1
|
Fitton I, Charpentier E, Arsovic E, Isaia J, Guillou M, Saltel-Fulero A, Fournier L, Van Ngoc Ty C. A Proposal for a Process from as Low as Reasonably Achievable to an Ultra-Low-Level Goal in Chest Computed Tomography. J Clin Med 2024; 13:4597. [PMID: 39200739 PMCID: PMC11354269 DOI: 10.3390/jcm13164597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Background/Objectives: To define and evaluate a radiation dose optimization process for chest computed tomography (CT) imaging. Methods: Data from unenhanced and enhanced chest CT acquisitions performed between June 2018 and January 2020 in adult patients were included in the study. Images were acquired on a Siemens SOMATOM® Definition Edge CT. Dose values, including Dose.Length Product (DLP) and Volume CT Dose Index (CTDIvol), were collected. Low doses (LDs, 25th percentiles), achievable doses (ADs, 50th percentiles), and diagnostic reference levels (DRLs, 75th percentiles) were calculated before and after parameter modifications. A process was defined and applied to patient data. For unenhanced chest CT, data were differentiated according to three groups: high dose (HD), optimized dose (OD), and ultra-low dose (ULD). Dosimetric changes between protocols were expressed as mean CTDIvol % (CI95%). A Mann and Whitney statistical test was used. The diagnostic quality score (DQS) of a subset of 70 randomly selected CT examinations was evaluated by one radiologist. The DQS was scored according to a three-point Likert scale: (1) poor (definite diagnosis impossible), (2) fair (evaluation of major findings possible), and (3) excellent (exact diagnosis possible). Results: Data were collected from 1929 patients. For unenhanced chest CT protocols, only one process loop was run. A dose comparison between the chest CT protocol before the use of the process and the three groups showed a decrease of -38.3% (9.7%) and -93.4% (24.2%) for OD and ULD, respectively, and an increase of +29.4% (4.7%) for HD. For the enhanced chest CT protocol, two optimization loops were performed, and they resulted in a mean dose reduction of -50.0% (2.6%) compared to the pre-optimization protocol. For all protocols, the DQS was greater than or equal to 2. Conclusions: We proposed a radiation dose optimization process for chest CT that could significantly reduce the dose without compromising diagnosis.
Collapse
Affiliation(s)
- Isabelle Fitton
- Department of Radiology, Georges Pompidou European Hospital, Paris Cité University, APHP, 75015 Paris, France; (E.C.); (E.A.); (J.I.); (A.S.-F.); (L.F.); (C.V.N.T.)
| | - Etienne Charpentier
- Department of Radiology, Georges Pompidou European Hospital, Paris Cité University, APHP, 75015 Paris, France; (E.C.); (E.A.); (J.I.); (A.S.-F.); (L.F.); (C.V.N.T.)
| | - Emina Arsovic
- Department of Radiology, Georges Pompidou European Hospital, Paris Cité University, APHP, 75015 Paris, France; (E.C.); (E.A.); (J.I.); (A.S.-F.); (L.F.); (C.V.N.T.)
- PARCC UMRS 970, INSERM, 75015 Paris, France
| | - Jennifer Isaia
- Department of Radiology, Georges Pompidou European Hospital, Paris Cité University, APHP, 75015 Paris, France; (E.C.); (E.A.); (J.I.); (A.S.-F.); (L.F.); (C.V.N.T.)
| | - Manon Guillou
- Department of Radiology, Georges Pompidou European Hospital, Paris Cité University, APHP, 75015 Paris, France; (E.C.); (E.A.); (J.I.); (A.S.-F.); (L.F.); (C.V.N.T.)
| | - Aurélien Saltel-Fulero
- Department of Radiology, Georges Pompidou European Hospital, Paris Cité University, APHP, 75015 Paris, France; (E.C.); (E.A.); (J.I.); (A.S.-F.); (L.F.); (C.V.N.T.)
| | - Laure Fournier
- Department of Radiology, Georges Pompidou European Hospital, Paris Cité University, APHP, 75015 Paris, France; (E.C.); (E.A.); (J.I.); (A.S.-F.); (L.F.); (C.V.N.T.)
- PARCC UMRS 970, INSERM, 75015 Paris, France
| | - Claire Van Ngoc Ty
- Department of Radiology, Georges Pompidou European Hospital, Paris Cité University, APHP, 75015 Paris, France; (E.C.); (E.A.); (J.I.); (A.S.-F.); (L.F.); (C.V.N.T.)
| |
Collapse
|
2
|
Mohammadinejad P, Mileto A, Yu L, Leng S, Guimaraes LS, Missert AD, Jensen CT, Gong H, McCollough CH, Fletcher JG. CT Noise-Reduction Methods for Lower-Dose Scanning: Strengths and Weaknesses of Iterative Reconstruction Algorithms and New Techniques. Radiographics 2021; 41:1493-1508. [PMID: 34469209 DOI: 10.1148/rg.2021200196] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Iterative reconstruction (IR) algorithms are the most widely used CT noise-reduction method to improve image quality and have greatly facilitated radiation dose reduction within the radiology community. Various IR methods have different strengths and limitations. Because IR algorithms are typically nonlinear, they can modify spatial resolution and image noise texture in different regions of the CT image; hence traditional image-quality metrics are not appropriate to assess the ability of IR to preserve diagnostic accuracy, especially for low-contrast diagnostic tasks. In this review, the authors highlight emerging IR algorithms and CT noise-reduction techniques and summarize how these techniques can be evaluated to help determine the appropriate radiation dose levels for different diagnostic tasks in CT. In addition to advanced IR techniques, we describe novel CT noise-reduction methods based on convolutional neural networks (CNNs). CNN-based noise-reduction techniques may offer the ability to reduce image noise while maintaining high levels of image detail but may have unique drawbacks. Other novel CT noise-reduction methods are being developed to leverage spatial and/or spectral redundancy in multiphase or multienergy CT. Radiologists and medical physicists should be familiar with these different alternatives to adapt available CT technology for different diagnostic tasks. The scope of this article is (a) to review the clinical applications of IR algorithms as well as their strengths, weaknesses, and methods of assessment and (b) to explore new CT image reconstruction and noise-reduction techniques that promise to facilitate radiation dose reduction. ©RSNA, 2021.
Collapse
Affiliation(s)
- Payam Mohammadinejad
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (P.M., L.Y., S.L., A.D.M., H.G., C.H.M., J.G.F.); Department of Radiology, Harborview Medical Center, Seattle, Wash (A.M.); Department of Medical Imaging, Toronto General Hospital, Toronto, ON, Canada (L.S.G.); and Department of Abdominal Imaging, University of Texas MD Anderson Cancer Center, Houston, Tex (C.T.J.)
| | - Achille Mileto
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (P.M., L.Y., S.L., A.D.M., H.G., C.H.M., J.G.F.); Department of Radiology, Harborview Medical Center, Seattle, Wash (A.M.); Department of Medical Imaging, Toronto General Hospital, Toronto, ON, Canada (L.S.G.); and Department of Abdominal Imaging, University of Texas MD Anderson Cancer Center, Houston, Tex (C.T.J.)
| | - Lifeng Yu
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (P.M., L.Y., S.L., A.D.M., H.G., C.H.M., J.G.F.); Department of Radiology, Harborview Medical Center, Seattle, Wash (A.M.); Department of Medical Imaging, Toronto General Hospital, Toronto, ON, Canada (L.S.G.); and Department of Abdominal Imaging, University of Texas MD Anderson Cancer Center, Houston, Tex (C.T.J.)
| | - Shuai Leng
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (P.M., L.Y., S.L., A.D.M., H.G., C.H.M., J.G.F.); Department of Radiology, Harborview Medical Center, Seattle, Wash (A.M.); Department of Medical Imaging, Toronto General Hospital, Toronto, ON, Canada (L.S.G.); and Department of Abdominal Imaging, University of Texas MD Anderson Cancer Center, Houston, Tex (C.T.J.)
| | - Luis S Guimaraes
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (P.M., L.Y., S.L., A.D.M., H.G., C.H.M., J.G.F.); Department of Radiology, Harborview Medical Center, Seattle, Wash (A.M.); Department of Medical Imaging, Toronto General Hospital, Toronto, ON, Canada (L.S.G.); and Department of Abdominal Imaging, University of Texas MD Anderson Cancer Center, Houston, Tex (C.T.J.)
| | - Andrew D Missert
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (P.M., L.Y., S.L., A.D.M., H.G., C.H.M., J.G.F.); Department of Radiology, Harborview Medical Center, Seattle, Wash (A.M.); Department of Medical Imaging, Toronto General Hospital, Toronto, ON, Canada (L.S.G.); and Department of Abdominal Imaging, University of Texas MD Anderson Cancer Center, Houston, Tex (C.T.J.)
| | - Corey T Jensen
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (P.M., L.Y., S.L., A.D.M., H.G., C.H.M., J.G.F.); Department of Radiology, Harborview Medical Center, Seattle, Wash (A.M.); Department of Medical Imaging, Toronto General Hospital, Toronto, ON, Canada (L.S.G.); and Department of Abdominal Imaging, University of Texas MD Anderson Cancer Center, Houston, Tex (C.T.J.)
| | - Hao Gong
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (P.M., L.Y., S.L., A.D.M., H.G., C.H.M., J.G.F.); Department of Radiology, Harborview Medical Center, Seattle, Wash (A.M.); Department of Medical Imaging, Toronto General Hospital, Toronto, ON, Canada (L.S.G.); and Department of Abdominal Imaging, University of Texas MD Anderson Cancer Center, Houston, Tex (C.T.J.)
