1
|
Caruso D. Innovation and Optimization of Contrast Media Administration in Computed Tomography. Korean J Radiol 2025; 26:210-212. [PMID: 39999960 PMCID: PMC11865897 DOI: 10.3348/kjr.2024.1159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/19/2024] [Accepted: 12/31/2024] [Indexed: 02/27/2025] Open
Affiliation(s)
- Damiano Caruso
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
2
|
Kristiansen CH, Thomas O, Nyquist AB, Sanderud A, Boavida J, Geitung JT, Tran TT, Lauritzen PM. A randomised controlled trial comparing three clinical administration strategies in spectral detector CT pulmonary angiography with low contrast medium dose. Eur Radiol 2025:10.1007/s00330-025-11420-8. [PMID: 39969554 DOI: 10.1007/s00330-025-11420-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 12/16/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025]
Abstract
OBJECTIVES To compare vascular attenuation (VA) with three strategies for administering a low contrast medium (CM) dose in dual-layer spectral detector CT pulmonary angiography (CTPA). METHODS Patients were prospectively randomised into control- or one of two experimental groups. Control group patients received CM (350 mgI/mL) diluted 1:1 with saline. Experimental group B received CM (350 mgI/mL) with low flow. Experimental group C received CM with low concentration (140 mgI/mL). Virtual monoenergetic images at 40 and 55 kiloelectron Volt (keV) were reconstructed. Objective examination quality (OEQ) i.e., VA, noise, and signal-to-noise ratio, was measured and subjective examination quality (SEQ) was rated at three anatomical levels: in the pulmonary trunk (PT), the interlobar arteries and the posterior basal segmental arteries. PRIMARY OUTCOME VA in PT at 40 keV. SECONDARY OUTCOMES OEQ and SEQ across all anatomic levels. RESULTS A total of 328 patients were randomised. 112 vs 115 and 101 were analysed in the control (A) vs experimental groups (B and C), respectively. There were no differences in VA in PT between the groups: A vs B (p = 0.96), B vs C (p = 0.14), and A vs C (p = 0.18). Group C showed higher VA across all anatomical levels. There were no differences in SEQ. CONCLUSION There was no difference in the attenuation in the PT between the dilution-, low flow-, and low concentration groups. However, the low concentration group showed higher attenuation in the pulmonary arteries when all anatomical levels were assessed. KEY POINTS Question Contrast medium reduction may be accomplished with dilution, low flow, or low concentration. However, the effect of the different strategies on vascular attenuation is unknown. Findings There was no difference in pulmonary trunk attenuation between the three strategies on spectral detector CT pulmonary angiography. Clinical relevance Low contrast medium dose spectral detector CT pulmonary angiography may be implemented with the administration strategy of the unit's own choice.
Collapse
Affiliation(s)
- Cathrine Helgestad Kristiansen
- Department of Life Sciences and Health, Oslo Metropolitan University, Oslo, Norway.
- Department of Diagnostic Imaging and Intervention, Akershus University Hospital, Lørenskog, Norway.
| | - Owen Thomas
- Health Services Research Department (HØKH), Akershus University Hospital, Lørenskog, Norway
| | - Anton Bengt Nyquist
- Department of Diagnostic Imaging and Intervention, Akershus University Hospital, Lørenskog, Norway
| | - Audun Sanderud
- Decommissioning Department, Norwegian Nuclear Decommissioning, Halden, Norway
| | - Joao Boavida
- Department of Diagnostic Imaging, Nordland Hospital, Bodø, Norway
| | - Jonn Terje Geitung
- Department of Diagnostic Imaging and Intervention, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Thien Trung Tran
- Department of Diagnostic Imaging and Intervention, Akershus University Hospital, Lørenskog, Norway
| | - Peter Mæhre Lauritzen
- Department of Life Sciences and Health, Oslo Metropolitan University, Oslo, Norway
- Department of Diagnostic Imaging and Intervention, Akershus University Hospital, Lørenskog, Norway
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
3
|
Peng F, Luo C, Ning X, Xiao F, Guan K, Tang C, Huang F, Liang J, Peng P. Computed tomography image quality in patients with primary hepatocellular carcinoma: intraindividual comparison of contrast agent concentrations. Front Med (Lausanne) 2024; 11:1460505. [PMID: 39478815 PMCID: PMC11521877 DOI: 10.3389/fmed.2024.1460505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Objective This study aimed to assess the impact of the different concentrations of iodine contrast agents used on the quality of computed tomography (CT) images obtained intraindividually in hepatocellular carcinoma patients. Methods In this retrospective study, data from a cohort of 29 patients diagnosed with primary hepatocellular carcinoma who had undergone two preoperative CT-enhanced examinations within a 3-month timeframe were analyzed. Each patient was randomly assigned to receive either a low-concentration contrast agent (300 mg I/mL iohexol) or a high-concentration contrast agent (350 mg I/mL iohexol) for the first scan and the alternative contrast agent for the second scan. CT images of different liver regions of each patient were compared between low-and high-concentration scans using their before-and-after control design. Subjective image quality scores for portal vein images were also assessed. Results The findings of this study indicate that patients in the high-concentration group presented significantly elevated CT values across various anatomical regions, including the liver parenchyma, abdominal aorta, and hepatic portal vein, compared to those in the low-concentration group (p < 0.05). Moreover, the high-concentration group demonstrated superior subjective image ratings (p < 0.05). Nevertheless, there was no statistically significant difference in the CT values observed in liver cancer parenchyma scans at different phases between the two groups (p > 0.05). Conclusion In summary, using a high-concentration iodine contrast agent is efficient in enhancing the visual clarity of the liver parenchyma, the aorta, and the portal vein in individuals diagnosed with primary hepatocellular carcinoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Peng Peng
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
4
|
Sartoretti T, McDermott MC, Stammen L, Martens B, Moser LJ, Jost G, Pietsch H, Gutjahr R, Nowak T, Schmidt B, Flohr TG, Wildberger JE, Alkadhi H. Tungsten-Based Contrast Agent for Photon-Counting Detector CT Angiography in Calcified Coronaries: Comparison to Iodine in a Cardiovascular Phantom. Invest Radiol 2024; 59:677-683. [PMID: 38526041 PMCID: PMC11827686 DOI: 10.1097/rli.0000000000001073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/04/2024] [Indexed: 03/26/2024]
Abstract
OBJECTIVES Calcified plaques induce blooming artifacts in coronary computed tomography angiography (CCTA) potentially leading to inaccurate stenosis evaluation. Tungsten represents a high atomic number, experimental contrast agent with different physical properties than iodine. We explored the potential of a tungsten-based contrast agent for photon-counting detector (PCD) CCTA in heavily calcified coronary vessels. MATERIALS AND METHODS A cardiovascular phantom exhibiting coronaries with calcified plaques was imaged on a first-generation dual-source PCD-CT. The coronaries with 3 different calcified plaques were filled with iodine and tungsten contrast media solutions equating to iodine and tungsten delivery rates (IDR and TDR) of 0.3, 0.5, 0.7, 1.0, 1.5, 2.0, 2.5, and 3.0 g/s, respectively. Electrocardiogram-triggered sequential acquisitions were performed in the spectral mode (QuantumPlus). Virtual monoenergetic images (VMIs) were reconstructed from 40 to 190 keV in 1 keV increments. Blooming artifacts and percentage error stenoses from calcified plaques were quantified, and attenuation characteristics of both contrast media were recorded. RESULTS Blooming artifacts from calcified plaques were most pronounced at 40 keV (78%) and least pronounced at 190 keV (58%). Similarly, percentage error stenoses were highest at 40 keV (48%) and lowest at 190 keV (2%), respectively. Attenuation of iodine decreased monotonically in VMIs from low to high keV, with the strongest decrease from 40 keV to 100 keV (IDR of 2.5 g/s: 1279 HU at 40 keV, 187 HU at 100 kV, and 35 HU at 190 keV). The attenuation of tungsten, on the other hand, increased monotonically as a function of VMI energy, with the strongest increase between 40 and 100 keV (TDR of 2.5 g/s: 202 HU at 40 keV, 661 HU at 100 kV, and 717 HU at 190 keV). For each keV level, the relationship between attenuation and IDR/TDR could be described by linear regressions ( R2 ≥ 0.88, P < 0.001). Specifically, attenuation increased linearly when increasing the delivery rate irrespective of keV level or contrast medium. Iodine exhibited the highest relative increase in attenuation values at lower keV levels when increasing the IDR. Conversely, for tungsten, the greatest relative increase in attenuation values occurred at higher keV levels when increasing the TDR. When high keV imaging is desirable to reduce blooming artifacts from calcified plaques, IDR has to be increased at higher keV levels to maintain diagnostic vessel attenuation (ie, 300 HU), whereas for tungsten, TDR can be kept constant or can be even reduced at high keV energy levels. CONCLUSIONS Tungsten's attenuation characteristics in relation to VMI energy levels are reversed to those of iodine, with tungsten exhibiting high attenuation values at high keV levels and vice versa. Thus, tungsten shows promise for high keV imaging CCTA with PCD-CT as-in distinction to iodine-both high vessel attenuation and low blooming artifacts from calcified plaques can be achieved.
