean T1 or T2 and the IHC status. Multivariate logistic regression analysis followed by receiver operating characteristics (ROC) analysis for discriminating IHC status. A P value <0.05 was considered statistically significant. RESULTS The interobserver agreement was good to excellent. There was a significant difference in the mean T1 between HR-positive and HR-negative lesions, while the mean T2 value differed between HR-positive and HR-negative lesions, between the triple-negative and HR-positive or HER2-positive lesions, and between the Ki-67 level > 14% and ≤ 14%. Multivariate analysis showed that the mean T2 was higher in HR-negative IDC than in HR-positive IDC. ROC analysis revealed that the mean T2 was predictive for discriminating HR status, triple-negative status, and Ki-67 level. DATA CONCLUSION 3D synthetic MRI using QALAS may be useful for discriminating IHC status in IDC of the breast. EVIDENCE LEVEL 1. TECHNICAL EFFICACY Stage 2.
Collapse
Affiliation(s)
- Maki Amano
- Department of Radiology, Juntendo University Hospital, Tokyo, Japan
- Department of Radiology, Nihon University Hospital, Tokyo, Japan
| | - Shohei Fujita
- Department of Radiology, Juntendo University Hospital, Tokyo, Japan
- Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | - Katsuhiro Sano
- Department of Radiology, Juntendo University Hospital, Tokyo, Japan
| | - Akihiko Wada
- Department of Radiology, Juntendo University Hospital, Tokyo, Japan
| | - Kanako Sato
- Department of Radiology, Juntendo University Hospital, Tokyo, Japan
| | - Junko Kikuta
- Department of Radiology, Juntendo University Hospital, Tokyo, Japan
| | | | - Rina Tachibana
- Department of Radiology, Juntendo University Hospital, Tokyo, Japan
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Towa Sekine
- Department of Radiology, Juntendo University Hospital, Tokyo, Japan
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Yoshiya Horimoto
- Department of Breast Oncology, Juntendo University Hospital, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Hospital, Tokyo, Japan
| |
Collapse
|
12
|
Jun Y, Cho J, Wang X, Gee M, Grant PE, Bilgic B, Gagoski B. SSL-QALAS: Self-Supervised Learning for rapid multiparameter estimation in quantitative MRI using 3D-QALAS. Magn Reson Med 2023; 90:2019-2032. [PMID: 37415389 PMCID: PMC10527557 DOI: 10.1002/mrm.29786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/27/2023] [Accepted: 06/15/2023] [Indexed: 07/08/2023]
Abstract
PURPOSE To develop and evaluate a method for rapid estimation of multiparametric T1 , T2 , proton density, and inversion efficiency maps from 3D-quantification using an interleaved Look-Locker acquisition sequence with T2 preparation pulse (3D-QALAS) measurements using self-supervised learning (SSL) without the need for an external dictionary. METHODS An SSL-based QALAS mapping method (SSL-QALAS) was developed for rapid and dictionary-free estimation of multiparametric maps from 3D-QALAS measurements. The accuracy of the reconstructed quantitative maps using dictionary matching and SSL-QALAS was evaluated by comparing the estimated T1 and T2 values with those obtained from the reference methods on an International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom. The SSL-QALAS and the dictionary-matching methods were also compared in vivo, and generalizability was evaluated by comparing the scan-specific, pre-trained, and transfer learning models. RESULTS Phantom experiments showed that both the dictionary-matching and SSL-QALAS methods produced T1 and T2 estimates that had a strong linear agreement with the reference values in the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom. Further, SSL-QALAS showed similar performance with dictionary matching in reconstructing the T1 , T2 , proton density, and inversion efficiency maps on in vivo data. Rapid reconstruction of multiparametric maps was enabled by inferring the data using a pre-trained SSL-QALAS model within 10 s. Fast scan-specific tuning was also demonstrated by fine-tuning the pre-trained model with the target subject's data within 15 min. CONCLUSION The proposed SSL-QALAS method enabled rapid reconstruction of multiparametric maps from 3D-QALAS measurements without an external dictionary or labeled ground-truth training data.