| | - Cynthia H McCollough
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (P.M., L.Y., S.L., A.D.M., H.G., C.H.M., J.G.F.); Department of Radiology, Harborview Medical Center, Seattle, Wash (A.M.); Department of Medical Imaging, Toronto General Hospital, Toronto, ON, Canada (L.S.G.); and Department of Abdominal Imaging, University of Texas MD Anderson Cancer Center, Houston, Tex (C.T.J.)
| | - Joel G Fletcher
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (P.M., L.Y., S.L., A.D.M., H.G., C.H.M., J.G.F.); Department of Radiology, Harborview Medical Center, Seattle, Wash (A.M.); Department of Medical Imaging, Toronto General Hospital, Toronto, ON, Canada (L.S.G.); and Department of Abdominal Imaging, University of Texas MD Anderson Cancer Center, Houston, Tex (C.T.J.)
| |
Collapse
|
3
|
Funama Y, Takahashi H, Goto T, Aoki Y, Yoshida R, Kumagai Y, Awai K. Improving Low-contrast Detectability and Noise Texture Pattern for Computed Tomography Using Iterative Reconstruction Accelerated with Machine Learning Method: A Phantom Study. Acad Radiol 2020; 27:929-936. [PMID: 31918961 DOI: 10.1016/j.acra.2019.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/01/2019] [Accepted: 09/11/2019] [Indexed: 11/15/2022]
Abstract
RATIONALE AND OBJECTIVES To evaluate the performance of iterative reconstruction (IR) and filtered back projection (FBP) images in terms of low-contrast detectability at different radiation doses, IR levels, and slice thickness using the mathematical model observer with a focus on low-contrast detectability. MATERIALS AND METHODS The CCT189 MITA CT IQ Low-Contrast Phantom was used and helical scans were performed using a 64-detector CT scanner. Tube voltage was set at 120 kVp and tube current was adjusted from 45 to 600 mA. Images were reconstructed at slice thicknesses of 0.625 and 5.0 mm with FBP and five types of iterative progressive reconstruction with visual modeling (IPV) algorithms. The noise power spectrum (NPS) and normalized NPS were calculated. To evaluate low-contrast detectability, the model observer with the channelized Hotelling observer model was applied using low-contrast modules in the phantom. RESULTS The NPS and normalized NPS for IPV images had similar curves as that for FBP images. At a slice thickness of 0.625 mm and equivalent radiation dose level, the mean improvement of low-contrast detectability for IPV images was 1.19-2.15-fold greater than FBP images with corresponding noise reduction levels. At equivalent noise levels of 5.0-8.0 HU, low-contrast detectability of the IPVstd2 to IPVstr2 images as almost the same or better than that of the FBP images. However, the detectability of the IPVstr4 image was lower than that of the FBP image (p = 0.02). CONCLUSION Low-contrast detectability of the IPV images was improved with a similar normalized NPS as with FBP images. Furthermore, a radiation reduction of >50% was achieved for the IPV images, while maintaining similar low-contrast detectability.
Collapse
Affiliation(s)
- Yoshinori Funama
- Department of Medical Radiation Sciences, Faculty of Life Sciences, Kumamoto University, 4-24-1 Kuhonji, Kumamoto 862-0976, Japan.
| | | | - Taiga Goto
- Hitachi Ltd. Healthcare Business Unit, Kashiwa, Chiba, Japan
| | - Yuko Aoki
- Hitachi Ltd. Healthcare Business Unit, Kashiwa, Chiba, Japan
| | - Ryo Yoshida
- Hitachi Ltd. Healthcare Business Unit, Kashiwa, Chiba, Japan
| | - Yukio Kumagai
- Hitachi Ltd. Healthcare Business Unit, Kashiwa, Chiba, Japan
| | - Kazuo Awai
- Department of Diagnostic Radiology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
4
|
Mackin D, Ger R, Gay S, Dodge C, Zhang L, Yang J, Jones AK, Court L. Matching and Homogenizing Convolution Kernels for Quantitative Studies in Computed Tomography. Invest Radiol 2019; 54:288-295. [PMID: 30570504 PMCID: PMC6449212 DOI: 10.1097/rli.0000000000000540] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The sharpness of the kernels used for image reconstruction in computed tomography affects the values of the quantitative image features. We sought to identify the kernels that produce similar feature values to enable a more effective comparison of images produced using scanners from different manufactures. We also investigated a new image filter designed to change the kernel-related component of the frequency spectrum of a postreconstruction image from that of the initial kernel to that of a preferred kernel. A radiomics texture phantom was imaged using scanners from GE, Philips, Siemens, and Toshiba. Images were reconstructed multiple times, varying the kernel from smooth to sharp. The phantom comprised 10 cartridges of various textures. A semiautomated method was used to produce 8 × 2 × 2 cm regions of interest for each cartridge and for all scans. For each region of interest, 38 radiomics features from the categories intensity direct (n = 12), gray-level co-occurrence matrix (n = 21), and neighborhood gray-tone difference matrix (n = 5) were extracted. We then calculated the fractional differences of the features from those of the baseline kernel (GE Standard). To gauge the importance of the differences, we scaled them by the coefficient of variation of the same feature from a cohort of patients with non-small cell lung cancer. The noise power spectra for each kernel were estimated from the phantom's solid acrylic cartridge, and kernel-homogenization filters were developed from these estimates. The Philips C, Siemens B30f, and Toshiba FC24 kernels produced feature values most similar to GE Standard. The kernel homogenization filters reduced the median differences from baseline to less than 1 coefficient of variation in the patient population for all of the GE, Philips, and Siemens kernels except for GE Edge and Toshiba kernels. For prospective computed tomographic radiomics studies, the scanning protocol should specify kernels that have been shown to produce similar feature values. For retrospective studies, kernel homogenization filters can be designed and applied to reduce the kernel-related differences in the feature values.
Collapse
Affiliation(s)
- Dennis Mackin
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Rachel Ger
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Skylar Gay
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cristina Dodge
- Department of Diagnostic Imaging, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Lifei Zhang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jinzhong Yang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - A. Kyle Jones
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Radiation Oncology Department, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Laurence Court
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
5
|
Mannil M, von Spiczak J, Muehlematter UJ, Thanabalasingam A, Keller DI, Manka R, Alkadhi H. Texture analysis of myocardial infarction in CT: Comparison with visual analysis and impact of iterative reconstruction. Eur J Radiol 2019; 113:245-250. [PMID: 30927955 DOI: 10.1016/j.ejrad.2019.02.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVES To compare texture analysis (TA) with subjective visual diagnosis of myocardial infarction (MI) in cardiac computed tomography (CT) and to evaluate the impact of iterative reconstruction (IR). METHODS Ten patients (4 women, mean age 68 ± 11 years) with confirmed chronic MI and 20 controls (8 women, mean age 52 ± 11 years) with no cardiac abnormality underwent contrast-enhanced cardiac CT with the same protocol. Images were reconstructed with filtered back projection (FBP) and with advanced modeled IR at strength levels 3-5. Subjective diagnosis of MI was made by three independent, blinded readers with different experience levels. Classification of MI was performed using machine learning-based decision tree models for the entire data set and after splitting into training and test data to avoid overfitting. RESULTS Subjective visual analysis for diagnosis of MI showed excellent intrareader (kappa: 0.93) but poor interreader agreement (kappa: 0.3), with variable performance at different image reconstructions. TA showed high performance for all image reconstructions (correct classifications: 94%-97%, areas under the curve: 0.94-0.99). After splitting into training and test data, overall lower performances were observed, with best results for IR at level 5 (correct classifications: 73%, area under the curve: 0.65). CONCLUSIONS As compared with subjective, nonreliable visual analysis of inexperienced readers, TA enables objective and reproducible diagnosis of chronic MI in cardiac CT with higher accuracy. IR has a considerable impact on both subjective and objective image analysis.
Collapse
Affiliation(s)
- Manoj Mannil
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistr. 100, CH-8091 Zurich, Switzerland.