Collapse
|
5
|
McDermott MC, Wildberger JE, Bae KT. Critical but commonly neglected factors that affect contrast medium administration in CT. Insights Imaging 2024; 15:219. [PMID: 39196464 PMCID: PMC11358578 DOI: 10.1186/s13244-024-01750-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/16/2024] [Indexed: 08/29/2024] Open
Abstract
OBJECTIVE Past decades of research into contrast media injections and optimization thereof in radiology clinics have focused on scan acquisition parameters, patient-related factors, and contrast injection protocol variables. In this review, evidence is provided that a fourth bucket of crucial variables has been missed which account for previously unexplained phenomena and higher-than-expected variability in data. We propose how these critical factors should be considered and implemented in the contrast-medium administration protocols to optimize contrast enhancement. METHODS This article leverages a combination of methodologies for uncovering and quantifying confounding variables associated with or affecting the contrast-medium injection. Engineering benchtop equipment such as Coriolis flow meters, pressure transducers, and volumetric measurement devices are combined with small, targeted systematic evaluations querying operators, equipment, and the physics and fluid dynamics that make a seemingly simple task of injecting fluid into a patient a complex and non-linear endeavor. RESULTS Evidence is presented around seven key factors affecting the contrast-medium injection including a new way of selecting optimal IV catheters, degraded performance from longer tubing sets, variability associated with the mechanical injection system technology, common operator errors, fluids exchanging places stealthily based on gravity and density, wasted contrast media and inefficient saline flushes, as well as variability in the injected flow rate vs. theoretical expectations. CONCLUSION There remain several critical, but not commonly known, sources of error associated with contrast-medium injections. Elimination of these hidden sources of error where possible can bring immediate benefits and help to drive standardized and optimized contrast-media injections. CRITICAL RELEVANCE STATEMENT This review brings to light the commonly neglected/unknown factors negatively impacting contrast-medium injections and provides recommendations that can result in patient benefits, quality improvements, sustainability increases, and financial benefits by enabling otherwise unachievable optimization. KEY POINTS How IV contrast media is administered is a rarely considered source of CT imaging variability. IV catheter selection, tubing length, injection systems, and insufficient flushing can result in unintended variability. These findings can be immediately addressed to improve standardization in contrast-enhanced CT imaging.
Collapse
Affiliation(s)
- Michael C McDermott
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center + , Maastricht, The Netherlands.
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.
- Bayer AG, Berlin, Germany.
| | - Joachim E Wildberger
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center + , Maastricht, The Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Kyongtae T Bae
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
6
|
Fujimura S, Yamanaka Y, Kan I, Nagao M, Otani K, Karagiozov K, Fukudome K, Ishibashi T, Takao H, Motosuke M, Yamamoto M, Murayama Y. Experimental study using phantom models of cerebral aneurysms and 4D-DSA to measure blood flow on 3D-color-coded images. Technol Health Care 2024; 32:3217-3230. [PMID: 38968064 PMCID: PMC11492053 DOI: 10.3233/thc-231906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/22/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND The current 3D-iFlow application can only measure the arrival time of contrast media through intensity values. If the flow rate could be estimated by 3D-iFlow, patient-specific hemodynamics could be determined within the scope of normal diagnostic management, eliminating the need for additional resources for blood flow rate estimation. OBJECTIVE The aim of this study is to develop and validate a method for measuring the flow rate by data obtained from 3D-iFlow images - a prototype application in Four-dimensional digital subtraction angiography (4D-DSA). METHODS Using phantom model and experimental circuit with circulating glycerin solution, an equation for the relationship between contrast media intensity and flow rate was developed. Applying the equation to the aneurysm phantom models, the derived flow rate was evaluated. RESULTS The average errors between the derived flow rate and setting flow rate became larger when the glycerin flow and the X-rays from the X-ray tube of the angiography system were parallel to each other or when the measurement point included overlaps with other contrast enhanced areas. CONCLUSION Although the error increases dependent on the imaging direction and overlap of contrast enhanced area, the developed equation can estimate the flow rate using the image intensity value measured on 3D-iFlow based on 4D-DSA.
Collapse
Affiliation(s)
- Soichiro Fujimura
- Department of Mechanical Engineering, Tokyo University of Science, Tokyo, Japan
- Division of Innovation for Medical Information Technology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuma Yamanaka
- Department of Mechanical Engineering, Tokyo University of Science, Tokyo, Japan
- Division of Innovation for Medical Information Technology, The Jikei University School of Medicine, Tokyo, Japan
- Graduate School of Mechanical Engineering, Tokyo University of Science, Tokyo, Japan
| | - Issei Kan
- Department of Neurosurgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Masahiro Nagao
- Graduate School of Mechanical Engineering, Tokyo University of Science, Tokyo, Japan
| | - Katharina Otani
- Department of Neurosurgery, The Jikei University School of Medicine, Tokyo, Japan
- Siemens Healthcare K.K., Tokyo, Japan
| | - Kostadin Karagiozov
- Department of Neurosurgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Koji Fukudome
- Department of Mechanical Engineering, Kanazawa Institute of Technology, Ishikawa, Japan
| | - Toshihiro Ishibashi
- Department of Neurosurgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroyuki Takao
- Division of Innovation for Medical Information Technology, The Jikei University School of Medicine, Tokyo, Japan
- Department of Neurosurgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Masahiro Motosuke
- Department of Mechanical Engineering, Tokyo University of Science, Tokyo, Japan
| | - Makoto Yamamoto
- Department of Mechanical Engineering, Tokyo University of Science, Tokyo, Japan
| | - Yuichi Murayama
- Department of Neurosurgery, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Sartoretti T, McDermott M, Mergen V, Euler A, Schmidt B, Jost G, Wildberger JE, Alkadhi H. Photon-counting detector coronary CT angiography: impact of virtual monoenergetic imaging and iterative reconstruction on image quality. Br J Radiol 2023; 96:20220466. [PMID: 36633005 PMCID: PMC9975359 DOI: 10.1259/bjr.20220466] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/30/2022] [Accepted: 11/08/2022] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVES To assess the impact of low kilo-electronvolt (keV) virtual monoenergetic image (VMI) energies and iterative reconstruction on image quality of clinical photon-counting detector coronary CT angiography (CCTA). METHODS CCTA with PCD-CT (prospective ECG-triggering, 120 kVp, automatic tube current modulation) was performed in a high-end cardiovascular phantom with dynamic flow, pulsatile heart motion, and including different calcified plaques with various stenosis grades and in 10 consecutive patients. VMI at 40,50,60 and 70 keV were reconstructed without (QIR-off) and with all quantum iterative reconstruction (QIR) levels (QIR-1 to 4). In the phantom, noise power spectrum, vessel attenuation, contrast-to-noise-ratio (CNR), and vessel sharpness were measured. Two readers graded stenoses in the phantom and graded overall image quality, subjective noise, vessel sharpness, vascular contrast, and coronary artery plaque delineation on 5-point Likert scales in patients. RESULTS In the phantom, noise texture was only slightly affected by keV and QIR while noise increased by 69% from 70 keV QIR-4 to 40 keV QIR-off. Reconstructions at 40 keV QIR-4 exhibited the highest CNR (46.1 ± 1.8), vessel sharpness (425 ± 42 ∆HU/mm), and vessel attenuation (1098 ± 14 HU). Stenosis measurements were not affected by keV or QIR level (p > 0.12) with an average error of 3%/6% for reader 1/reader 2, respectively. In patients, across all subjective categories and both readers, 40 keV QIR-3 and QIR-4 images received the best scores (p < 0.001). CONCLUSION Forty keV VMI with QIR-4 significantly improved image quality of CCTA with PCD-CT. ADVANCES IN KNOWLEDGE PCD-CT at 40 keV and QIR-4 improves image quality of CCTA.