Collapse
Affiliation(s)
- Yohan Jun
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Jaejin Cho
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Xiaoqing Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Michael Gee
- Department of Radiology, Harvard Medical School, Boston, MA, United States
- Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
| | - P. Ellen Grant
- Department of Radiology, Harvard Medical School, Boston, MA, United States
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, Boston, MA, United States
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
- Harvard/MIT Health Sciences and Technology, Cambridge, MA, United States
| | - Borjan Gagoski
- Department of Radiology, Harvard Medical School, Boston, MA, United States
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, Boston, MA, United States
| |
Collapse
|
13
|
Taniguchi Y, Yokosawa S, Shirai T, Sato R, Amemiya T, Soutome Y, Bito Y, Ochi H. Three-dimensional Multi-parameter Mapping of Relaxation Times and Susceptibility Using Partially RF-spoiled Gradient Echo. Magn Reson Med Sci 2023; 22:459-468. [PMID: 35908880 PMCID: PMC10552665 DOI: 10.2463/mrms.mp.2021-0045] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/27/2022] [Indexed: 11/09/2022] Open
Abstract
PURPOSE MR parameter mapping is a technique that obtains distributions of parameters such as relaxation time and proton density (PD) and is starting to be used for disease quantification in clinical diagnoses. Quantitative susceptibility mapping is also promising for the early diagnosis of brain disorders such as degenerative neurological disorders. Therefore, we developed an MR quantitative parameter mapping (QPM) method to map four tissue-related parameters (T1, T2*, PD, and susceptibility) and B1 simultaneously by using a 3D partially RF-spoiled gradient echo (pRSGE). We verified the accuracy and repeatability of QPM in phantom and volunteer experiments. METHODS Tissue-related parameters are estimated by varying four scan parameters of the 3D pRSGE: flip angle, RF-pulse phase increment, TR and TE, performing multiple image scans, and finding a least-squares fit for an intensity function (which expresses the relationship between the scan parameters and intensity values). The intensity function is analytically complex, but by using a Bloch simulation to create it numerically, the least-squares fitting can be used to estimate the quantitative values. This has the advantage of shortening the image-reconstruction processing time needed to estimate the quantitative values than with methods using pattern matching. RESULTS A 1.1-mm isotropic resolution scan covering the whole brain was completed with a scan time of approximately 12 minutes, and the reconstruction time using a GPU was approximately 1 minute. The phantom experiments confirmed that both the accuracy and repeatability of the quantitative values were high. The volunteer scans also confirmed that the accuracy of the quantitative values was comparable to that of conventional methods. CONCLUSION The proposed QPM method can map T1, T2*, PD, susceptibility, and B1 simultaneously within a scan time that can be applied to human subjects.
Collapse
Affiliation(s)
- Yo Taniguchi
- Innovative Technology Laboratory, FUJIFILM Healthcare Corporation, Tokyo, Japan
| | - Suguru Yokosawa
- Innovative Technology Laboratory, FUJIFILM Healthcare Corporation, Tokyo, Japan
| | - Toru Shirai
- Innovative Technology Laboratory, FUJIFILM Healthcare Corporation, Tokyo, Japan
| | - Ryota Sato
- Innovative Technology Laboratory, FUJIFILM Healthcare Corporation, Tokyo, Japan
| | - Tomoki Amemiya
- Innovative Technology Laboratory, FUJIFILM Healthcare Corporation, Tokyo, Japan
| | - Yoshihisa Soutome
- Innovative Technology Laboratory, FUJIFILM Healthcare Corporation, Tokyo, Japan
| | | | - Hisaaki Ochi
- Innovative Technology Laboratory, FUJIFILM Healthcare Corporation, Tokyo, Japan
| |
Collapse
|
14
|
Hagiwara A, Fujita S, Kurokawa R, Andica C, Kamagata K, Aoki S. Multiparametric MRI: From Simultaneous Rapid Acquisition Methods and Analysis Techniques Using Scoring, Machine Learning, Radiomics, and Deep Learning to the Generation of Novel Metrics. Invest Radiol 2023; 58:548-560. [PMID: 36822661 PMCID: PMC10332659 DOI: 10.1097/rli.0000000000000962] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/10/2023] [Indexed: 02/25/2023]
Abstract
ABSTRACT With the recent advancements in rapid imaging methods, higher numbers of contrasts and quantitative parameters can be acquired in less and less time. Some acquisition models simultaneously obtain multiparametric images and quantitative maps to reduce scan times and avoid potential issues associated with the registration of different images. Multiparametric magnetic resonance imaging (MRI) has the potential to provide complementary information on a target lesion and thus overcome the limitations of individual techniques. In this review, we introduce methods to acquire multiparametric MRI data in a clinically feasible scan time with a particular focus on simultaneous acquisition techniques, and we discuss how multiparametric MRI data can be analyzed as a whole rather than each parameter separately. Such data analysis approaches include clinical scoring systems, machine learning, radiomics, and deep learning. Other techniques combine multiple images to create new quantitative maps associated with meaningful aspects of human biology. They include the magnetic resonance g-ratio, the inner to the outer diameter of a nerve fiber, and the aerobic glycolytic index, which captures the metabolic status of tumor tissues.