| | - Jochen von Spiczak
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistr. 100, CH-8091 Zurich, Switzerland
| | - Urs J Muehlematter
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistr. 100, CH-8091 Zurich, Switzerland
| | - Arjun Thanabalasingam
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistr. 100, CH-8091 Zurich, Switzerland
| | - Dagmar I Keller
- Institute for Emergency Medicine, University Hospital Zurich, University of Zurich, Switzerland
| | - Robert Manka
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistr. 100, CH-8091 Zurich, Switzerland; Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, Raemistr. 100, 8091 Zurich, Switzerland; Institute for Biomedical Engineering, University and ETH Zurich Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Hatem Alkadhi
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistr. 100, CH-8091 Zurich, Switzerland
| |
Collapse
|
6
|
The Impact of Dose Reduction in Quantitative Kinematic CT of Ankle Joints Using a Full Model-Based Iterative Reconstruction Algorithm: A Cadaveric Study. AJR Am J Roentgenol 2018; 210:396-403. [DOI: 10.2214/ajr.17.18562] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
7
|
Nam S, Jeong D, Choo K, Nam K, Hwang JY, Lee J, Kim J, Lim S. Image quality of CT angiography in young children with congenital heart disease: a comparison between the sinogram-affirmed iterative reconstruction (SAFIRE) and advanced modelled iterative reconstruction (ADMIRE) algorithms. Clin Radiol 2017; 72:1060-1065. [DOI: 10.1016/j.crad.2017.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/20/2017] [Accepted: 07/06/2017] [Indexed: 01/21/2023]
|
8
|
Noda Y, Goshima S, Koyasu H, Shigeyama S, Miyoshi T, Kawada H, Kawai N, Matsuo M. Renovascular CT: comparison between adaptive statistical iterative reconstruction and model-based iterative reconstruction. Clin Radiol 2017; 72:901.e13-901.e19. [DOI: 10.1016/j.crad.2017.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 05/30/2017] [Accepted: 06/06/2017] [Indexed: 10/19/2022]
|
9
|
Funama Y, Utsunomiya D, Hirata K, Taguchi K, Nakaura T, Oda S, Kidoh M, Yuki H, Yamashita Y. Improved Estimation of Coronary Plaque and Luminal Attenuation Using a Vendor-specific Model-based Iterative Reconstruction Algorithm in Contrast-enhanced CT Coronary Angiography. Acad Radiol 2017; 24:1070-1078. [PMID: 28396126 DOI: 10.1016/j.acra.2017.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/25/2017] [Accepted: 02/28/2017] [Indexed: 01/16/2023]
Abstract
RATIONALE AND OBJECTIVES To investigate the stabilities of plaque attenuation and coronary lumen for different plaque types, stenotic degrees, lumen densities, and reconstruction methods using coronary vessel phantoms and the visualization of coronary plaques in clinical patients through coronary computed tomography (CT) angiography. MATERIALS AND METHODS We performed 320-detector volume scanning of vessel tubes with stenosis and a tube without stenosis using three types of plaque CT numbers. The stenotic degrees were 50% and 75%. Images were reconstructed with filtered back projection (FBP) and two types of iterative reconstructions (AIDR3D and FIRST [forward-projected model-based iterative reconstruction solution]), with stenotic CT number of approximately 40, 80, and 150 HU (Hounsfield unit), respectively. In each case, the tubing of the coronary vessel was filled with diluted contrast material and distilled water to reach the target lumen CT numbers of approximately 350 HU and 450 HU, and 0 HU, respectively. Peak lumen and plaque CT numbers were measured to calculate the lumen-plaque contrast. In addition, we retrospectively evaluated the image quality with regard to coronary arterial lumen and the plaque in 10 clinical patients on a 4-point scale. RESULTS At 50% stenosis, the plaque CT number with contrast enhancement increased for FBP and AIDR3D, and the difference in the plaque CT number with and without contrast enhancement was 15-44 HU for FBP and 10-31 HU for AIDR3D. However, the plaque CT number for FIRST had a smaller variation and the difference with and without contrast enhancement was -12 to 8 HU. The visual evaluation score for the vessel lumen was 2.8 ± 0.6, 3.5 ± 0.5, and 3.7 ± 0.5 for FBP, AIDR3D, and FIRST, respectively. CONCLUSIONS The FIRST method controls the increase in plaque density and the lumen-plaque contrast. Consequently, it improves the visualization of coronary plaques in coronary CT angiography.
Collapse
Affiliation(s)
- Yoshinori Funama
- Department of Medical Physics, Faculty of Life Sciences, Kumamoto University, 4-24-1 Kuhonji, Kumamoto 862-0976, Japan.
| | - Daisuke Utsunomiya
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenichiro Hirata
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Katsuyuki Taguchi
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Seitaro Oda
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masafumi Kidoh
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideaki Yuki
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuyuki Yamashita
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
10
|
Samei E, Li X, Frush DP. Size-based quality-informed framework for quantitative optimization of pediatric CT. J Med Imaging (Bellingham) 2017; 4:031209. [PMID: 28840168 DOI: 10.1117/1.jmi.4.3.031209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/06/2017] [Indexed: 11/14/2022] Open
Abstract
The purpose of this study was to formulate a systematic, evidence-based method to relate quantitative diagnostic performance to radiation dose, enabling a multidimensional system to optimize computed tomography imaging across pediatric populations. Based on two prior foundational studies, radiation dose was assessed in terms of organ doses, effective dose ([Formula: see text]), and risk index for 30 patients within nine color-coded pediatric age-size groups as a function of imaging parameters. The cases, supplemented with added noise and simulated lesions, were assessed in terms of nodule detection accuracy in an observer receiving operating characteristic study. The resulting continuous accuracy-dose relationships were used to optimize individual scan parameters. Before optimization, the nine protocols had a similar [Formula: see text] of [Formula: see text] with accuracy decreasing from 0.89 for the youngest patients to 0.67 for the oldest. After optimization, a consistent target accuracy of 0.83 was established for all patient categories with [Formula: see text] ranging from 1 to 10 mSv. Alternatively, isogradient operating points targeted a consistent ratio of accuracy-per-unit-dose across the patient categories. The developed model can be used to optimize individual scan parameters and provide for consistent diagnostic performance across the broad range of body sizes in children.
Collapse
Affiliation(s)
- Ehsan Samei
- Duke University Medical Center, Departments of Radiology, Physics, Biomedical Engineering, and Electrical and Computer Engineering, Carl E. Ravin Advanced Imaging Laboratories, Medical Physics Graduate Program, Durham, North Carolina, United States
| | - Xiang Li
- Cleveland Clinic, Imaging Institute, Section of Medical Physics, Cleveland, Ohio, United States
| | - Donald P Frush
- Duke University Medical Center, Division of Pediatric Radiology, Department of Radiology, Medical Physics Graduate Program, Durham, North Carolina, United States
| |
Collapse
|
11
|
Use of a Noise Optimized Monoenergetic Algorithm for Patient-Size Independent Selection of an Optimal Energy Level During Dual-Energy CT of the Pancreas. J Comput Assist Tomogr 2017; 41:39-47. [PMID: 27560021 DOI: 10.1097/rct.0000000000000492] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To investigate the impact of a second-generation noise-optimized monoenergetic algorithm on selection of the optimal energy level, image quality, and effect of patient body habitus for dual-energy multidetector computed tomography of the pancreas. MATERIALS AND METHODS Fifty-nine patients (38 men, 21 women) underwent dual-energy multidetector computed tomography (80/Sn140 kV) in the pancreatic parenchymal phase. Image data sets, at energy levels ranging from 40 to 80 keV (in 5-keV increments), were reconstructed using first-generation and second-generation noise-optimized monoenergetic algorithm. Noise, pancreatic contrast-to-noise ratio (CNRpancreas), and CNR with a noise constraint (CNRNC) were calculated and compared among the different reconstructed data sets. Qualitative assessment of image quality was performed by 3 readers. RESULTS For all energy levels below 70 keV, noise was significantly lower (P ≤ 0.05) and CNRpancreas significantly higher (P < 0.001), with the second-generation monoenergetic algorithm. Furthermore, the second-generation algorithm was less susceptible to variability related to patient body habitus in the selection of the optimal energy level. The maximal CNRpancreas occurred at 40 keV in 98% (58 of 59) of patients with the second-generation monoenergetic algorithm. However, the CNRNC and readers' image quality scores showed that, even with a second-generation monoenergetic algorithm, higher reconstructed energy levels (60-65 keV) represented the optimal energy level. CONCLUSIONS Second-generation noise-optimized monoenergetic algorithm can improve the image quality of lower-energy monoenergetic images of the pancreas, while decreasing the variability related to patient body habitus in selection of the optimal energy level.
Collapse
|
12
|
Schaller F, Sedlmair M, Raupach R, Uder M, Lell M. Noise Reduction in Abdominal Computed Tomography Applying Iterative Reconstruction (ADMIRE). Acad Radiol 2016; 23:1230-8. [PMID: 27318787 DOI: 10.1016/j.acra.2016.05.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/24/2016] [Accepted: 05/27/2016] [Indexed: 12/11/2022]
Abstract
RATIONALE AND OBJECTIVES The study aimed to compare image quality of filtered back projection (FBP) and iterative reconstruction (advanced modeled iterative reconstruction, ADMIRE) in contrast-enhanced computed tomography (CT) of the abdomen, and to assess the differences of reconstructions according to these methods. It also aimed to investigate the potential for noise reduction of ADMIRE for different reconstructed slice thicknesses. MATERIALS AND METHODS CT data of the abdomen and pelvis were acquired using a 128-slice single-source CT system using automated kV selection and tube current adaption based on patients' anatomy. Raw data sets from patients scanned at 100 kV were selected, and images were reconstructed with slice thicknesses of 1 mm, 3 mm, and 5 mm, both with FBP and ADMIRE. Filter strength F1, F3, and F5 of the ADMIRE algorithm and the corresponding reconstruction kernels were used. In total, 58 raw data sets from 17 patients were used to reconstruct from the same raw data FBP and ADMIRE images, representing identical body regions. Identical regions of interest were placed at the same position of up to four images and image noise was measured. Differences of reconstructed images and detail preservation were tested using an image subtraction technique, and subjective image quality was assessed using a 5-point Likert scale. RESULTS On average, for 1-mm slice thickness, noise reduction was 9.15% ± 2.4% with filter strength level F1, 30.2% ± 3.4% with F3, and 54.4% ± 7.0% with F5 as compared to FBP. For a slice thickness of 3 mm, noise reduction was 8.5% ± 3.7% with F1, 28.6% ± 3.9% with F3, and 52.2% ± 9.1% with F5. For 5 mm, the corresponding values are 8.9% ± 2.7%, 31.4% ± 2.8%, and 52.7% ± 7.7%. On subtraction images, edge information of tissue classes with a high attenuation gradient was found, but structures with small differences in attenuation were not detectable on subtraction images, confirming that no relevant details were lost in the iterative reconstruction process. CONCLUSIONS ADMIRE is able to reduce image noise considerably (up to 50%) without any obvious negative impact on lesion depiction as assessed visually. Noise reduction of ADMIRE seems to be independent of slice thickness.