Collapse
Affiliation(s)
| | | | - Victor Mergen
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - André Euler
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | | | | | - Hatem Alkadhi
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Reduced Iodinated Contrast Media Administration in Coronary CT Angiography on a Clinical Photon-Counting Detector CT System: A Phantom Study Using a Dynamic Circulation Model. Invest Radiol 2023; 58:148-155. [PMID: 36165932 DOI: 10.1097/rli.0000000000000911] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE The aim of this study was to evaluate strategies to reduce contrast media volumes for coronary computed tomography (CT) angiography on a clinical first-generation dual-source photon-counting detector (PCD)-CT system using a dynamic circulation phantom. MATERIALS AND METHODS Coronary CT angiograph is an established method for the assessment of coronary artery disease that relies on the administration of iodinated contrast media. Reduction of contrast media volumes while maintaining diagnostic image quality is desirable. In this study, a dynamic phantom containing a 3-dimensional-printed model of the thoracic aorta and coronary arteries was evaluated using a clinical contrast injection protocol with stepwise reduced contrast agent concentrations (100%, 75%, 50%, 40%, 30%, and 20% contrast media content of the same 50 mL bolus, resulting in iodine delivery rates of 1.5, 1.1, 0.7, 0.6, 0.4 and 0.3 gl/s) on a first-generation, dual-source PCD-CT. Polychromatic images (T3D) and virtual monoenergetic images were reconstructed in the range of 40 to 70 keV in 5-keV steps. Attenuation and noise were measured in the coronary arteries and background material and the contrast-to-noise ratio (CNR) were calculated. Attenuation of 350 HU and a CNR of the reference protocol at 70 keV were regarded as sufficient for simulation of diagnostic purposes. Vessel sharpness and noise power spectra were analyzed for the aforementioned reconstructions. RESULTS The standard clinical contrast protocol (bolus with 100% contrast) yielded diagnostic coronary artery attenuation for all tested reconstructions (>398 HU). A 50% reduction in contrast media concentration demonstrated sufficient attenuation of the coronary arteries at 40 to 55 keV (>366 HU). Virtual monoenergetic image reconstructions of 40 to 45 and 40 keV allowed satisfactory attenuation of the coronary arteries for contrast concentrations of 40% and 30% of the original protocol. A reduction of contrast agent concentration to 20% of the initial concentration provided insufficient attenuation in the target vessels for all reconstructions. The highest CNR was found for virtual monoenergetic reconstructions at 40 keV for all contrast media injection protocols, yielding a sufficient CNR at a 50% reduction of contrast agent concentration. CONCLUSIONS Using virtual monoenergetic image reconstructions at 40 keV on a dual-source PCD-CT system, contrast media concentration could be reduced by 50% to obtain diagnostic attenuation and objective image quality for coronary CT angiography in a dynamic vessel phantom. These initial feasibility study results have to be validated in clinical studies.
Collapse
|
9
|
Du Y, Wang YN, Wang Q, Qi XH, Shi GF, Jia LT, Wang XM, Shi JB, Liu FY, Wang LJ, Liu X. A comparison of the use of contrast media with different iodine concentrations for enhanced computed tomography. Front Physiol 2023; 14:1141135. [PMID: 37064921 PMCID: PMC10101225 DOI: 10.3389/fphys.2023.1141135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/03/2023] [Indexed: 04/18/2023] Open
Abstract
Objective: In this study, we compared the enhancement of blood vessels and liver parenchyma on enhanced computed tomography (CT) of the upper abdomen with two concentrations of contrast media (400 and 300 mg I/mL) based on similar iodine delivery rate (IDR) of 0.88 and 0.9 g I/s and iodine load of 450 mg I/kg. Methods: We randomly assigned 160 patients into two groups: iomeprol 400 mg I/mL (A group) and iohexol 300 mg I/mL (B group). The CT attenuation values of the main anatomical structures in the two groups with different scanning phases were measured and the image quality of the two groups was analyzed and compared. The peak pressure and local discomfort (including fever and pain) during contrast medium injection were recorded. Results: The mean attenuation value of the abdominal aorta was 313.6 ± 29.6 in the A group and 322.4 ± 30.1 in the B group during the late arterial phase (p = 0.8). Meanwhile, the mean enhancement values of the portal vein were 176.2 ± 19.3 and 165.9 ± 24.5 in the A and B groups, respectively, during the portal venous phase (p = 0.6). The mean CT values of liver parenchyma were 117.1 ± 15.3 and 108.8 ± 18.7 in the A and B groups, respectively, during the portal venous phase (p = 0.9). There was no statistical difference in image quality, peak injection pressure (psi), and local discomfort between the two groups (p > 0.05). Conclusion: When a similar IDR and the same iodine load are used, CT images with different concentrations of contrast media have the same subjective and objective quality, and can meet the diagnostic needs.
Collapse
|
10
|
McDermott MC, Sartoretti T, Mihl C, Pietsch H, Alkadhi H, Wildberger JE. Third-Generation Cardiovascular Phantom: The Next Generation of Preclinical Research in Diagnostic Imaging. Invest Radiol 2022; 57:834-840. [PMID: 35703259 DOI: 10.1097/rli.0000000000000894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Different types of preclinical research tools used in the field of diagnostic imaging such as dynamic flow circulation phantoms have built the foundation for optimization and advancement of clinical procedures including new imaging techniques. The objective was to introduce a third-generation phantom, building on the limitations of earlier versions and unlocking new opportunities for preclinical investigation. MATERIAL AND METHODS A third-generation phantom was designed and constructed comprising physiological vascular models from head to toe, including a 4-chamber heart with embedded heart valves and a controllable electromechanical pump. The models include modular segments, allowing for interchangeability between healthy and diseased vessels. Clinical sanity checks were performed using the phantom in combination with a dual-head power injector on a third-generation dual-source computed tomography scanner. Contrast media was injected at 1.5 g I/s, and the phantom was configured with a cardiac output of 5.3 L/min. Measurements of mean transit times between key vascular landmarks and peak enhancement values in Hounsfield units (HUs) were measured to compare with expected in vivo results estimated from literature. RESULTS Good agreement was obtained between literature reference values from physiology and measured results. Contrast arrival between antecubital vein and right ventricle was measured to be 13.1 ± 0.3 seconds. Transit time from right ventricle to left ventricle was 12.0 ± 0.2 seconds, from left internal carotid artery to left internal jugular vein 7.7 ± 0.4 seconds, and 2.9 ± 0.2 seconds from aortic arch to aortic bifurcation. The peak enhancement measured in the regions of interest was between 336 HU and 557 HU. CONCLUSIONS The third-generation phantom demonstrated the capability of simulating physiologic in vivo conditions with accurate contrast media transport timing, good repeatability, and expected enhancement profiles. As a nearly complete cardiovascular system including a functioning 4-chamber heart and interchangeable disease states, the third-generation phantom presents new opportunities for the expansion of preclinical research in diagnostic imaging.
Collapse
Affiliation(s)
| | | | | | | | - Hatem Alkadhi
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
11
|
Wang Y, Chen Y, Liu P, Lv W, Wu J, Wei M, Shi D, Wu X, Liu W, Tao X, Hu H, Ma X, Yang X, Xue H, Jin Z. Clinical effectiveness of contrast medium injection protocols for 80-kV coronary and craniocervical CT angiography-a prospective multicenter observational study. Eur Radiol 2022; 32:3808-3818. [PMID: 35103828 DOI: 10.1007/s00330-021-08505-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/22/2021] [Accepted: 12/04/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND OBJECTIVE Decreasing X-ray tube voltage is an effective way to reduce radiation and contrast dose, especially in non-obese patients. The current study focuses on CTA in non-obese patients to evaluate image quality and feasibility of 80-kV acquisition protocols with varying iodine delivery rates (IDR) and contrast concentrations in routine clinical practice. METHODS A prospective observational study in patients ≥ 18 years and ≤ 90 kg referred for coronary or craniocervical CTA at 10 centers in China (ClinicalTrials.gov: NCT02840903). Patients were divided into four groups: a standard 100-kV protocol (370 mgI/ml, IDR 1.48 gI/s), and three 80-kV protocols (370 mgI/ml, IDR 1.2 gI/s; 300 mgI/ml, IDR 1.2 gI/s; 300 mgI/ml, IDR 0.96gI/s). The primary outcome was contrast opacification of target vascular segments. Secondary outcomes were image quality (contrast-to-noise ratio, signal-to-noise ratio, visual image quality, and diagnostic confidence assessment), radiation, and iodine dose. RESULTS From July 2016 to July 2017, 1213 patients were enrolled: 614 coronary and 599 craniocervical CTA. The mean contrast opacification was ≥ 300 HU for 80-kV 1.2 gI/s IDR scanned segments; IDR 0.96 gI/s led to lower opacification. Image quality and diagnostic confidence were fair to excellent (≥ 98% of images), despite lower contrast-to-noise ratios and signal-to-noise ratios in 80-kV images. Compared to the standard protocol, 80-kV protocols led to 44-52% radiation dose reductions (p < 0.001) and 19% iodine dose reductions (p < 0.001). CONCLUSION Eighty-kilovolt 1.2 gI/s IDR protocols can be recommended for coronary and craniocervical CTA in non-obese patients, reducing radiation and iodine dose without compromising image quality. KEY POINTS • Using low-voltage scanning CTA protocols, in which tube voltage and iodine delivery rate are reduced proportionally (voltage: 80 kV, IDR: 1.2 gI/s), reduces radiation and contrast dose without compromising image quality in routine clinical practice. • Reducing iodine delivery rate beyond direct proportionality to tube voltage is not beneficial.