Collapse
Affiliation(s)
- Akifumi Hagiwara
- From theDepartment of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shohei Fujita
- From theDepartment of Radiology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryo Kurokawa
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Neuroradiology, Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Christina Andica
- From theDepartment of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Koji Kamagata
- From theDepartment of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- From theDepartment of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
15
|
Warntjes JBM, Lundberg P, Tisell A. Brain Parcellation Repeatability and Reproducibility Using Conventional and Quantitative 3D MR Imaging. AJNR Am J Neuroradiol 2023; 44:910-915. [PMID: 37414454 PMCID: PMC10411845 DOI: 10.3174/ajnr.a7937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/14/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND AND PURPOSE Automatic brain parcellation is typically performed on dedicated MR imaging sequences, which require valuable examination time. In this study, a 3D MR imaging quantification sequence to retrieve R1 and R2 relaxation rates and proton density maps was used to synthesize a T1-weighted image stack for brain volume measurement, thereby combining image data for multiple purposes. The repeatability and reproducibility of using the conventional and synthetic input data were evaluated. MATERIALS AND METHODS Twelve subjects with a mean age of 54 years were scanned twice at 1.5T and 3T with 3D-QALAS and a conventionally acquired T1-weighted sequence. Using SyMRI, we converted the R1, R2, and proton density maps into synthetic T1-weighted images. Both the conventional T1-weighted and the synthetic 3D-T1-weighted inversion recovery images were processed for brain parcellation by NeuroQuant. Bland-Altman statistics were used to correlate the volumes of 12 brain structures. The coefficient of variation was used to evaluate the repeatability. RESULTS A high correlation with medians of 0.97 for 1.5T and 0.92 for 3T was found. A high repeatability was shown with a median coefficient of variation of 1.2% for both T1-weighted and synthetic 3D-T1-weighted inversion recovery at 1.5T, and 1.5% for T1-weighted imaging and 4.4% for synthetic 3D-T1-weighted inversion recovery at 3T. However, significant biases were observed between the methods and field strengths. CONCLUSIONS It is possible to perform MR imaging quantification of R1, R2, and proton density maps to synthesize a 3D-T1-weighted image stack, which can be used for automatic brain parcellation. Synthetic parameter settings should be reinvestigated to reduce the observed bias.
Collapse
Affiliation(s)
- J B M Warntjes
- From the Centre for Medical Image Science and Visualization (J.B.M.W.)
- SyntheticMR (J.B.M.W.), Linköping, Sweden
| | - P Lundberg
- Department of Radiation Physics (P.L., A.T.)
- Department of Health, Medicine and Caring Sciences (P.L., A.T.), Linköping University, Linköping, Sweden
| | - A Tisell
- Department of Radiation Physics (P.L., A.T.)
- Department of Health, Medicine and Caring Sciences (P.L., A.T.), Linköping University, Linköping, Sweden
| |
Collapse
|
16
|
Stellingwerff MD, Pouwels PJW, Roosendaal SD, Barkhof F, van der Knaap MS. Quantitative MRI in leukodystrophies. Neuroimage Clin 2023; 38:103427. [PMID: 37150021 PMCID: PMC10193020 DOI: 10.1016/j.nicl.2023.103427] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/09/2023]
Abstract
Leukodystrophies constitute a large and heterogeneous group of genetic diseases primarily affecting the white matter of the central nervous system. Different disorders target different white matter structural components. Leukodystrophies are most often progressive and fatal. In recent years, novel therapies are emerging and for an increasing number of leukodystrophies trials are being developed. Objective and quantitative metrics are needed to serve as outcome measures in trials. Quantitative MRI yields information on microstructural properties, such as myelin or axonal content and condition, and on the chemical composition of white matter, in a noninvasive fashion. By providing information on white matter microstructural involvement, quantitative MRI may contribute to the evaluation and monitoring of leukodystrophies. Many distinct MR techniques are available at different stages of development. While some are already clinically applicable, others are less far developed and have only or mainly been applied in healthy subjects. In this review, we explore the background, current status, potential and challenges of available quantitative MR techniques in the context of leukodystrophies.