Collapse
|
13
|
Effect of a Noise-Optimized Second-Generation Monoenergetic Algorithm on Image Noise and Conspicuity of Hypervascular Liver Tumors: An In Vitro and In Vivo Study. AJR Am J Roentgenol 2016; 206:1222-32. [PMID: 27058192 DOI: 10.2214/ajr.15.15512] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The purpose of this study is to investigate whether the reduction in noise using a second-generation monoenergetic algorithm can improve the conspicuity of hypervascular liver tumors on dual-energy CT (DECT) images of the liver. MATERIALS AND METHODS An anthropomorphic liver phantom in three body sizes and iodine-containing inserts simulating hypervascular lesions was imaged with DECT and single-energy CT at various energy levels (80-140 kV). In addition, a retrospective clinical study was performed in 31 patients with 66 hypervascular liver tumors who underwent DECT during the late hepatic arterial phase. Datasets at energy levels ranging from 40 to 80 keV were reconstructed using first- and second-generation monoenergetic algorithms. Noise, tumor-to-liver contrast-to-noise ratio (CNR), and CNR with a noise constraint (CNRNC) set with a maximum noise increase of 50% were calculated and compared among the different reconstructed datasets. RESULTS The maximum CNR for the second-generation monoenergetic algorithm, which was attained at 40 keV in both phantom and clinical datasets, was statistically significantly higher than the maximum CNR for the first-generation monoenergetic algorithm (p < 0.001) or single-energy CT acquisitions across a wide range of kilovoltage values. With the second-generation monoenergetic algorithm, the optimal CNRNC occurred at 55 keV, corresponding to lower energy levels compared with first-generation algorithm (predominantly at 70 keV). Patient body size did not substantially affect the selection of the optimal energy level to attain maximal CNR and CNRNC using the second-generation monoenergetic algorithm. CONCLUSION A noise-optimized second-generation monoenergetic algorithm significantly improves the conspicuity of hypervascular liver tumors.
Collapse
|
14
|
Dodge CT, Tamm EP, Cody DD, Liu X, Jensen CT, Wei W, Kundra V, Rong XJ. Performance evaluation of iterative reconstruction algorithms for achieving CT radiation dose reduction - a phantom study. J Appl Clin Med Phys 2016; 17:511-531. [PMID: 27074454 PMCID: PMC5875046 DOI: 10.1120/jacmp.v17i2.5709] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 11/19/2015] [Accepted: 11/16/2015] [Indexed: 12/01/2022] Open
Abstract
The purpose of this study was to characterize image quality and dose performance with GE CT iterative reconstruction techniques, adaptive statistical iterative reconstruction (ASiR), and model‐based iterative reconstruction (MBIR), over a range of typical to low‐dose intervals using the Catphan 600 and the anthropomorphic Kyoto Kagaku abdomen phantoms. The scope of the project was to quantitatively describe the advantages and limitations of these approaches. The Catphan 600 phantom, supplemented with a fat‐equivalent oval ring, was scanned using a GE Discovery HD750 scanner at 120 kVp, 0.8 s rotation time, and pitch factors of 0.516, 0.984, and 1.375. The mA was selected for each pitch factor to achieve CTDIvol values of 24, 18, 12, 6, 3, 2, and 1 mGy. Images were reconstructed at 2.5 mm thickness with filtered back‐projection (FBP); 20%, 40%, and 70% ASiR; and MBIR. The potential for dose reduction and low‐contrast detectability were evaluated from noise and contrast‐to‐noise ratio (CNR) measurements in the CTP 404 module of the Catphan. Hounsfield units (HUs) of several materials were evaluated from the cylinder inserts in the CTP 404 module, and the modulation transfer function (MTF) was calculated from the air insert. The results were confirmed in the anthropomorphic Kyoto Kagaku abdomen phantom at 6, 3, 2, and 1 mGy. MBIR reduced noise levels five‐fold and increased CNR by a factor of five compared to FBP below 6 mGy CTDIvol, resulting in a substantial improvement in image quality. Compared to ASiR and FBP, HU in images reconstructed with MBIR were consistently lower, and this discrepancy was reversed by higher pitch factors in some materials. MBIR improved the conspicuity of the high‐contrast spatial resolution bar pattern, and MTF quantification confirmed the superior spatial resolution performance of MBIR versus FBP and ASiR at higher dose levels. While ASiR and FBP were relatively insensitive to changes in dose and pitch, the spatial resolution for MBIR improved with increasing dose and pitch. Unlike FBP, MBIR and ASiR may have the potential for patient imaging at around 1 mGy CTDIvol. The improved low‐contrast detectability observed with MBIR, especially at low‐dose levels, indicate the potential for considerable dose reduction. PACS number(s): 87.57.Q‐, 87.57,nf, 87.57.C‐, 87.57.cj, 87.57.cf, 87.57.cm, 87.57.uq
Collapse
|
15
|
Geyer LL, Schoepf UJ, Meinel FG, Nance JW, Bastarrika G, Leipsic JA, Paul NS, Rengo M, Laghi A, De Cecco CN. State of the Art: Iterative CT Reconstruction Techniques. Radiology 2015. [PMID: 26203706 DOI: 10.1148/radiol.2015132766] [Citation(s) in RCA: 434] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Lucas L Geyer
- From the Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, MSC 226, 25 Courtenay Dr, Charleston, SC 29425 (L.L.G., U.J.S., F.G.M., J.W.N., C.N.D.); Department of Radiology, Sunnybrook Health Sciences Centre, Toronto, Ont, Canada (G.B.); Department of Radiology, University of British Columbia, Vancouver, BC, Canada (J.A.L.); Department of Radiology, Toronto General Hospital, University of Toronto, Toronto, Ont, Canada (N.S.P.); and Department of Radiological Sciences, Oncology and Pathology, University of Rome Sapienza-Polo Pontino, Latina, Italy (M.R., A.L., C.N.D.)
| | - U Joseph Schoepf
- From the Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, MSC 226, 25 Courtenay Dr, Charleston, SC 29425 (L.L.G., U.J.S., F.G.M., J.W.N., C.N.D.); Department of Radiology, Sunnybrook Health Sciences Centre, Toronto, Ont, Canada (G.B.); Department of Radiology, University of British Columbia, Vancouver, BC, Canada (J.A.L.); Department of Radiology, Toronto General Hospital, University of Toronto, Toronto, Ont, Canada (N.S.P.); and Department of Radiological Sciences, Oncology and Pathology, University of Rome Sapienza-Polo Pontino, Latina, Italy (M.R., A.L., C.N.D.)
| | - Felix G Meinel
- From the Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, MSC 226, 25 Courtenay Dr, Charleston, SC 29425 (L.L.G., U.J.S., F.G.M., J.W.N., C.N.D.); Department of Radiology, Sunnybrook Health Sciences Centre, Toronto, Ont, Canada (G.B.); Department of Radiology, University of British Columbia, Vancouver, BC, Canada (J.A.L.); Department of Radiology, Toronto General Hospital, University of Toronto, Toronto, Ont, Canada (N.S.P.); and Department of Radiological Sciences, Oncology and Pathology, University of Rome Sapienza-Polo Pontino, Latina, Italy (M.R., A.L., C.N.D.)
| | - John W Nance
- From the Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, MSC 226, 25 Courtenay Dr, Charleston, SC 29425 (L.L.G., U.J.S., F.G.M., J.W.N., C.N.D.); Department of Radiology, Sunnybrook Health Sciences Centre, Toronto, Ont, Canada (G.B.); Department of Radiology, University of British Columbia, Vancouver, BC, Canada (J.A.L.); Department of Radiology, Toronto General Hospital, University of Toronto, Toronto, Ont, Canada (N.S.P.); and Department of Radiological Sciences, Oncology and Pathology, University of Rome Sapienza-Polo Pontino, Latina, Italy (M.R., A.L., C.N.D.)
| | - Gorka Bastarrika
- From the Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, MSC 226, 25 Courtenay Dr, Charleston, SC 29425 (L.L.G., U.J.S., F.G.M., J.W.N., C.N.D.); Department of Radiology, Sunnybrook Health Sciences Centre, Toronto, Ont, Canada (G.B.); Department of Radiology, University of British Columbia, Vancouver, BC, Canada (J.A.L.); Department of Radiology, Toronto General Hospital, University of Toronto, Toronto, Ont, Canada (N.S.P.); and Department of Radiological Sciences, Oncology and Pathology, University of Rome Sapienza-Polo Pontino, Latina, Italy (M.R., A.L., C.N.D.)
| | - Jonathon A Leipsic
- From the Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, MSC 226, 25 Courtenay Dr, Charleston, SC 29425 (L.L.G., U.J.S., F.G.M., J.W.N., C.N.D.); Department of Radiology, Sunnybrook Health Sciences Centre, Toronto, Ont, Canada (G.B.); Department of Radiology, University of British Columbia, Vancouver, BC, Canada (J.A.L.); Department of Radiology, Toronto General Hospital, University of Toronto, Toronto, Ont, Canada (N.S.P.); and Department of Radiological Sciences, Oncology and Pathology, University of Rome Sapienza-Polo Pontino, Latina, Italy (M.R., A.L., C.N.D.)
| | - Narinder S Paul
- From the Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, MSC 226, 25 Courtenay Dr, Charleston, SC 29425 (L.L.G., U.J.S., F.G.M., J.W.N., C.N.D.); Department of Radiology, Sunnybrook Health Sciences Centre, Toronto, Ont, Canada (G.B.); Department of Radiology, University of British Columbia, Vancouver, BC, Canada (J.A.L.); Department of Radiology, Toronto General Hospital, University of Toronto, Toronto, Ont, Canada (N.S.P.); and Department of Radiological Sciences, Oncology and Pathology, University of Rome Sapienza-Polo Pontino, Latina, Italy (M.R., A.L., C.N.D.)