Collapse
Affiliation(s)
- Yining Wang
- Peking Union Medical College Hospital, Shuaifuyan Wangfujing District, Beijing, 100730, China
| | - Yu Chen
- Peking Union Medical College Hospital, Shuaifuyan Wangfujing District, Beijing, 100730, China
| | - Peijun Liu
- Peking Union Medical College Hospital, Shuaifuyan Wangfujing District, Beijing, 100730, China
| | - Wan Lv
- The First People's Hospital of Yulin, # 495, JiaoYu Central Road, Yulin, 537000, Guangxi, China
| | - Jianlin Wu
- Affiliated Zhongshan Hospital of Dalian University, # 6, Jiefang Road Zhongshan District, Dalian, 116001, Liaoning, China
| | - Mengqi Wei
- The First Affiliated Hospital of Air Force Medical University, # 15 Changle West Road, Xian, 710032, Shanxi, China
| | - Dapeng Shi
- Henan Provincial People's Hospital, # 7, Weiwu Road, Zhengzhou, 450000, Henan, China
| | - Xianheng Wu
- The Second People's Hospital of Shantou, # 28, Waimalu Road, Shantou, 515031, Guangdong, China
| | - Wenya Liu
- The First Affiliated Hospital of Xinjiang Medical University, # 137, Liyushan South Road, Urumqi, 830054, Xinjiang, China
| | - Xiaofeng Tao
- Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, # 639, Zaoju Road, Shanghai, 200011, China
| | - Hongjie Hu
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qinchun East Road, Hangzhou, 310016, Zhejiang, China
| | - Xiangxing Ma
- Qilu Hospital of Shandong University (Qingdao), North District, # 758, Hefei Road, Qingdao, 266035, Shandong, China
| | - Xiaozheng Yang
- Medical Affairs, Bayer Healthcare Co. Ltd, Dongshanhuan Central Road, Beijing, 100010, China
| | - Huadan Xue
- Peking Union Medical College Hospital, Shuaifuyan Wangfujing District, Beijing, 100730, China
| | - Zhengyu Jin
- Peking Union Medical College Hospital, Shuaifuyan Wangfujing District, Beijing, 100730, China.
| |
Collapse
|
12
|
Martens B, Wildberger JE, Van Kuijk SMJ, De Vos-Geelen J, Jeukens CRLPN, Mihl C. Influence of Contrast Material Temperature on Patient Comfort and Image Quality in Computed Tomography of the Abdomen: A Randomized Controlled Trial. Invest Radiol 2022; 57:85-89. [PMID: 34280944 DOI: 10.1097/rli.0000000000000807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND International guideline recommendations on safe use of contrast media (CM) are conflicting regarding the necessity to prewarm iodinated CM. PURPOSE Aim of the study was to evaluate the effects of room temperature CM compared with prewarmed CM on image quality, safety, and patient comfort in abdominal computed tomography (CT). METHODS CATCHY (Contrast Media Temperature and Patient Comfort in Computed Tomography of the Abdomen) is a double-blinded, randomized noninferiority trial. Between February and August 2020, 218 participants referred for portal venous abdominal CT were prospectively and randomly assigned to 1 of 2 groups. All patients received iopromide at 300 mg I/mL: group 1 at room temperature (~23°C [~73°F]) and group 2 prewarmed to body temperature (37°C [99°F]). A state-of-the-art individualized CM injection protocol was used, based on body weight and adapted to tube voltage. Primary outcome was absolute difference in mean liver attenuation between groups, calculated with a 2-sided 95% confidence interval. The noninferiority margin was set at -10 HU. Secondary outcomes were objective (signal-to-noise ratio and contrast-to-noise ratio) and subjective image quality; CM extravasations and other adverse events; and participant comfort (5-point scale questionnaire) and pain (numeric rating scale). This trial is registered with ClinicalTrials.gov (NCT04249479). RESULTS The absolute difference in mean attenuation between groups was + 4.23 HU (95% confidence interval, +0.35 to +8.11; mean attenuation, 122.2 ± 13.1 HU in group 1, 118.0 ± 15.9 HU in group 2; P = 0.03). Signal-to-noise ratio, contrast-to-noise ratio, and subjective image quality were not significantly different between groups (P = 0.53, 0.23, and 0.99 respectively). Contrast extravasation occurred in 1 patient (group 2), and no other adverse events occurred. Comfort scores were significantly higher in group 1 than in group 2 (P = 0.03); pain did not significantly differ (perceived P > 0.99; intensity P = 0.20). CONCLUSIONS Not prewarming iodinated CM was found noninferior in abdominal CT imaging. Prewarming conferred no beneficial effect on image quality, safety, and comfort, and might therefore no longer be considered a prerequisite in state-of-the art injection protocols for parenchymal imaging.
Collapse
Affiliation(s)
| | | | - Sander M J Van Kuijk
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Center
| | | | - Cécile R L P N Jeukens
- From the Department of Radiology and Nuclear Medicine, Maastricht University Medical Center
| | | |
Collapse
|
13
|
Low kV Computed Tomography of Parenchymal Abdominal Organs-A Systematic Animal Study of Different Contrast Media Injection Protocols. Tomography 2021; 7:815-828. [PMID: 34941641 PMCID: PMC8705800 DOI: 10.3390/tomography7040069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 01/14/2023] Open
Abstract
Objectives: To evaluate multiphase low kV computed tomography (CT) imaging of the abdomen with reduced contrast media (CM) dose using different injection protocols. Methods: Two injection protocols were evaluated for use with low kV (80 kV) multiphase abdominal imaging in comparison to the standard procedure acquired at 120 kV (500 mgI/kg; 5 mL/s). This evaluation was conducted in a highly standardized animal study (5 Goettingen minipigs). The low kV protocols consisted of (a) a single-flow (SF) injection with 40% reduced CM dose and injection rate (300 mgI/kg; 3 mL/s) and (b) a DualFlow (DF) injection protocol consisting of 60%/40% contrast to saline ratio administered at 5 mL/s. Dynamic CT was first performed within representative liver regions to determine optimal contrast phases, followed by evaluation of the three protocols in multiphase abdominal CT imaging. The evaluation criteria included contrast enhancement (CE) of abdominal organs and vasculature. Results: The 80 kV DF injection protocol showed similar CE of the abdominal parenchymatous organs and vessels to the 120 kV reference and the 80 kV SF protocol. Hepatic parenchyma showed comparable CT values for all contrast phases. In particular, in the portal venous parenchymal phase, the 80 kV DF protocol demonstrated higher hepatic parenchymal enhancement; however, results were statistically non-significant. Similarly, CE of the kidney, pancreas, and abdominal arterial/venous vessels showed no significant differences between injection protocols. Conclusions: Adapted SF and DF injection protocols with reduced IDR/iodine load offer the potential to calibrate optimal CM doses to the tube voltage in abdominal multiphase low kV CT imaging. The data suggest that the DF approach allows the use of predefined injection protocols and adaption of the contrast to saline ratio to an individualized kV setting and yields the potential for patient-individualized CM adaption.
Collapse
|
14
|
Contrast Saline Mixture DualFlow Injection Protocols for Low-Kilovolt Computed Tomography Angiography: A Systematic Phantom and Animal Study. Invest Radiol 2020; 55:785-791. [PMID: 33156586 DOI: 10.1097/rli.0000000000000706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate a contrast media (CM)-saline mixture administration with DualFlow (DF) to adapt injection protocols to low-kilovolt (kV) computed tomography angiography (CTA). MATERIALS AND METHODS In both a circulation phantom and animal model (5 Goettingen minipigs), 3 injection protocols were compared in dynamic thoracic CTA: (a) DF injection protocol at 80 kV with a iodine delivery rate (IDR) of 0.9 gI/s, a flowrate of 5 mL/s injected with a 60%/40% ratio of iopromide (300 mgI/mL) and saline (dose contrast medium 180 mgI/kg body weight [BW]); (b) reference CTA was performed at 120 kV and a 40% higher iodine dose applied at higher IDR (1.5 gI/s, 5 mL/s iopromide [300 mgI/mL]; no simultaneously administered saline; 300 mgI/kg BW); and (c) conventional single-flow (SF) protocol with identical IDR as the DF protocol at 80 kV (0.9 gI/s, 3 mL/s iopromide [300 mgI/mL]; no simultaneously administered saline; 180 mgI/kg BW). All 3 injection protocols are followed by a saline chaser applied at the same flow rate as the corresponding CM injection. Time attenuation curves representing the vascular bolus shape were generated for pulmonary trunk and descending aorta. RESULTS In the circulation phantom, pulmonary and aortic time attenuation curves for the 80 kV DF injection protocols do not significantly differ from the 80 kV SF and the 120 kV SF reference. In the animal model, the 80 kV DF protocol shows similar pulmonal and aortic peak enhancement when compared with the 120 kV SF and 80 kV SF protocols. Also, the bolus length above an attenuation level of 300 HU reveals no significant differences between injection protocols. However, the time to peak was significantly shorter for the 80 kV DF when compared with the 80 kV SF protocol (15.78 ± 1.9 seconds vs 18.24 ± 2.0 seconds; P = 0.008). CONCLUSION DualFlow injection protocols can be tailored for low-kV CTA by reducing the IDR while overall flow rate remains unchanged. Although no differences in attenuation were found, DF injections offer a shorter time to peak closer to the reference 120 kV protocol.This allows the use of DF injection protocols to calibrate bolus density in low-kV CTA and yields the potential for a more individualized CM administration.