Collapse
Affiliation(s)
- Menno D Stellingwerff
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Child Neurology, Emma Children's Hospital, and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Petra J W Pouwels
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Stefan D Roosendaal
- Amsterdam UMC Location University of Amsterdam, Department of Radiology, Meibergdreef 9, Amsterdam, the Netherlands
| | - Frederik Barkhof
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands; University College London, Institutes of Neurology and Healthcare Engineering, London, UK
| | - Marjo S van der Knaap
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Child Neurology, Emma Children's Hospital, and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands; Vrije Universiteit Amsterdam, Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, De Boelelaan 1105, Amsterdam, the Netherlands.
| |
Collapse
|
17
|
Park J, Jang M, Heier L, Limperopoulos C, Zun Z. Rapid anatomical imaging of the neonatal brain using T 2 -prepared 3D balanced steady-state free precession. Magn Reson Med 2023; 89:1456-1468. [PMID: 36420869 PMCID: PMC10208121 DOI: 10.1002/mrm.29537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/18/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE To develop a new approach to 3D gradient echo-based anatomical imaging of the neonatal brain with a substantially shorter scan time than standard 3D fast spin echo (FSE) methods, while maintaining a high SNR. METHODS T2 -prepration was employed immediately prior to image acquisition of 3D balanced steady-state free precession (bSSFP) with a single trajectory of center-out k-space view ordering, which requires no magnetization recovery time between imaging segments during the scan. This approach was compared with 3D FSE, 2D single-shot FSE, and product 3D bSSFP imaging in numerical simulations, plus phantom and in vivo experiments. RESULTS T2 -prepared 3D bSSFP generated image contrast of gray matter, white matter, and CSF very similar to that of reference T2 -weighted imaging methods, without major image artifacts. Scan time of T2 -prepared 3D bSSFP was remarkably shorter compared to 3D FSE, whereas SNR was comparable to that of 3D FSE and higher than that of 2D single-shot FSE. Specific absorption rate of T2 -prepared 3D bSSFP remained within the safety limit. Determining an optimal imaging flip angle of T2 -prepared 3D bSSFP was critical to minimizing blurring of images. CONCLUSION T2 -prepared 3D bSSFP offers an alternative method for anatomical imaging of the neonatal brain with dramatically reduced scan time compared to standard 3D FSE and higher SNR than 2D single-shot FSE.