| | - Marco Rengo
- From the Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, MSC 226, 25 Courtenay Dr, Charleston, SC 29425 (L.L.G., U.J.S., F.G.M., J.W.N., C.N.D.); Department of Radiology, Sunnybrook Health Sciences Centre, Toronto, Ont, Canada (G.B.); Department of Radiology, University of British Columbia, Vancouver, BC, Canada (J.A.L.); Department of Radiology, Toronto General Hospital, University of Toronto, Toronto, Ont, Canada (N.S.P.); and Department of Radiological Sciences, Oncology and Pathology, University of Rome Sapienza-Polo Pontino, Latina, Italy (M.R., A.L., C.N.D.)
| | - Andrea Laghi
- From the Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, MSC 226, 25 Courtenay Dr, Charleston, SC 29425 (L.L.G., U.J.S., F.G.M., J.W.N., C.N.D.); Department of Radiology, Sunnybrook Health Sciences Centre, Toronto, Ont, Canada (G.B.); Department of Radiology, University of British Columbia, Vancouver, BC, Canada (J.A.L.); Department of Radiology, Toronto General Hospital, University of Toronto, Toronto, Ont, Canada (N.S.P.); and Department of Radiological Sciences, Oncology and Pathology, University of Rome Sapienza-Polo Pontino, Latina, Italy (M.R., A.L., C.N.D.)
| | - Carlo N De Cecco
- From the Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, MSC 226, 25 Courtenay Dr, Charleston, SC 29425 (L.L.G., U.J.S., F.G.M., J.W.N., C.N.D.); Department of Radiology, Sunnybrook Health Sciences Centre, Toronto, Ont, Canada (G.B.); Department of Radiology, University of British Columbia, Vancouver, BC, Canada (J.A.L.); Department of Radiology, Toronto General Hospital, University of Toronto, Toronto, Ont, Canada (N.S.P.); and Department of Radiological Sciences, Oncology and Pathology, University of Rome Sapienza-Polo Pontino, Latina, Italy (M.R., A.L., C.N.D.)
| |
Collapse
|
16
|
Effect of Model-Based Iterative Reconstruction on CT Number Measurements Within Small (10–29 mm) Low-Attenuation Renal Masses. AJR Am J Roentgenol 2015; 205:85-9. [DOI: 10.2214/ajr.14.13835] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
17
|
Fontarensky M, Alfidja A, Perignon R, Schoenig A, Perrier C, Mulliez A, Guy L, Boyer L. Reduced Radiation Dose with Model-based Iterative Reconstruction versus Standard Dose with Adaptive Statistical Iterative Reconstruction in Abdominal CT for Diagnosis of Acute Renal Colic. Radiology 2015; 276:156-66. [DOI: 10.1148/radiol.2015141287] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Burckel LA, Defez D, Chaillot P, Douek P, Boussel L. Use of an automatic recording system for CT doses: Evaluation of the impact of iterative reconstruction on radiation exposure in clinical practice. Diagn Interv Imaging 2015; 96:265-72. [DOI: 10.1016/j.diii.2014.11.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
CT of the pancreas: comparison of image quality and pancreatic duct depiction among model-based iterative, adaptive statistical iterative, and filtered back projection reconstruction techniques. ACTA ACUST UNITED AC 2015; 39:497-505. [PMID: 24496703 DOI: 10.1007/s00261-014-0081-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The purpose of this study is to compare CT images of the pancreas reconstructed with model-based iterative reconstruction (MBIR), adaptive statistical iterative reconstruction (ASiR), and filtered back projection (FBP) techniques for image quality and pancreatic duct (PD) depiction. Data from 40 patients with contrast-enhanced abdominal CT [CTDIvol: 10.3 ± 3.0 (mGy)] during the late arterial phase were reconstructed with FBP, 40% ASiR-FBP blending, and MBIR. Two radiologists assessed the depiction of the main PD, image noise, and overall image quality using 5-point scale independently. Objective CT value and noise were measured in the pancreatic parenchyma, and the contrast-to-noise ratio (CNR) of the PD was calculated. The Friedman test and post-hoc multiple comparisons with Bonferroni test following one-way ANOVA were used for qualitative and quantitative assessment, respectively. For the subjective assessment, scores for MBIR were significantly higher than those for FBP and 40% ASiR (all P < 0.001). No significant differences in CT values of the pancreatic parenchyma were noted among FBP, 40% ASiR, and MBIR images (P > 0.05). Objective image noise was significantly lower and CNR of the PD was higher with MBIR than with FBP and 40% ASiR (all P < 0.05). Our results suggest that pancreatic CT images reconstructed with MBIR have lower image noise, better image quality, and higher conspicuity and CNR of the PD compared with FBP and ASiR.
Collapse
|
20
|
Recent Technological Advances in Computed Tomography and the Clinical Impact Therein. Invest Radiol 2015; 50:119-27. [DOI: 10.1097/rli.0000000000000125] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Kaza RK, Platt JF, Goodsitt MM, Al-Hawary MM, Maturen KE, Wasnik AP, Pandya A. Emerging techniques for dose optimization in abdominal CT. Radiographics 2015; 34:4-17. [PMID: 24428277 DOI: 10.1148/rg.341135038] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent advances in computed tomographic (CT) scanning technique such as automated tube current modulation (ATCM), optimized x-ray tube voltage, and better use of iterative image reconstruction have allowed maintenance of good CT image quality with reduced radiation dose. ATCM varies the tube current during scanning to account for differences in patient attenuation, ensuring a more homogeneous image quality, although selection of the appropriate image quality parameter is essential for achieving optimal dose reduction. Reducing the x-ray tube voltage is best suited for evaluating iodinated structures, since the effective energy of the x-ray beam will be closer to the k-edge of iodine, resulting in a higher attenuation for the iodine. The optimal kilovoltage for a CT study should be chosen on the basis of imaging task and patient habitus. The aim of iterative image reconstruction is to identify factors that contribute to noise on CT images with use of statistical models of noise (statistical iterative reconstruction) and selective removal of noise to improve image quality. The degree of noise suppression achieved with statistical iterative reconstruction can be customized to minimize the effect of altered image quality on CT images. Unlike with statistical iterative reconstruction, model-based iterative reconstruction algorithms model both the statistical noise and the physical acquisition process, allowing CT to be performed with further reduction in radiation dose without an increase in image noise or loss of spatial resolution. Understanding these recently developed scanning techniques is essential for optimization of imaging protocols designed to achieve the desired image quality with a reduced dose.
Collapse
Affiliation(s)
- Ravi K Kaza
- From the Department of Radiology, University of Michigan Hospitals, 1500 E Medical Center Dr, UH B1 D 502 E, Ann Arbor, MI 48109
| | | | | | | | | | | | | |
Collapse
|
22
|
Barrett HH, Myers KJ, Hoeschen C, Kupinski MA, Little MP. Task-based measures of image quality and their relation to radiation dose and patient risk. Phys Med Biol 2015; 60:R1-75. [PMID: 25564960 PMCID: PMC4318357 DOI: 10.1088/0031-9155/60/2/r1] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The theory of task-based assessment of image quality is reviewed in the context of imaging with ionizing radiation, and objective figures of merit (FOMs) for image quality are summarized. The variation of the FOMs with the task, the observer and especially with the mean number of photons recorded in the image is discussed. Then various standard methods for specifying radiation dose are reviewed and related to the mean number of photons in the image and hence to image quality. Current knowledge of the relation between local radiation dose and the risk of various adverse effects is summarized, and some graphical depictions of the tradeoffs between image quality and risk are introduced. Then various dose-reduction strategies are discussed in terms of their effect on task-based measures of image quality.
Collapse
Affiliation(s)
- Harrison H. Barrett
- College of Optical Sciences, University of Arizona, Tucson, AZ
- Center for Gamma-Ray Imaging, Department of Medical Imaging, University of Arizona, Tucson, AZ
| | - Kyle J. Myers
- Division of Imaging and Applied Mathematics, Office of Scientific and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD
| | - Christoph Hoeschen
- Department of Electrical Engineering and Information Technology, Otto-von-Guericke University, Magdeburg, Germany
- Research unit Medical Radiation Physics and Diagnostics, Helmholtz Zentrum München, Oberschleissheim, Germany
| | - Matthew A. Kupinski
- College of Optical Sciences, University of Arizona, Tucson, AZ
- Center for Gamma-Ray Imaging, Department of Medical Imaging, University of Arizona, Tucson, AZ
| | - Mark P. Little
- Division of Cancer Epidemiology and Genetics, Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD
| |
Collapse
|
23
|
Feasibility of ultra-low radiation dose reduction for renal stone CT using model-based iterative reconstruction: prospective pilot study. Clin Imaging 2015; 39:99-103. [DOI: 10.1016/j.clinimag.2014.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/15/2014] [Indexed: 11/20/2022]
|
24
|
Mayo-Smith WW, Hara AK, Mahesh M, Sahani DV, Pavlicek W. How I Do It: Managing Radiation Dose in CT. Radiology 2014; 273:657-72. [PMID: 25420167 DOI: 10.1148/radiol.14132328] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- William W Mayo-Smith
- From the Department of Radiology, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI (W.W.M.); Department of Radiology, Mayo Clinic Arizona, Scottsdale, Ariz (A.K.H., W.P.); Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Md (M.M.); and Department of Abdominal Imaging/Intervention, Massachusetts General Hospital, Boston, Mass (D.V.S.)