Collapse
|
15
|
Solbak MS, Henning MK, England A, Martinsen AC, Aaløkken TM, Johansen S. Impact of iodine concentration and scan parameters on image quality, contrast enhancement and radiation dose in thoracic CT. Eur Radiol Exp 2020; 4:57. [PMID: 32915405 PMCID: PMC7486352 DOI: 10.1186/s41747-020-00184-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/12/2020] [Indexed: 12/11/2022] Open
Abstract
Background We investigated the impact of varying contrast medium (CM) densities and x-ray tube potentials on contrast enhancement (CE), image quality and radiation dose in thoracic computed tomography (CT) using two different scanning techniques. Methods Seven plastic tubes containing seven different CM densities ranging from of 0 to 600 HU were positioned inside a commercial chest phantom with padding, representing three different patient sizes. Helical scans of the phantom in single-source mode were obtained with varying tube potentials from 70 to 140 kVp. A constant volume CT dose index (CTDIvol) depending on phantom size and automatic dose modulation was tested. CE (HU) and image quality (contrast-to-noise ratio, CNR) were measured for all combinations of CM density and tube potential. A reference threshold of CE and kVp was defined as ≥ 200 HU and 120 kVp. Results For the medium-sized phantom, with a specific CE of 100–600 HU, the diagnostic CE (200 HU) at 70 kVp was ~ 90% higher than at 120 kVp, for both scan techniques (p < 0.001). Changes in CM density/specific HU together with lower kVp resulted in significantly higher CE and CNR (p < 0.001). When changing only the kVp, no statistically significant differences were observed in CE or CNR (p ≥ 0.094), using both dose modulation and constant CTDIvol. Conclusions For thoracic CT, diagnostic CE (≥ 200 HU) and maintained CNR were achieved by using lower CM density in combination with lower tube potential (< 120 kVp), independently of phantom size.
Collapse
Affiliation(s)
- Marian S Solbak
- Faculty of Health Sciences, Oslo Metropolitan University, Pilestredet 48, 0130, Oslo, Norway
| | - Mette K Henning
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Andrew England
- School of Allied Health Professions, Keele University, Staffordshire, England
| | - Anne C Martinsen
- Faculty of Health Sciences, Oslo Metropolitan University, Pilestredet 48, 0130, Oslo, Norway.,Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway
| | - Trond M Aaløkken
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Safora Johansen
- Faculty of Health Sciences, Oslo Metropolitan University, Pilestredet 48, 0130, Oslo, Norway. .,Department of Cancer Treatment, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
16
|
Tailoring Contrast Media Protocols to Varying Tube Voltages in Vascular and Parenchymal CT Imaging: The 10-to-10 Rule. Invest Radiol 2020; 55:673-676. [PMID: 32898358 DOI: 10.1097/rli.0000000000000682] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The latest technical developments in CT have created the possibility for individualized scan protocols at variable kV settings. Lowering tube voltages closer to the K-edge of iodine increases attenuation. However, the latter is also influenced by patient characteristics such as total body weight. To maintain a robust contrast enhancement throughout the patient population in both vascular and parenchymal CT scans, one must adapt the contrast media administration protocols to both the selected kV setting and patient body habitus. This article proposes a simple rule of thumb for how to adapt the contrast media protocol to any kV setting: the 10-to-10 rule.
Collapse
|
17
|
Personalization of CM Injection Protocols in Coronary Computed Tomographic Angiography (People CT Trial). CONTRAST MEDIA & MOLECULAR IMAGING 2020; 2020:5407936. [PMID: 32410922 PMCID: PMC7201621 DOI: 10.1155/2020/5407936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 11/22/2019] [Indexed: 02/04/2023]
Abstract
Aim To evaluate the performance of three contrast media (CM) injection protocols for cardiac computed tomography angiography (CCTA) based on body weight (BW), lean BW (LBW), and cardiac output (CO). Materials and methods. A total of 327 consecutive patients referred for CCTA were randomized into one of the three CM injection protocols, where CM injection was based on either BW (112 patients), LBW (108 patients), or CO (107 patients). LBW and CO were calculated via formulas. All scans were ECG-gated and performed on a third-generation dual-source CT with 70-120 kV (automated tube voltage selection) and 100 kVqual.ref/330 mAsqual.ref. CM injection protocols were also adapted to scan time and tube voltage. The primary outcome was the proportion of patients with optimal intravascular attenuation (325-500 HU). Secondary outcomes were mean and standard deviation of intravascular attenuation values (HU), contrast-to-noise ratio (CNR), and subjective image quality with a 4-point Likert scale (1 = poor/2 = sufficient/3 = good/4 = excellent). The t-test for independent samples was used for pairwise comparisons between groups, and a chi-square test (χ2) was used to compare categorical variables between groups. All p values were 2-sided, and a p < 0.05 was considered statistically significant. Results Mean overall HU and CNR were 423 ± 60HU/14 ± 3 (BW), 404 ± 62HU/14 ± 3 (LBW), and 413 ± 63HU/14 ± 3 (CO) with a significant difference between groups BW and LBW (p=0.024). The proportion of patients with optimal intravascular attenuation (325-500 HU) was 83.9%, 84.3%, and 86.9% for groups BW, LBW, and CO, respectively, and between-group differences were small and nonsignificant. Mean CNR was diagnostic (≥10) in all groups. The proportion of scans with good-excellent image quality was 94.6%, 86.1%, and 90.7% in the BW, LBW, and CO groups, respectively. The difference between proportions was significant between the BW and LBW groups. Conclusion Personalization of CM injection protocols based on BW, LBW, and CO, and scan time and tube voltage in CCTA resulted in low variation between patients in terms of intravascular attenuation and a high proportion of scans with an optimal intravascular attenuation. The results suggest that personalized CM injection protocols based on LBW or CO have no additional benefit when compared with CM injection protocols based on BW.
Collapse
|
18
|
McDermott M, Kemper C, Barone W, Jost G, Endrikat J. Impact of CT Injector Technology and Contrast Media Viscosity on Vascular Enhancement: Evaluation in a Circulation Phantom. Br J Radiol 2020; 93:20190868. [PMID: 32017607 PMCID: PMC7217576 DOI: 10.1259/bjr.20190868] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective: To assess the impact of piston-based vs peristaltic injection system technology and contrast media viscosity on achievable iodine delivery rates (IDRs) and vascular enhancement in a pre-clinical study. Methods: Four injectors were tested: MEDRAD® Centargo, MEDRAD® Stellant, CT Exprès®, and CT motion™ using five contrast media [iopromide (300 and 370 mgI ml−1), iodixanol 320 mgI ml−1, iohexol 350 mgI ml−1, iomeprol 400 mgI ml−1]. Three experiments were performed evaluating achievable IDR and corresponding enhancement in a circulation phantom. Results: Experiment I: Centargo provided the highest achievable IDRs with all tested contrast media (p < 0.05). Iopromide 370 yielded the highest IDR with an 18G catheter (3.15 gI/s); iopromide 300 yielded the highest IDR with 20G (2.70 gI/s) and 22G (1.65 gI/s) catheters (p < 0.05). Experiment II: with higher achievable IDRs, piston-based injectors provided significantly higher peak vascular enhancement (up to 48% increase) than the peristaltic injectors with programmed IDRs from 1.8 to 2.4 gI/s (p < 0.05). Experiment III: with programmed IDRs (e.g. 1.5 gI/s) achievable by all injection systems, Centargo, with sharper measured bolus shape, provided significant increases in enhancement of 34–73 HU in the pulmonary artery with iopromide 370 (p < 0.05). Conclusion: The tested piston-based injection systems combined with low viscosity contrast media provide higher achievable IDRs and higher peak vascular enhancement than the tested peristaltic-based injectors. With equivalent IDRs, Centargo provides higher peak vascular enhancement due to improved bolus shape. Advances in knowledge: This paper introduces a new parameter to compare expected performance among contrast media: the concentration/viscosity ratio. Additionally, it demonstrates previously unexplored impacts of bolus shape on vascular enhancement.