Collapse
Affiliation(s)
- Jinho Park
- Department of Cardiology, Yonsei University, Seoul, Korea
| | - MinJung Jang
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Linda Heier
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Catherine Limperopoulos
- Developing Brain Institute, Division of Diagnostic Imaging and Radiology, Children’s National Hospital, Washington, DC, USA
- Division of Fetal and Transitional Medicine, Children’s National Hospital, Washington, DC, USA
- Department of Pediatrics, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
- Department of Radiology, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| | - Zungho Zun
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
18
|
Fujiwara Y. [19. Basic Principle and Clinical Application of Synthetic MRI]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2023; 79:851-856. [PMID: 37599070 DOI: 10.6009/jjrt.2023-2243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Affiliation(s)
- Yasuhiro Fujiwara
- Department of Medical Image Sciences, Faculty of Life Sciences, Kumamoto University
| |
Collapse
|
19
|
Wave-Encoded Model-Based Deep Learning for Highly Accelerated Imaging with Joint Reconstruction. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120736. [PMID: 36550942 PMCID: PMC9774601 DOI: 10.3390/bioengineering9120736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
A recently introduced model-based deep learning (MoDL) technique successfully incorporates convolutional neural network (CNN)-based regularizers into physics-based parallel imaging reconstruction using a small number of network parameters. Wave-controlled aliasing in parallel imaging (CAIPI) is an emerging parallel imaging method that accelerates imaging acquisition by employing sinusoidal gradients in the phase- and slice/partition-encoding directions during the readout to take better advantage of 3D coil sensitivity profiles. We propose wave-encoded MoDL (wave-MoDL) combining the wave-encoding strategy with unrolled network constraints for highly accelerated 3D imaging while enforcing data consistency. We extend wave-MoDL to reconstruct multicontrast data with CAIPI sampling patterns to leverage similarity between multiple images to improve the reconstruction quality. We further exploit this to enable rapid quantitative imaging using an interleaved look-locker acquisition sequence with T2 preparation pulse (3D-QALAS). Wave-MoDL enables a 40 s MPRAGE acquisition at 1 mm resolution at 16-fold acceleration. For quantitative imaging, wave-MoDL permits a 1:50 min acquisition for T1, T2, and proton density mapping at 1 mm resolution at 12-fold acceleration, from which contrast-weighted images can be synthesized as well. In conclusion, wave-MoDL allows rapid MR acquisition and high-fidelity image reconstruction and may facilitate clinical and neuroscientific applications by incorporating unrolled neural networks into wave-CAIPI reconstruction.
Collapse
|
20
|
Kim E, Cho HH, Cho SH, Park B, Hong J, Shin KM, Hwang MJ, You SK, Lee SM. Accelerated Synthetic MRI with Deep Learning-Based Reconstruction for Pediatric Neuroimaging. AJNR Am J Neuroradiol 2022; 43:1653-1659. [PMID: 36175085 PMCID: PMC9731246 DOI: 10.3174/ajnr.a7664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/31/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND PURPOSE Synthetic MR imaging is a time-efficient technique. However, its rather long scan time can be challenging for children. This study aimed to evaluate the clinical feasibility of accelerated synthetic MR imaging with deep learning-based reconstruction in pediatric neuroimaging and to investigate the impact of deep learning-based reconstruction on image quality and quantitative values in synthetic MR imaging. MATERIALS AND METHODS This study included 47 children 2.3-14.7 years of age who underwent both standard and accelerated synthetic MR imaging at 3T. The accelerated synthetic MR imaging was reconstructed using a deep learning pipeline. The image quality, lesion detectability, tissue values, and brain volumetry were compared among accelerated deep learning and accelerated and standard synthetic data sets. RESULTS The use of deep learning-based reconstruction in the accelerated synthetic scans significantly improved image quality for all contrast weightings (P < .001), resulting in image quality comparable with or superior to that of standard scans. There was no significant difference in lesion detectability between the accelerated deep learning and standard scans (P > .05). The tissue values and brain tissue volumes obtained with accelerated deep learning and the other 2 scans showed excellent agreement and a strong linear relationship (all, R 2 > 0.9). The difference in quantitative values of accelerated scans versus accelerated deep learning scans was very small (tissue values, <0.5%; volumetry, -1.46%-0.83%). CONCLUSIONS The use of deep learning-based reconstruction in synthetic MR imaging can reduce scan time by 42% while maintaining image quality and lesion detectability and providing consistent quantitative values. The accelerated deep learning synthetic MR imaging can replace standard synthetic MR imaging in both contrast-weighted and quantitative imaging.
Collapse
Affiliation(s)
- E Kim
- From the Departments of Medical and Biological Engineering (E.K.)