| | | | | | | | | |
Collapse
|
25
|
Shuman WP, Chan KT, Busey JM, Mitsumori LM, Choi E, Koprowicz KM, Kanal KM. Standard and Reduced Radiation Dose Liver CT Images: Adaptive Statistical Iterative Reconstruction versus Model-based Iterative Reconstruction—Comparison of Findings and Image Quality. Radiology 2014; 273:793-800. [DOI: 10.1148/radiol.14140676] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Dual-Energy MDCT in Hypervascular Liver Tumors: Effect of Body Size on Selection of the Optimal Monochromatic Energy Level. AJR Am J Roentgenol 2014; 203:1257-64. [DOI: 10.2214/ajr.13.12229] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Image quality of CT angiography with model-based iterative reconstruction in young children with congenital heart disease: comparison with filtered back projection and adaptive statistical iterative reconstruction. Int J Cardiovasc Imaging 2014; 31 Suppl 1:31-8. [DOI: 10.1007/s10554-014-0570-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/08/2014] [Indexed: 10/24/2022]
|
28
|
Gordic S, Desbiolles L, Stolzmann P, Gantner L, Leschka S, Husarik DB, Alkadhi H. Advanced modelled iterative reconstruction for abdominal CT: qualitative and quantitative evaluation. Clin Radiol 2014; 69:e497-504. [PMID: 25239788 DOI: 10.1016/j.crad.2014.08.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/05/2014] [Accepted: 08/13/2014] [Indexed: 11/25/2022]
Abstract
AIM To determine qualitative and quantitative image-quality parameters in abdominal imaging using advanced modelled iterative reconstruction (ADMIRE) with third-generation dual-source 192 section CT. MATERIALS AND METHODS Forty patients undergoing abdominal portal-venous CT at different tube voltage levels (90, 100, 110, and 120 kVp, n = 10 each) and 10 consecutive patients undergoing abdominal non-enhanced low-dose CT (100 kVp, 60 mAs) using a third-generation dual-source 192 section CT machine in the single-source mode were included. Images were reconstructed with filtered back projection (FBP) and ADMIRE (strength levels 1-5). Two blinded, independent readers subjectively determined image noise, artefacts, visibility of small structures, and image contrast, and measured attenuation in the liver, spleen, kidney, muscle, fat, and urinary bladder, and objective image noise. RESULTS Subjective noise was significantly lower and image contrast significantly higher for each increasing ADMIRE strength level and also for ADMIRE 1 compared to FBP (all, p < 0.001). No significant differences were found for artefact and visibility ratings among image sets (all, p > 0.05). Attenuation was similar across tube voltage-image datasets in all anatomical regions (all, p > 0.05). Objective noise was significantly lower for each increasing ADMIRE strength level, and for ADMIRE 1 compared to FBP (all, p < 0.001, maximal reduction 53%). Independent predictors of noise were tube voltage (p < 0.05) and current (p < 0.001), diameter (p < 0.05), and reconstruction algorithm (p<0.001); the amount of noise reduction was related only to the reconstruction algorithm (p < 0.001). CONCLUSION Abdominal CT using ADMIRE results in an improved image quality with lower image noise as compared with FBP, while the attenuation of various anatomical regions remains constant among reconstruction algorithms.
Collapse
Affiliation(s)
- S Gordic
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Switzerland
| | - L Desbiolles
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Switzerland; Division of Radiology and Nuclear Medicine, Kantonsspital St Gallen, Switzerland
| | - P Stolzmann
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Switzerland
| | - L Gantner
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Switzerland
| | - S Leschka
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Switzerland; Division of Radiology and Nuclear Medicine, Kantonsspital St Gallen, Switzerland
| | - D B Husarik
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Switzerland
| | - H Alkadhi
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Switzerland.
| |
Collapse
|
29
|
Naidu SG, Kriegshauser JS, Paden RG, He M, Wu Q, Hara AK. Ultra-low-dose computed tomographic angiography with model-based iterative reconstruction compared with standard-dose imaging after endovascular aneurysm repair: a prospective pilot study. ACTA ACUST UNITED AC 2014; 39:1297-303. [PMID: 24859850 DOI: 10.1007/s00261-014-0166-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sailen G Naidu
- Department of Radiology, Mayo Clinic Hospital, 5777 E Mayo Blvd, 85054, Phoenix, AZ, USA,
| | | | | | | | | | | |
Collapse
|
30
|
Ning P, Zhu S, Shi D, Guo Y, Sun M. X-ray dose reduction in abdominal computed tomography using advanced iterative reconstruction algorithms. PLoS One 2014; 9:e92568. [PMID: 24664174 PMCID: PMC3963919 DOI: 10.1371/journal.pone.0092568] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 02/24/2014] [Indexed: 11/19/2022] Open
Abstract
Objective This work aims to explore the effects of adaptive statistical iterative reconstruction (ASiR) and model-based iterative reconstruction (MBIR) algorithms in reducing computed tomography (CT) radiation dosages in abdominal imaging. Methods CT scans on a standard male phantom were performed at different tube currents. Images at the different tube currents were reconstructed with the filtered back-projection (FBP), 50% ASiR and MBIR algorithms and compared. The CT value, image noise and contrast-to-noise ratios (CNRs) of the reconstructed abdominal images were measured. Volumetric CT dose indexes (CTDIvol) were recorded. Results At different tube currents, 50% ASiR and MBIR significantly reduced image noise and increased the CNR when compared with FBP. The minimal tube current values required by FBP, 50% ASiR, and MBIR to achieve acceptable image quality using this phantom were 200, 140, and 80 mA, respectively. At the identical image quality, 50% ASiR and MBIR reduced the radiation dose by 35.9% and 59.9% respectively when compared with FBP. Conclusions Advanced iterative reconstruction techniques are able to reduce image noise and increase image CNRs. Compared with FBP, 50% ASiR and MBIR reduced radiation doses by 35.9% and 59.9%, respectively.
Collapse
Affiliation(s)
- Peigang Ning
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Shaocheng Zhu
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Dapeng Shi
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Ying Guo
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Minghua Sun
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| |
Collapse
|
31
|
Funama Y, Taguchi K, Utsunomiya D, Oda S, Katahira K, Tokuyasu S, Yamashita Y. Image quality assessment of an iterative reconstruction algorithm applied to abdominal CT imaging. Phys Med 2014; 30:527-34. [PMID: 24662097 DOI: 10.1016/j.ejmp.2014.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 02/19/2014] [Accepted: 02/27/2014] [Indexed: 10/25/2022] Open
Abstract
PURPOSE To compare the noise and accuracy on images of the whole porcine liver acquired with iterative reconstruction (IMR, Philips Healthcare, Cleveland, OH, USA) and filtered back projection (FBP) methods. MATERIALS AND METHODS We used non-enhanced porcine liver to simulate the human liver and acquired it 100 times to obtain the average FBP value as the ground-truth. The mean and the standard deviation ("inter-scan SD") of the pixel values on the 100 image acquisitions were calculated for FBP and for three levels of IMR (L1, L2, and L3). We also calculated the noise power spectrum (NPS) and the normalized NPS for the 100 image acquisitions. RESULTS The spatial SD for the porcine liver parenchyma on these slices was 9.92, 4.37, 3.63, and 2.30 Hounsfield units with FBP, IMR-L1, IMR-L2, and IMR-L3, respectively. The detectability of small faint features was better on single IMR than single FBP images. The inter-scan SD value for IMR-L3 images was 53% larger at the liver edges than at the liver parenchyma; it was only 10% larger on FBP images. Assessment of the normalized NPS showed that the noise on IMR images was comprised primarily of low-frequency components. CONCLUSION IMR images yield the same structure informations as FBP images and image accuracy is maintained. On level 3 IMR images the image noise is more strongly suppressed than on IMR images of the other levels and on FBP images.
Collapse
Affiliation(s)
- Yoshinori Funama
- Department of Medical Physics, Faculty of Life Sciences, Kumamoto University, 4-24-1 Kuhonji, Kumamoto 862-0976, Japan.
| | - Katsuyuki Taguchi
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, USA
| | - Daisuke Utsunomiya
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Japan
| | - Seitaro Oda
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Japan
| | | | | | - Yasuyuki Yamashita
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Japan
| |
Collapse
|
32
|
Evaluation of Low-Dose CT Angiography With Model-Based Iterative Reconstruction After Endovascular Aneurysm Repair of a Thoracic or Abdominal Aortic Aneurysm. AJR Am J Roentgenol 2014; 202:648-55. [DOI: 10.2214/ajr.13.11286] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
33
|
Zhang R, Thibault JB, Bouman CA, Sauer KD, Hsieh J. Model-Based Iterative Reconstruction for Dual-Energy X-Ray CT Using a Joint Quadratic Likelihood Model. IEEE TRANSACTIONS ON MEDICAL IMAGING 2014; 33:117-134. [PMID: 24058024 DOI: 10.1109/tmi.2013.2282370] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Dual-energy X-ray CT (DECT) has the potential to improve contrast and reduce artifacts as compared to traditional CT. Moreover, by applying model-based iterative reconstruction (MBIR) to dual-energy data, one might also expect to reduce noise and improve resolution. However, the direct implementation of dual-energy MBIR requires the use of a nonlinear forward model, which increases both complexity and computation. Alternatively, simplified forward models have been used which treat the material-decomposed channels separately, but these approaches do not fully account for the statistical dependencies in the channels. In this paper, we present a method for joint dual-energy MBIR (JDE-MBIR), which simplifies the forward model while still accounting for the complete statistical dependency in the material-decomposed sinogram components. The JDE-MBIR approach works by using a quadratic approximation to the polychromatic log-likelihood and a simple but exact nonnegativity constraint in the image domain. We demonstrate that our method is particularly effective when the DECT system uses fast kVp switching, since in this case the model accounts for the inaccuracy of interpolated sinogram entries. Both phantom and clinical results show that the proposed model produces images that compare favorably in quality to previous decomposition-based methods, including FBP and other statistical iterative approaches.