Collapse
Affiliation(s)
- Michael McDermott
- Bayer U.S. LLC, Bayer Pharmaceuticals, Radiology R&D, Indianola, PA 15051, USA
| | - Corey Kemper
- Bayer U.S. LLC, Bayer Pharmaceuticals, Radiology R&D, Indianola, PA 15051, USA
| | - William Barone
- Bayer U.S. LLC, Bayer Pharmaceuticals, Radiology R&D, Indianola, PA 15051, USA
| | - Gregor Jost
- Bayer AG, MR & CT Contrast Media Research, Berlin, Germany
| | - Jan Endrikat
- Bayer AG, Radiology R&D, 13353 Berlin, Germany.,Department of Gynecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, 66421 Homburg/Saar, Germany
| |
Collapse
|
19
|
Zhang M, Hao P, Jiang C, Hao G, Li B, Hu P, Chen Q, Chen Y, Zhang A, Zhang Y, Liu Y. Personalized application of three different concentrations of iodinated contrast media in coronary computed tomography angiography. J Cell Mol Med 2020; 24:5446-5453. [PMID: 32227625 PMCID: PMC7214158 DOI: 10.1111/jcmm.15196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/24/2020] [Accepted: 03/01/2020] [Indexed: 12/12/2022] Open
Abstract
No study has evaluated the impact of different iodinated contrast media on coronary contrast enhancement, using an injection protocol according to body surface area (BSA). Thus, the present study aimed to examine the usefulness and safety of personalized application of different iodine concentrations of contrast media in coronary computed tomographic (CT) angiography with a 2nd dual-source CT scanner in eliminating differences in coronary contrast enhancement based on a BSA-adapted injection protocol of contrast media. A total of 270 enrolled participants were randomly assigned to three groups: ioversol 320, ioversol 350 and iopromide 370 (n = 90 per group). The three groups were administered contrast media at a BSA-adjusted volume and flow rate with a fixed injection time of 15 seconds, and they subsequently received a 30-mL saline flush. All patients were scanned with a prospective electrocardiogram-gated protocol in a craniocaudal direction using a second-generation 128-slice dual-source CT system. The three iodinated contrast media used in coronary CT angiography exhibited similar diagnostic quality and safety. No significant differences were found in the contrast enhancement degrees, image quality scores, radiation doses and incidences of adverse effects among the three groups. The three contrast media used in coronary CT angiography with 320, 350 and 370 mg/mL iodine, respectively, have comparable diagnostic quality and safety. However, more large-scale, multinational, multi-centre and prospective trials are warranted.
Collapse
Affiliation(s)
- Meng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Panpan Hao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Chenyu Jiang
- Shandong Institute of Innovation, Suzhou Institute of Biomedical Engineering and Technology Affiliated with Chinese Academy of Sciences, Jinan, China
| | - Guoxiang Hao
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences of Shandong University, Jinan, China
| | - Bin Li
- Jinan Central Hospital Affiliated with Shandong First Medical University and Shandong University, Jinan, China
| | - Peixin Hu
- Jinan Central Hospital Affiliated with Shandong First Medical University and Shandong University, Jinan, China
| | - Qingjie Chen
- First Hospital Affiliated with Xinjiang Medical University, Urumqi, China
| | - Yuguo Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Aifeng Zhang
- Department of Nephrology, Brigham and Women's Hospital Affiliated with Harvard Medical School, Boston, Massachusetts
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yanping Liu
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
20
|
Karout L, El Asmar K, Naffaa L, Abi-Ghanem AS, El-Merhi F, Salman R, Saade C. Balancing act between quantitative and qualitative image quality between nonionic iodinated dimer and monomer at various vessel sizes during computed tomography: a phantom study. Biomed Phys Eng Express 2020; 6:035001. [PMID: 33438646 DOI: 10.1088/2057-1976/ab78dc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE Investigate the impact of nonionic dimer and monomer on iodine quantification in different vessel sizes when employing a vascular specific phantom and varying iodinated contrast media (ICM) concentrations during computed tomography (CT). MATERIALS AND METHODS We created a vascular specific phantom (30 cm) to simulate human blood vessel diameters (25 cylinders of different diameters: 10 × 9mm, 10 × 12mm and 5 × 21mm). The phantom was filled with two ICM separately: Group: Iohexol(monomer)350 mg ml-1 and B: Iodixanol(Dimer)320 mg ml-1. Cylinders of same size were filled with increasing ICM concentration(10%-100%) while large cylinders were filled in quartiles(25%-100%). Phantom was scanned with different tube potential (80-140kVp), current (50-400mAs), reconstruction method [filtered back projection (FBP), hybrid-based iterative reconstruction (HBIR) and model-based iterative reconstruction (MBIR)] for each ICM. Chi-square was employed to compare mean opacification, contrast/noise ratio (CNR) and noise. Qualitative analysis was assessed by Visual grading characteristic (VGC) and Cohens-kappa analyses. RESULTS At 80 and140kVp significant difference in opacification between Group A (2054 ± 1040HU and 1696 ± 1027HU) and B (2169 ± 1105HU and 1568 ± 1034HU) was demonstrated (p < 0.001). However, at 100 and 120kVp no difference was noted (p > 0.05). When comparing image noise, it was higher in Group A compared to B (p < 0.05). CNR was higher in Group B (119.99 ± 126.10HU) than A (107.09 ± 102.56HU) (p < 0.0001). VGC: Group A outperformed B in image opacification in all vessel sizes and ICM concentrations except at medium vessels with concentration group 2(0.4-0.6 mg ml-1). Cohens'-kappa: agreement in opacification between each ICM group and iodine concentration 1(0-0.3 mg ml-1): κ = 0.253 and 0.014 respectively, concentration 2(0.4-0.6 mg ml-1):κ = -0.017 and -0.005 respectively and concentration 3(0.7-1 mg ml-1):κ = 0.031 and 0.115 respectively. CONCLUSION Nonionic dimer (Iodixanol) surpasses monomer (Iohexol) in quantitative image quality assessment by having lower image noise and higher CNR during CT.
Collapse
Affiliation(s)
- Lina Karout
- Diagnostic Radiology Department, American University of Beirut Medical Center, Beirut, American University of Beirut Medical Center, Beirut, Lebanon. P O Box: 11-0236 Riad El-Solh, Beirut, 1107 2020, Lebanon
| | | | | | | | | | | | | |
Collapse
|
21
|
Chest CTA in children younger than two years - a retrospective comparison of three contrast injection protocols. Sci Rep 2019; 9:18109. [PMID: 31792291 PMCID: PMC6889233 DOI: 10.1038/s41598-019-54498-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/14/2019] [Indexed: 12/26/2022] Open
Abstract
To obtain the highest diagnostic information with least side effects when performing thoracic CT angiography (CTA) is challenging in young children. The current study aims to compare three contrast agent (CA) injection protocols regarding image quality and CA characteristic: a standard CTA, a fixed-bolus delay protocol, and the “microbolus technique (MBT)” developed in our institution. Seventy chest CTA scans of patients (<2 years) were divided into three groups. MBT was applied in group I, the standard protocol in group II and a fixed bolus delay in group III. Objective image quality was assessed by measuring peak enhancement, image noise, signal-to-noise (SNR) and contrast-to-noise ratios (CNR). Two observers scored subjective image quality and artifacts. Significantly lower amounts of CA (mean ± SD) were used in the MBT group compared to Group II (9.0 ± 3.7 ml vs. 12.9 ± 4.5 ml). A lower, but still diagnostic (>400 HU) enhancement was registered in all major thoracic vessels in group I without significant differences regarding SNR and CNR in most regions (p < 0.05). The best scores for image quality and artifacts were reached in group I. All three chest CTA contrast injection protocols offered diagnostic vessel enhancement in young patients. MBT was associated with reduced image artifacts and less injected CA.
Collapse
|
22
|
Rengo M, Dharampal A, Lubbers M, Kock M, Wildberger JE, Das M, Niezen A, van Tilborg F, Kofflard M, Laghi A, Krestin G, Nieman K. Impact of iodine concentration and iodine delivery rate on contrast enhancement in coronary CT angiography: a randomized multicenter trial (CT-CON). Eur Radiol 2019; 29:6109-6118. [PMID: 31016447 DOI: 10.1007/s00330-019-06196-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/27/2019] [Accepted: 03/22/2019] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To compare the effect of contrast medium iodine concentration on contrast enhancement, heart rate, and injection pressure when injected at a constant iodine delivery rate in coronary CT angiography (CTA). METHODS One thousand twenty-four patients scheduled for coronary CTA were prospectively randomized to receive one of four contrast media: iopromide 300 mg I/ml, iohexol 350 mg I/ml, iopromide 370 mg I/ml, or iomeprol 400 mg I/ml. Contrast media were delivered at an equivalent iodine delivery rate of 2.0 g I/s. Intracoronary attenuation was measured and compared (per vessel and per segment). Heart rate before and after contrast media injection was documented. Injection pressure was recorded (n = 403) during contrast medium injection and compared between groups. RESULTS Intracoronary attenuation values were similar for the different contrast groups. The mean attenuation over all segments ranged between 384 HU for 350 mg I/ml and 395 HU for 400 mg I/ml (p = 0.079). Dose-length product (p = 0.8424), signal-to-noise ratio (all p > 0.05), time to peak (p = 0.324), and changes in heart rate (p = 0.974) were comparable between groups. The peak pressures differed: 197.4 psi for 300 mg I/ml (viscosity 4.6 mPa s), 229.8 psi for 350 mg I/ml (10.4 mPa s), 216.1 psi for 370 mg I/ml (9.5 mPa s), and 243.7 psi for 400 mg I/ml (12.6 mPa s) (p < 0.0001). CONCLUSION Intravascular attenuation and changes in heart rate are independent of iodine concentration when contrast media are injected at the same iodine delivery rate. Differences in injection pressures are associated with the viscosity of the contrast media. KEY POINTS • The contrast enhancement in coronary CT angiography is independent of the iodine concentration when contrast media are injected at body temperature (37 °C) with the same iodine delivery rate. • Iodine concentration does not influence the change in heart rate when contrast media are injected at identical iodine delivery rates. • For a fixed iodine delivery rate and contrast temperature, the viscosity of the contrast medium affects the injection pressure.