- Korea Radioisotope Center for Pharmaceuticals (E.K.), Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - H-H Cho
- Department of Radiology and Medical Research Institute (H.-H.C.), College of Medicine, Ewha Womans University, Seoul, South Korea
| | - S H Cho
- Radiology (S.H.C., B.P., J.H., K.M.S., S.M.L.), School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Radiology (S.H.C., B.P., J.H., K.M.S., S.M.L.), Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - B Park
- Radiology (S.H.C., B.P., J.H., K.M.S., S.M.L.), School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Radiology (S.H.C., B.P., J.H., K.M.S., S.M.L.), Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - J Hong
- Radiology (S.H.C., B.P., J.H., K.M.S., S.M.L.), School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Radiology (S.H.C., B.P., J.H., K.M.S., S.M.L.), Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - K M Shin
- Radiology (S.H.C., B.P., J.H., K.M.S., S.M.L.), School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Radiology (S.H.C., B.P., J.H., K.M.S., S.M.L.), Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - M J Hwang
- GE Healthcare Korea (M.J.H.), Seoul, South Korea
| | - S K You
- Department of Radiology (S.K.Y.), Chungnam National University Hospital, Chungnam National University College of Medicine, Daejeon, South Korea
| | - S M Lee
- Radiology (S.H.C., B.P., J.H., K.M.S., S.M.L.), School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Radiology (S.H.C., B.P., J.H., K.M.S., S.M.L.), Kyungpook National University Chilgok Hospital, Daegu, South Korea
| |
Collapse
|
21
|
Time-saving synthetic magnetic resonance imaging protocols for pediatric neuroimaging: impact of echo train length and bandwidth on image quality. Pediatr Radiol 2022; 52:2401-2412. [PMID: 35661908 DOI: 10.1007/s00247-022-05389-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/01/2022] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Synthetic MRI is a time-efficient imaging technique that provides both quantitative MRI and contrast-weighted images simultaneously. However, a rather long single scan time can be challenging for children. OBJECTIVE To evaluate the clinical feasibility of time-saving synthetic MRI protocols adjusted for echo train length and receiver bandwidth in pediatric neuroimaging based on image quality assessment and quantitative data analysis. MATERIALS AND METHODS In total, we included 33 children ages 1.6-17.4 years who underwent synthetic MRI using three sets of echo train length and receiver bandwidth combinations (echo train length [E]12-bandwidth [B in KHz]22, E16-B22 and E16-B83) at 3 T. The image quality and lesion conspicuity of synthetic contrast-weighted images were compared between the suggested protocol (E12-B22) and adjusted protocols (E16-B22 and E16-B83). We also compared tissue values (T1, T2, proton-density values) and brain volumetry. RESULTS For the E16-B83 combination, image quality was sufficient except for 15.2% of T1-W and 3% of T2-W fluid-attenuated inversion recovery (FLAIR) images, with remarkable scan time reduction (up to 35%). The E16-B22 combination demonstrated a comparable image quality to E12-B22 (P>0.05) with a scan time reduction of up to 8%. There were no significant differences in lesion conspicuity among the three protocols (P>0.05). Tissue value measurements and brain tissue volumes obtained with the E12-B22 protocol and adjusted protocols showed excellent agreement and strong correlations except for gray matter volume and non-white matter/gray matter/cerebrospinal fluid volume in E12-B22 vs. E16-B83. CONCLUSION The adjusted synthetic protocols produced image quality sufficient or comparable to that of the suggested protocol while maintaining lesion conspicuity with reduced scan time. The quantitative values were generally consistent with the suggested MRI-protocol-derived values, which supports the clinical application of adjusted protocols in pediatric neuroimaging.
Collapse
|
22
|
Hwang KP, Fujita S. Synthetic MR: Physical principles, clinical implementation, and new developments. Med Phys 2022; 49:4861-4874. [PMID: 35535442 DOI: 10.1002/mp.15686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 11/07/2022] Open
Abstract
Current clinical MR imaging practices rely on the qualitative assessment of images for diagnosis and treatment planning. While contrast in MR images is dependent on the spin parameters of the imaged tissue, pixel values on MR images are relative and are not scaled to represent any tissue properties. Synthetic MR is a fully featured imaging workflow consisting of efficient multiparameter mapping acquisition, synthetic image generation, and volume quantitation of brain tissues. As the application becomes more widely available on multiple vendors and scanner platforms, it has also gained widespread adoption as clinicians begin to recognize the benefits of rapid quantitation. This review will provide details about the sequence with a focus on the physical principles behind its relaxometry mechanisms. It will present an overview of the products in their current form and some potential issues when implementing it in the clinic. It will conclude by highlighting some recent advances of the technique, including a 3D mapping method and its associated applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ken-Pin Hwang
- Department of Imaging Physics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030
| | - Shohei Fujita
- Department of Radiology, Graduate School of Medicine, The University of Tokyo.,Department of Radiology, Juntendo University, Tokyo, Japan