Collapse
|
34
|
Burke LMB, Bashir MR, Neville AM, Nelson RC, Jaffe TA. Current opinions on medical radiation: a survey of oncologists regarding radiation exposure and dose reduction in oncology patients. J Am Coll Radiol 2013; 11:490-5. [PMID: 24321221 DOI: 10.1016/j.jacr.2013.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 08/29/2013] [Indexed: 01/29/2023]
Abstract
PURPOSE The aim of this study was to evaluate oncologists' opinions about the use of ionizing radiation in medical imaging of oncology patients. METHODS An electronic survey was e-mailed to 2,725 oncologists at the top 50 National Cancer Institute-funded cancer centers. The survey focused on opinions on CT dose reduction in oncology patients and current philosophies behind long-term imaging in these patients. RESULTS The response rate was 15% (415 of 2,725). Eighty-two percent of respondents stated that their patients or families have expressed anxiety regarding radiation dose from medical imaging. Although fewer than half of oncologists (48%) did not know whether CT dose reduction techniques were used at their institutions, only 25% were concerned that small lesions may be missed with low-dose CT techniques. The majority of oncologists (63%) follow National Comprehensive Cancer Network guidelines for imaging follow-up, while the remainder follow other national guidelines such as those of the Children's Oncology Group, the American Society of Clinical Oncology, or clinical trials. Ninety percent of respondents believe that long-term surveillance in oncology patients is warranted, particularly in patients with breast cancer, melanoma, sarcoma, and pediatric malignancies. The majority of oncologists would consider the use of low-dose CT imaging in specific patient populations: (1) children and young women, (2) those with malignancies that do not routinely metastasize to the liver, and (3) patients undergoing surveillance imaging. CONCLUSIONS Cumulative radiation exposure is a concern for patients and oncologists. Among oncologists, there is support for long-term imaging surveillance despite lack of national guidelines.
Collapse
Affiliation(s)
- Lauren M B Burke
- Department of Radiology, Duke University Medical Center, Durham, North Carolina.
| | - Mustafa R Bashir
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | - Amy M Neville
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | - Rendon C Nelson
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | - Tracy A Jaffe
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
35
|
Smith EA, Dillman JR, Goodsitt MM, Christodoulou EG, Keshavarzi N, Strouse PJ. Model-based iterative reconstruction: effect on patient radiation dose and image quality in pediatric body CT. Radiology 2013; 270:526-34. [PMID: 24091359 DOI: 10.1148/radiol.13130362] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE To retrospectively compare image quality and radiation dose between a reduced-dose computed tomographic (CT) protocol that uses model-based iterative reconstruction (MBIR) and a standard-dose CT protocol that uses 30% adaptive statistical iterative reconstruction (ASIR) with filtered back projection. MATERIALS AND METHODS Institutional review board approval was obtained. Clinical CT images of the chest, abdomen, and pelvis obtained with a reduced-dose protocol were identified. Images were reconstructed with two algorithms: MBIR and 100% ASIR. All subjects had undergone standard-dose CT within the prior year, and the images were reconstructed with 30% ASIR. Reduced- and standard-dose images were evaluated objectively and subjectively. Reduced-dose images were evaluated for lesion detectability. Spatial resolution was assessed in a phantom. Radiation dose was estimated by using volumetric CT dose index (CTDI(vol)) and calculated size-specific dose estimates (SSDE). A combination of descriptive statistics, analysis of variance, and t tests was used for statistical analysis. RESULTS In the 25 patients who underwent the reduced-dose protocol, mean decrease in CTDI(vol) was 46% (range, 19%-65%) and mean decrease in SSDE was 44% (range, 19%-64%). Reduced-dose MBIR images had less noise (P > .004). Spatial resolution was superior for reduced-dose MBIR images. Reduced-dose MBIR images were equivalent to standard-dose images for lungs and soft tissues (P > .05) but were inferior for bones (P = .004). Reduced-dose 100% ASIR images were inferior for soft tissues (P < .002), lungs (P < .001), and bones (P < .001). By using the same reduced-dose acquisition, lesion detectability was better (38% [32 of 84 rated lesions]) or the same (62% [52 of 84 rated lesions]) with MBIR as compared with 100% ASIR. CONCLUSION CT performed with a reduced-dose protocol and MBIR is feasible in the pediatric population, and it maintains diagnostic quality.
Collapse
Affiliation(s)
- Ethan A Smith
- From the Section of Pediatric Radiology, Department of Radiology, C.S. Mott Children's Hospital-University of Michigan Health System, 1540 E Hospital Dr, SPC 4252, Ann Arbor, MI 48109-4252 (E.A.S., J.R.D., P.J.S.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (M.M.G., E.G.C.); and Department of Biostatistics, Michigan Institute for Clinical and Health Research, Ann Arbor, Mich (N.K.)
| | | | | | | | | | | |
Collapse
|
36
|
Combining automated attenuation-based tube voltage selection and iterative reconstruction: a liver phantom study. Eur Radiol 2013; 24:657-67. [DOI: 10.1007/s00330-013-3049-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/27/2013] [Accepted: 10/04/2013] [Indexed: 10/26/2022]
|
37
|
Vardhanabhuti V, Ilyas S, Gutteridge C, Freeman SJ, Roobottom CA. Comparison of image quality between filtered back-projection and the adaptive statistical and novel model-based iterative reconstruction techniques in abdominal CT for renal calculi. Insights Imaging 2013; 4:661-9. [PMID: 23929357 PMCID: PMC3781247 DOI: 10.1007/s13244-013-0273-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 06/22/2013] [Accepted: 06/27/2013] [Indexed: 11/24/2022] Open
Abstract
Objectives To compare image quality on computed tomographic (CT) images acquired with filtered back-projection (FBP), adaptive statistical iterative reconstruction (ASIR) and model-based iterative reconstruction (MBIR) techniques in CT kidney/ureter/bladder (KUB) examination. Methods Eighteen patients underwent standard protocol CT KUB at our institution. The same raw data were reconstructed using FBP, ASIR and MBIR. Objective [mean image noise, contrast-to-noise ratio (CNR) for kidney and mean attenuation values of subcutaneous fat] and subjective image parameters (image noise, image contrast, overall visibility of kidneys/ureters/bladder, visibility of small structures, and overall diagnostic confidence) were assessed using a scoring system from 1 (best) to 5 (worst). Results Objective image measurements revealed significantly less image noise and higher CNR and the same fat attenuation values for the MBIR technique (P < 0.05). MBIR scored best in all the subjective image parameters (P < 0.001) with averages ranging between 2.05–2.73 for MBIR, 2.95–3.10 for ASIR and 3.08–3.31 for FBP. No significant difference was observed between FBP and ASIR (P > 0.05), while there was a significant difference between ASIR vs. MBIR (P < 0.05). The mean effective dose was 3 mSv. Conclusion MBIR shows superior reduction in noise and improved image quality (both objective and subjective analysis) compared with ASIR and FBP CT KUB examinations. Main Messages • There are many reconstruction options in CT. • Novel model-based iterative reconstruction (MBIR) showed the least noise and optimal image quality. • For CT of the kidneys/ureters/bladder, MBIR should be utilised, if available. • Further studies to reduce the dose while maintaining image quality should be pursued.
Collapse
Affiliation(s)
- Varut Vardhanabhuti
- Department of Radiology, Derriford Hospital, Derriford Road, Plymouth, Devon, PL6 8DH, UK,
| | | | | | | | | |
Collapse
|
38
|
Yasaka K, Katsura M, Akahane M, Sato J, Matsuda I, Ohtomo K. Model-based iterative reconstruction for reduction of radiation dose in abdominopelvic CT: comparison to adaptive statistical iterative reconstruction. SPRINGERPLUS 2013; 2:209. [PMID: 23687632 PMCID: PMC3655211 DOI: 10.1186/2193-1801-2-209] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 05/02/2013] [Indexed: 12/24/2022]
Abstract
Purpose To evaluate dose reduction and image quality of abdominopelvic computed tomography (CT) reconstructed with model-based iterative reconstruction (MBIR) compared to adaptive statistical iterative reconstruction (ASIR). Materials and methods In this prospective study, 85 patients underwent referential-, low-, and ultralow-dose unenhanced abdominopelvic CT. Images were reconstructed with ASIR for low-dose (L-ASIR) and ultralow-dose CT (UL-ASIR), and with MBIR for ultralow-dose CT (UL-MBIR). Image noise was measured in the abdominal aorta and iliopsoas muscle. Subjective image analyses and a lesion detection study (adrenal nodules) were conducted by two blinded radiologists. A reference standard was established by a consensus panel of two different radiologists using referential-dose CT reconstructed with filtered back projection. Results Compared to low-dose CT, there was a 63% decrease in dose-length product with ultralow-dose CT. UL-MBIR had significantly lower image noise than L-ASIR and UL-ASIR (all p<0.01). UL-MBIR was significantly better for subjective image noise and streak artifacts than L-ASIR and UL-ASIR (all p<0.01). There were no significant differences between UL-MBIR and L-ASIR in diagnostic acceptability (p>0.65), or diagnostic performance for adrenal nodules (p>0.87). Conclusion MBIR significantly improves image noise and streak artifacts compared to ASIR, and can achieve radiation dose reduction without severely compromising image quality.