Collapse
Affiliation(s)
- Marco Rengo
- Faculty of Pharmacy and Medicine, University of Rome Sapienza, Latina, Italy
| | - Anoeshka Dharampal
- Departments of Radiology and Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marisa Lubbers
- Departments of Radiology and Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marc Kock
- Department of Radiology, Albert Schweitzer Ziekenhuis, Dordrecht, the Netherlands
| | - Joachim E Wildberger
- Department of Radiology and Nuclear Medicine, Maastricht UMC+, Maastricht, the Netherlands
| | - Marco Das
- Department of Radiology and Nuclear Medicine, Maastricht UMC+, Maastricht, the Netherlands
| | - André Niezen
- Department of Radiology and Nuclear medicine, Maasstad Ziekenhuis, Rotterdam, the Netherlands
| | - Fiek van Tilborg
- Department of Radiology, Elisabeth-TweeSteden Ziekenhuis, Tilburg, The Netherlands
| | - Marcel Kofflard
- Department of Cardiology, Albert Schweitzer Ziekenhuis, Dordrecht, the Netherlands
| | - Andrea Laghi
- Department of Surgical and Medical Sciences and Translational Medicine, University of Rome Sapienza, Rome, Italy
| | - Gabriel Krestin
- Department of Radiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Koen Nieman
- Departments of Radiology and Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands. .,Stanford University School of Medicine and Cardiovascular Institute, 300 Pasteur Dr, Room H2157, Stanford, CA, 94305, USA.
| |
Collapse
|
23
|
Lee H, Jang Y, Park S, Jang H, Park EJ, Kim HJ, Kim H. Development and evaluation of a CEACAM6-targeting theranostic nanomedicine for photoacoustic-based diagnosis and chemotherapy of metastatic cancer. Am J Cancer Res 2018; 8:4247-4261. [PMID: 30128051 PMCID: PMC6096393 DOI: 10.7150/thno.25131] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/02/2018] [Indexed: 01/06/2023] Open
Abstract
Metastasis is the leading cause of cancer-related deaths. A number of chemotherapeutic and early diagnosis strategies, including nanomedicine, have been developed to target metastatic tumor cells. However, simultaneous inhibition and imaging of metastasis is yet to be fully achieved. Methods: To overcome this limitation, we have developed human serum albumin-based nanoparticles (tHSA-NPs) with photoacoustic imaging capability, which target carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6). CEACAM6 is highly expressed in metastatic anoikis-resistant tumor cells. Results:In vitro, the CEACAM6-targeting tHSA-NPs efficiently targeted CEACAM6-overexpressing metastatic anoikis-resistant tumor cells. In vivo, CEACAM6-targeting tHSA-NPs administered intravenously to BALB/c nude mice efficiently inhibited lung metastasis in circulating anoikis-resistant tumor cells compared to the controls. In addition, anoikis-resistant tumor cells can be successfully detected by photoacoustic imaging, both in vitro and in vivo, using the intrinsic indocyanine green-binding affinity of albumin. Conclusion: In summary, the CEACAM6-targeting albumin-based nanoparticles allowed the delivery of drugs and photoacoustic imaging to metastatic anoikis-resistant tumor cells in vitro and in vivo. Based on the expression of CEACAM6 in a variety of tumors, CEACAM6-targeting nanomedicine might be used to target various types of metastatic tumor cells.
Collapse
|
24
|
Parakh A, Macri F, Sahani D. Dual-Energy Computed Tomography: Dose Reduction, Series Reduction, and Contrast Load Reduction in Dual-Energy Computed Tomography. Radiol Clin North Am 2018; 56:601-624. [PMID: 29936950 DOI: 10.1016/j.rcl.2018.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Evolution in computed tomography technology and image reconstruction have significantly changed practice. Dual energy computed tomography is being increasingly adopted owing to benefits of material separation, quantification, and improved contrast-to-noise ratio. The radiation dose can match that from single energy computed tomography. Spectral information derived from a polychromatic x-ray beam at different energies yields in image reconstructions that reduce the number of phases in a multiphasic examination and decrease the absolute amount of contrast media. This increased analytical and image processing capability provides new avenues for addressing radiation dose and iodine exposure concerns.
Collapse
Affiliation(s)
- Anushri Parakh
- Department of Radiology, Abdominal Imaging Division, Massachusetts General Hospital, White 270, 55 Fruit Street, Boston, MA 02114, USA
| | - Francesco Macri
- Department of Radiology, Abdominal Imaging Division, Massachusetts General Hospital, White 270, 55 Fruit Street, Boston, MA 02114, USA; Department of Radiology, University Hospital of Nimes, Place di Pr Debre, Nimes 30029, France
| | - Dushyant Sahani
- Department of Radiology, Abdominal Imaging Division, Massachusetts General Hospital, White 270, 55 Fruit Street, Boston, MA 02114, USA.
| |
Collapse
|
25
|
Impact of Contrast Media Concentration on Low-Kilovolt Computed Tomography Angiography. Invest Radiol 2018; 53:264-270. [DOI: 10.1097/rli.0000000000000437] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Abstract
Non-invasive cross-sectional imaging techniques play a crucial role in the assessment of the varied manifestations of vascular disease. Vascular imaging encompasses a wide variety of pathology. Designing vascular imaging protocols can be challenging owing to the non-uniform velocity of blood in the aorta, differences in cardiac output between patients, and the effect of different disease states on blood flow. In this review, we provide the rationale behind—and a practical guide to—designing and implementing straightforward vascular computed tomography (CT) and magnetic resonance imaging (MRI) protocols. Teaching Points • There is a wide range of vascular pathologies requiring bespoke imaging protocols. • Variations in cardiac output and non-uniform blood velocity complicate vascular imaging. • Contrast media dose, injection rate and duration affect arterial enhancement in CTA. • Iterative CT reconstruction can improve image quality and reduce radiation dose. • MRA is of particular value when imaging small arteries and venous studies.
Collapse
|
27
|
van Hamersvelt RW, Eijsvoogel NG, Mihl C, de Jong PA, Schilham AMR, Buls N, Das M, Leiner T, Willemink MJ. Contrast agent concentration optimization in CTA using low tube voltage and dual-energy CT in multiple vendors: a phantom study. Int J Cardiovasc Imaging 2018. [PMID: 29516228 DOI: 10.1007/s10554-018-1329-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We investigated the feasibility and extent to which iodine concentration can be reduced in computed tomography angiography imaging of the aorta and coronary arteries using low tube voltage and virtual monochromatic imaging of 3 major dual-energy CT (DECT) vendors. A circulation phantom was imaged with dual source CT (DSCT), gemstone spectral imaging (GSI) and dual-layer spectral detector CT (SDCT). For each scanner, a reference scan was acquired at 120 kVp using routine iodine concentration (300 mg I/ml). Subsequently, scans were acquired at lowest possible tube potential (70, 80, 80 kVp, respectively), and DECT-mode (80/150Sn, 80/140 and 120 kVp, respectively) in arterial phase after administration of iodine (300, 240, 180, 120, 60, 30 mg I/ml). Objective image quality was evaluated using attenuation, CNR and dose corrected CNR (DCCNR) measured in the aorta and left main coronary artery. Average DCCNR at reference was 227.0, 39.7 and 60.2 for DSCT, GSI and SDCT. Maximum iodine concentration reduction without loss of DCCNR was feasible down to 180 mg I/ml (40% reduced) for DSCT (DCCNR 467.1) and GSI (DCCNR 46.1) using conventional CT low kVp, and 120 mg I/ml (60% reduced) for SDCT (DCCNR 171.5) using DECT mode. Low kVp scanning and DECT allows for 40-60% iodine reduction without loss in image quality compared to reference. Optimal scan protocol and to which extent varies per vendor. Further patient studies are needed to extend and translate our findings to clinical practice.