| |
Collapse
|
23
|
Berg RC, Leutritz T, Weiskopf N, Preibisch C. Multi-parameter quantitative mapping of R1, R2*, PD, and MTsat is reproducible when accelerated with Compressed SENSE. Neuroimage 2022; 253:119092. [PMID: 35288281 DOI: 10.1016/j.neuroimage.2022.119092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 10/18/2022] Open
Abstract
Multi-parameter mapping (MPM) magnetic resonance imaging (MRI) provides quantitative estimates of the longitudinal and effective transverse relaxation rates R1 and R2*, proton density (PD), and magnetization transfer saturation (MTsat). Thereby, MPM enables better comparability across sites and time than conventional weighted MRI. However, for MPM, several contrasts must be acquired, resulting in prolonged measurement durations and thus preventing MPM's application in clinical routines. State-of-the-art imaging acceleration techniques such as Compressed SENSE (CS), a combination of compressed sensing and sensitivity encoding, can be used to reduce the scan time of MPM. However, the accuracy and precision of the resulting quantitative parameter maps have not been systematically evaluated. In this study, we therefore investigated the effect of CS acceleration on the fidelity and reproducibility of MPM acquisitions. In five healthy volunteers and in a phantom, we compared MPM metrics acquired without imaging acceleration, with the standard acceleration (SENSE factor 2.5), and with Compressed SENSE with acceleration factors 4 and 6 using a 32-channel head coil. We evaluated the reproducibility and repeatability of accelerated MPM using data from three scan sessions in gray and white matter volumes-of-interest (VOIs). Accelerated MPM provided precise and accurate quantitative parameter maps. For most parameters, the results of the CS-accelerated protocols correlated more strongly with the non-accelerated protocol than the standard SENSE-accelerated protocols. Furthermore, for most VOIs and contrasts, coefficients of variation were lower when calculated from data acquired with different imaging accelerations within a single scan session than from data acquired in different scan sessions. These results suggest that MPM with Compressed SENSE acceleration factors up to at least 6 yields reproducible quantitative parameter maps that are highly comparable to those acquired without imaging acceleration. Compressed SENSE can thus be used to considerably reduce the scan duration of R1, R2*, PD, and MTsat mapping, and is highly promising for clinical applications of MPM.
Collapse
Affiliation(s)
- Ronja C Berg
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Neurology, Munich, Germany.
| | - Tobias Leutritz
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurophysics, Leipzig, Germany.
| | - Nikolaus Weiskopf
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurophysics, Leipzig, Germany; Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany.
| | - Christine Preibisch
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Neurology, Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Munich, Germany.
| |
Collapse
|
24
|
Comparison of T2 Quantification Strategies in the Abdominal-Pelvic Region for Clinical Use. Invest Radiol 2022; 57:412-421. [PMID: 34999669 DOI: 10.1097/rli.0000000000000852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The aim of the study was to compare different magnetic resonance imaging (MRI) acquisition strategies appropriate for T2 quantification in the abdominal-pelvic area. The different techniques targeted in the study were chosen according to 2 main considerations: performing T2 measurement in an acceptable time for clinical use and preventing/correcting respiratory motion. MATERIALS AND METHODS Acquisitions were performed at 3 T. To select sequences for in vivo measurements, a phantom experiment was conducted, for which the T2 values obtained with the different techniques of interest were compared with the criterion standard (single-echo SE sequence, multiple acquisitions with varying echo time). Repeatability and temporal reproducibility studies for the different techniques were also conducted on the phantom. Finally, an in vivo study was conducted on 12 volunteers to compare the techniques that offer acceptable acquisition time for clinical use and either address or correct respiratory motion. RESULTS For the phantom study, the DESS and T2-preparation techniques presented the lowest precision (ρ2 = 0.9504 and ρ2 = 0.9849 respectively), and showed a poor repeatability/reproducibility compared with the other techniques. The strategy relying on SE-EPI showed the best precision and accuracy (ρ2 = 0.9994 and Cb = 0.9995). GRAPPATINI exhibited a very good precision (ρ2 = 0.9984). For the technique relying on radial TSE, the precision was not as good as GRAPPATINI (ρ2 = 0.9872). The in vivo study demonstrated good respiratory motion management for all of the selected techniques. It also showed that T2 estimate ranges were different from one method to another. For GRAPPATINI and radial TSE techniques, there were significant differences between all the different types of organs of interest. CONCLUSIONS To perform T2 measurement in the abdominal-pelvic region, one should favor a technique with acceptable acquisition time for clinical use, with proper respiratory motion management, with good repeatability, reproducibility, and precision. In this study, the techniques relying respectively on SE-EPI, radial TSE, and GRAPPATINI appeared as good candidates.