Collapse
Affiliation(s)
- Koichiro Yasaka
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Precision of Iodine Quantification in Hepatic CT: Effects of Iterative Reconstruction With Various Imaging Parameters. AJR Am J Roentgenol 2013; 200:W475-82. [DOI: 10.2214/ajr.12.9658] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
40
|
Schultz K, George E, Mullen KM, Steigner ML, Mitsouras D, Bueno EM, Pomahac B, Rybicki FJ, Kumamaru KK. Reduced radiation exposure for face transplant surgical planning computed tomography angiography. PLoS One 2013; 8:e63079. [PMID: 23638180 PMCID: PMC3637203 DOI: 10.1371/journal.pone.0063079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/28/2013] [Indexed: 12/21/2022] Open
Abstract
Objective To test the hypothesis that wide area detector face transplant surgical planning CT angiograms with simulated lower radiation dose and iterative reconstruction (AIDR3D) are comparable in image quality to those with standard tube current and filtered back projection (FBP) reconstruction. Materials and Methods The sinograms from 320-detector row CT angiography of four clinical candidates for face transplantation were processed utilizing standard FBP, FBP with simulated 75, 62, and 50% tube current, and AIDR3D with corresponding dose reduction. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were measured at muscle, fat, artery, and vein. Image quality for each reconstruction strategy was assessed by two independent readers using a 4-point scale. Results Compared to FBP, the median SNR and CNR for AIDR3D images were higher at all sites for all 4 different tube currents. The AIDR3D with simulated 50% tube current achieved comparable SNR and CNR to FBP with standard dose (median muscle SNR: 5.77 vs. 6.23; fat SNR: 6.40 vs. 5.75; artery SNR: 43.8 vs. 45.0; vein SNR: 54.9 vs. 55.7; artery CNR: 38.1 vs. 38.6; vein CNR: 49.0 vs. 48.7; all p-values >0.19). The interobserver agreement in the image quality score was good (weighted κ = 0.7). The overall score and the scores for smaller arteries were significantly lower when FBP with 50% dose reduction was used. The AIDR3D reconstruction images with 4 different simulated doses achieved a mean score ranging from 3.68 to 3.82 that were comparable to the scores from images reconstructed using FBP with original dose (3.68–3.77). Conclusions Simulated radiation dose reduction applied to clinical CT angiography for face transplant planning suggests that AIDR3D allows for a 50% reduction in radiation dose, as compared to FBP, while preserving image quality.
Collapse
Affiliation(s)
- Kurt Schultz
- Toshiba Medical Research Institute USA, Vernon Hills, Illinois, United States of America
| | - Elizabeth George
- Applied Imaging Science Laboratory, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Katherine M. Mullen
- Applied Imaging Science Laboratory, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael L. Steigner
- Applied Imaging Science Laboratory, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Dimitrios Mitsouras
- Applied Imaging Science Laboratory, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ericka M. Bueno
- Department of Surgery, Division of Plastic Surgery, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Bohdan Pomahac
- Department of Surgery, Division of Plastic Surgery, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Frank J. Rybicki
- Applied Imaging Science Laboratory, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| | - Kanako K. Kumamaru
- Applied Imaging Science Laboratory, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
41
|
von Falck C, Bratanova V, Rodt T, Meyer B, Waldeck S, Wacker F, Shin HO. Influence of sinogram affirmed iterative reconstruction of CT data on image noise characteristics and low-contrast detectability: an objective approach. PLoS One 2013; 8:e56875. [PMID: 23468886 PMCID: PMC3572072 DOI: 10.1371/journal.pone.0056875] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/15/2013] [Indexed: 11/18/2022] Open
Abstract
Objectives To utilize a novel objective approach combining a software phantom and an image quality metric to systematically evaluate the influence of sinogram affirmed iterative reconstruction (SAFIRE) of multidetector computed tomography (MDCT) data on image noise characteristics and low-contrast detectability (LCD). Materials and Methods A low-contrast and a high-contrast phantom were examined on a 128-slice scanner at different dose levels. The datasets were reconstructed using filtered back projection (FBP) and SAFIRE and virtual low-contrast lesions (-20HU) were inserted. LCD was evaluated using the multiscale structural similarity index (MS-SIM*). Image noise texture and spatial resolution were objectively evaluated. Results The use of SAFIRE led to an improvement of LCD for all dose levels and lesions sizes. The relative improvement of LCD was inversely related to the dose level, declining from 208%(±37%), 259%(±30%) and 309%(±35%) at 25mAs to 106%(±6%), 119%(±9%) and 123%(±8%) at 200mAs for SAFIRE filter strengths of 1, 3 and 5 (p<0.05). SAFIRE reached at least the LCD of FBP at a relative dose of 50%. There was no statistically significant difference in spatial resolution. The use of SAFIRE led to coarser image noise granularity. Conclusion A novel objective approach combining a software phantom and the MS-SSIM* image quality metric was used to analyze the detectability of virtual low-contrast lesions against the background of image noise as created using SAFIRE in comparison to filtered back-projection. We found, that image noise characteristics using SAFIRE at 50% dose were comparable to the use of FBP at 100% dose with respect to lesion detectability. The unfamiliar imaging appearance of iteratively reconstructed datasets may in part be explained by a different, coarser noise characteristic as demonstrated by a granulometric analysis.
Collapse
Affiliation(s)
- Christian von Falck
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
42
|
Dobeli KL, Lewis SJ, Meikle SR, Thiele DL, Brennan PC. Noise-reducing algorithms do not necessarily provide superior dose optimisation for hepatic lesion detection with multidetector CT. Br J Radiol 2013; 86:20120500. [PMID: 23392194 DOI: 10.1259/bjr.20120500] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE To compare the dose-optimisation potential of a smoothing filtered backprojection (FBP) and a hybrid FBP/iterative algorithm to that of a standard FBP algorithm at three slice thicknesses for hepatic lesion detection with multidetector CT. METHODS A liver phantom containing a 9.5-mm opacity with a density of 10 HU below background was scanned at 125, 100, 75, 50 and 25 mAs. Data were reconstructed with standard FBP (B), smoothing FBP (A) and hybrid FBP/iterative (iDose(4)) algorithms at 5-, 3- and 1-mm collimation. 10 observers marked opacities using a four-point confidence scale. Jackknife alternative free-response receiver operating characteristic figure of merit (FOM), sensitivity and noise were calculated. RESULTS Compared with the 125-mAs/5-mm setting for each algorithm, significant reductions in FOM (p<0.05) and sensitivity (p<0.05) were found for all three algorithms for all exposures at 1-mm thickness and for all slice thicknesses at 25 mAs, with the exception of the 25-mAs/5-mm setting for the B algorithm. Sensitivity was also significantly reduced for all exposures at 3-mm thickness for the A algorithm (p<0.05). Noise for the A and iDose(4) algorithms was approximately 13% and 21% lower, respectively, than for the B algorithm. CONCLUSION Superior performance for hepatic lesion detection was not shown with either a smoothing FBP algorithm or a hybrid FBP/iterative algorithm compared with a standard FBP technique, even though noise reduction with thinner slices was demonstrated with the alternative approaches. ADVANCES IN KNOWLEDGE Reductions in image noise with non-standard CT algorithms do not necessarily translate to an improvement in low-contrast object detection.
Collapse
Affiliation(s)
- K L Dobeli
- Medical Image Optimisation and Perception Group (MIOPeG), Medical Imaging & Radiation Sciences Faculty Research Group, Faculty of Health Sciences, University of Sydney, Sydney, Australia.
| | | | | | | | | |
Collapse
|
43
|
Karpitschka M, Augart D, Becker HC, Reiser M, Graser A. Dose reduction in oncological staging multidetector CT: effect of iterative reconstruction. Br J Radiol 2013; 86:20120224. [PMID: 23255541 DOI: 10.1259/bjr.20120224] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE To compare radiation exposure and image quality of oncological staging multidetector CT (MDCT) examinations of the chest, abdomen and pelvis with and without iterative reconstruction (IR). METHODS 40 patients with known malignancy underwent staging CT examinations at two time points. Both CT scans were performed on the same scanner (SOMATOM® Definition Flash, Siemens Healthcare, Forchheim, Germany). For the baseline scan, the tube current-time product was set to 250 mAs [image reconstruction: filtered back projection (FBP)] and for the follow-up scan to 150 mAs [reconstruction: iterative reconstruction (IR)]. Effective radiation doses were estimated based on dose-length products for both baseline and follow-up. Noise measurements in defined regions were compared for FBP and IR. Images were also subjectively evaluated for image quality by three radiologists with different levels of experience. RESULTS Dose reduction was 44.4±8.2% for reduced-dose CT scans with IR compared with baseline with FBP. Image noise was not significantly different between images reconstructed with FBP and IR. The subjective quality of standard-dose FBP images and reduced-dose iteratively reconstructed CT images were identical. CONCLUSION Our results show the dose-reducing potential of IR of CT image data in oncological patients. ADVANCES IN KNOWLEDGE The algorithm tested in the present scientific study allows a >45% dose reduction at maintained image quality.
Collapse
Affiliation(s)
- M Karpitschka
- Department of Clinical Radiology, Ludwig-Maximilians-University Munich, Munich, Germany.
| | | | | | | | | |
Collapse
|
44
|
|