Collapse
|
25
|
Yu N, Kim JY, Han D, Kim SY, Lee HM, Kim DH, Kim HG. Three-Dimensional Magnetic Resonance Fingerprinting in Neonates: Quantifying Regional Difference and Maturation in the Brain. Invest Radiol 2022; 57:44-51. [PMID: 34101674 DOI: 10.1097/rli.0000000000000800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Magnetic resonance fingerprinting (MRF) allows the simultaneous measurement of multiple tissue properties in a single acquisition. Three-dimensional (3D) MRF with high spatial resolution can be used for neonatal brain imaging. The aim of this study is to apply 3D MRF to neonates and show regional differences and maturation in the brain. MATERIALS AND METHODS In this prospective study, 3D MRF using hybrid radial-interleaved acquisition was performed on phantoms and neonates from December 2019 to October 2020. For the reconstruction of 3D MRF, singular value decomposition was applied to reduce reconstruction time, and the iterative reconstruction technique was applied to improve image quality. The accuracies of T1 and T2 values derived from 3D MRF were evaluated in a phantom experiment. Regional T1 and T2 values were obtained from neonates' brain T1 and T2 maps derived from 3D MRF. Regional T1 and T2 values were compared, and their changes according to corrected gestational age were evaluated. RESULTS The acquisition time for 3D MRF with a spatial resolution of 0.7 × 0.7 × 2 mm3 was less than 5 minutes. The phantom study showed high correlation between T1 and T2 values derived from 3D MRF and those from conventional spin echo sequences (T1, R2 = 0.998, P < 0.001; T2, R2 = 0.998, P < 0.001). Three-dimensional MRF was performed in 25 neonates (15 boys, 10 girls; median corrected gestational age, 263 days; interquartile range, 10 days). In neonates, T1 and T2 values differed in the frontal (median [interquartile range], 2785 [2684-2888] milliseconds and 189.8 [176.7-222.9] milliseconds), parietal (2849 [2741-2950] milliseconds and 191.6 [167.5-232.9] milliseconds), and occipital white matter (2621 [2513-2722] milliseconds and 162.9 [143.5-186.1] milliseconds), showing lower values in occipital white matter (P < 0.001). Regional T1 values showed a negative relationship with corrected gestational age (coefficient, -0.775 to -0.480; P < 0.05). CONCLUSIONS Fast and high spatial resolution 3D MRF was applied to neonates. T1 and T2 maps derived from 3D MRF enabled the quantification of regional differences and maturation in the neonatal brain.
Collapse
Affiliation(s)
- Nali Yu
- From the Departments of Pediatrics
| | - Jee Young Kim
- Radiology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea
| | | | | | | | - Dong-Hyun Kim
- Department of Electrical and Electronic Engineering, College of Engineering, Yonsei University, Seoul, Republic of Korea
| | - Hyun Gi Kim
- Radiology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea
| |
Collapse
|
26
|
Abstract
Clinical MRI systems have continually improved over the years since their introduction in the 1980s. In MRI technical development, the developments in each MRI system component, including data acquisition, image reconstruction, and hardware systems, have impacted the others. Progress in each component has induced new technology development opportunities in other components. New technologies outside of the MRI field, for example, computer science, data processing, and semiconductors, have been immediately incorporated into MRI development, which resulted in innovative applications. With high performance computing and MR technology innovations, MRI can now provide large volumes of functional and anatomical image datasets, which are important tools in various research fields. MRI systems are now combined with other modalities, such as positron emission tomography (PET) or therapeutic devices. These hybrid systems provide additional capabilities. In this review, MRI advances in the last two decades will be considered. We will discuss the progress of MRI systems, the enabling technology, established applications, current trends, and the future outlook.
Collapse
Affiliation(s)
- Hiroyuki Kabasawa
- Department of Radiological Sciences, School of Health Sciences at Narita, International University of Health and Welfare
| |
Collapse
|