Collapse
Affiliation(s)
- Robbert W van Hamersvelt
- Department of Radiology, University Medical Center Utrecht, Utrecht University, P. O. Box 85500, 3508 GA, Utrecht, The Netherlands.
| | - Nienke G Eijsvoogel
- Department of Radiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Casper Mihl
- Department of Radiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Pim A de Jong
- Department of Radiology, University Medical Center Utrecht, Utrecht University, P. O. Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Arnold M R Schilham
- Department of Radiology, University Medical Center Utrecht, Utrecht University, P. O. Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Nico Buls
- Radiology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Marco Das
- Department of Radiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Tim Leiner
- Department of Radiology, University Medical Center Utrecht, Utrecht University, P. O. Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Martin J Willemink
- Department of Radiology, University Medical Center Utrecht, Utrecht University, P. O. Box 85500, 3508 GA, Utrecht, The Netherlands
| |
Collapse
|
28
|
Contrast media injection protocol optimization for dual-energy coronary CT angiography: results from a circulation phantom. Eur Radiol 2018; 28:3473-3481. [PMID: 29488083 DOI: 10.1007/s00330-018-5308-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/20/2017] [Accepted: 01/03/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To investigate the minimum iodine delivery rate (IDR) required to achieve diagnostic coronary attenuation (300 HU) with dual-energy coronary CTA. METHODS Acquisitions were performed on a circulation phantom with a third- generation dual-source CT scanner. Contrast media was injected for a fixed time whilst IDRs varied from 1.0 to 0.3 gI/s in 0.1-gI/s intervals. Noise-optimized virtual monoenergetic imaging (VMI+) reconstructions from 40 to 90 keV in 5 keV increments were generated. Contrast-to-noise ratio (CNR) and coronary HU were measured for each injection. RESULTS VMI+ from 40-70 keV reached diagnostic attenuation with at least one IDR. The minimum IDR achieving a diagnostic attenuation ranged from 0.4 gI/s at 40 keV (312.8 HU) to 1.0 gI/s at 70 keV (334.1 HU). Attenuation values reached with IDR of 1.0 gI/s were significantly higher at each keV level (p<0.001). CNR showed a near perfect correlation with the IDR (ρ≥0.962; p<0.001), the IDR of 1.0 gI/s provided the highest CNR at each keV level, achieving the highest overall value at 40 keV (54.0±3.1). CONCLUSIONS IDRs from 0.4-1.0 gI/s associated with VMI+ from 40-70 keV provide diagnostic coronary attenuation with dual-energy coronary CTA. KEY POINTS • Iodine delivery rate (IDR) is a major determinant of contrast enhancement. • Low-keV noise-optimized monoenergetic images (VMI+) maximize iodine attenuation. • Low-keV VMI+ allows for lower IDRs while maintaining adequate coronary attenuation. • Lowest IDR to reach 300 HU was 0.4 gI/s, 40 keV VMI+.
Collapse
|
29
|
Patient Comfort During Contrast Media Injection in Coronary Computed Tomographic Angiography Using Varying Contrast Media Concentrations and Flow Rates: Results From the EICAR Trial. Invest Radiol 2017; 51:810-815. [PMID: 27164459 DOI: 10.1097/rli.0000000000000284] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Pain sensation and extravasation are potential drawbacks of contrast media (CM) injection during computed tomographic angiography. The purpose was to evaluate safety and patient comfort of higher flow rates in different CM protocols during coronary computed tomographic angiography. METHODS Two hundred consecutive patients of a double-blind randomized controlled trial (NCT02462044) were analyzed. Patients were randomized to receive 94 mL of prewarmed iopromide 240 mg I/mL at 8.3 mL/s (group I), 75 mL of 300 mg I/mL at 6.7 mL/s (group II), or 61 mL of 370 mg I/mL at 5.4 mL/s (group III), respectively. Iodine delivery rate (2.0 g I/s) and total iodine load (22.5 g I) were kept identical. Outcome was defined as intravascular enhancement, patient comfort during injection, and injection safety, expressed as the occurrence of extravasation. Patients completed a questionnaire for comfort, pain, and stress during CM injection. Comfort was graded using a 5-point scale, 1 representing "very bad" and 5 "very well." Pain was graded using a 10-point scale, 0 representing "no pain" and 10 "severe pain." Stress was graded using a 5-point scale, 1 representing "no stress" and 5 "unsustainable stress." RESULTS Mean enhancement levels within the coronary arteries were as follows: 437 ± 104 Hounsfield units (HU) (group I), 448 ± 111 HU (group II), and 447 ± 106 HU (group III), with P ≥ 0.18. Extravasation occurred in none of the patients. Median (interquartile range) for comfort, pain, and stress was, respectively, 4 (4-5), 0 (0-0), and 1 (1-2), with P ≥ 0.68. CONCLUSIONS High flow rates of prewarmed CM were safely injected without discomfort, pain, or stress. Therefore, the use of high flow rates should not be considered a drawback for CM administration in clinical practice.
Collapse
|
30
|
Yang X, Huang W, Liu W, Zhu Y, Xu Y, Yang G, Tang L, Zhu X. The Influence of Contrast Agent's Osmolarity on Iodine Delivery Protocol in Coronary Computed Tomography Angiography: Comparison Between Iso-Osmolar Iodixanol-320 and Low-Osmolar Iomeprol-370. J Comput Assist Tomogr 2017; 42:62-67. [PMID: 28708716 DOI: 10.1097/rct.0000000000000651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES This study aims to assess whether iodine-contained contrast agents with different osmolarity affect iodine delivery protocol during coronary computed tomography angiography (CCTA). METHODS Patients who underwent CCTA were randomized to receive contrast media either iodixanol-320 (iso-osmolar group) or iopromide-370 (low-osmolar group). Contrast protocols were recorded. Tube voltage of 100 kV was chosen for patients with body mass index of less than or equal to 25 (n = 224) and tube voltage of 120 kV for patients with body mass index of greater than 25 (n = 165). Both groups applied automatic current modulation technique. Mean contrast enhancement of the ascending aorta, left main coronary artery, and descending aorta was calculated. Simulated contrast flow rate and iodine delivery rate (IDR) to reach a mean contrast enhancement level of 350 HU were calculated. RESULTS A total of the 389 patients were enrolled in the study. To achieve the same contrast enhancement of 350 HU, iso-osmolar group required higher simulated contrast flow rate (3.90 vs 3.62 mL/s, P = 0.017) but lower simulated IDR (1.34 vs 1.25 g/s, P = 0.024) compared with low-osmolar group. CONCLUSIONS To maintain a similar level of contrast enhancement during CCTA, iodixanol-320 needs larger contrast flow rate with lower IDR compared with low-osmolar iopromide-370.
Collapse
|
31
|
Van Cauteren T, Van Gompel G, Tanaka K, Verdries DE, Belsack D, Nieboer KH, Willekens I, Evans P, Macholl S, Verfaillie G, Droogmans S, de Mey J, Buls N. The Impact of Combining a Low-Tube Voltage Acquisition with Iterative Reconstruction on Total Iodine Dose in Coronary CT Angiography. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2476171. [PMID: 28620616 PMCID: PMC5460391 DOI: 10.1155/2017/2476171] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/16/2017] [Accepted: 03/28/2017] [Indexed: 11/18/2022]
Abstract
OBJECTIVES To assess the impact of combining low-tube voltage acquisition with iterative reconstruction (IR) techniques on the iodine dose in coronary CTA. METHODS Three minipigs underwent CCTA to compare a standard of care protocol with two alternative study protocols combining low-tube voltage and low iodine dose with IR. Image quality was evaluated objectively by the CT value, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) in the main coronary arteries and aorta and subjectively by expert reading. Statistics were performed by Mann-Whitney U test and Chi-square analysis. RESULTS Despite reduced iodine dose, both study protocols maintained CT values, SNR, and CNR compared to the standard of care protocol. Expert readings confirmed these findings; all scans were perceived to be of at least diagnostically acceptable quality on all evaluated parameters allowing image interpretation. No statistical differences were observed (all p values > 0.11), except for streak artifacts (p = 0.02) which were considered to be more severe, although acceptable, with the 80 kVp protocol. CONCLUSIONS Reduced tube voltage in combination with IR allows a total iodine dose reduction between 37 and 50%, by using contrast media with low iodine concentrations of 200 and 160 mg I/mL, while maintaining image quality.
Collapse
Affiliation(s)
- Toon Van Cauteren
- Radiology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Gert Van Gompel
- Radiology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Kaoru Tanaka
- Radiology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Douwe E. Verdries
- Radiology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Dries Belsack
- Radiology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Koenraad H. Nieboer
- Radiology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Inneke Willekens
- Radiology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Paul Evans
- Imaging R&D, GE Healthcare Life Sciences, The Grove Centre, Amersham, Buckinghamshire, UK
| | - Sven Macholl
- Imaging R&D, GE Healthcare Life Sciences, The Grove Centre, Amersham, Buckinghamshire, UK
| | - Guy Verfaillie
- Radiology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Steven Droogmans
- Radiology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Johan de Mey
- Radiology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Nico Buls
- Radiology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
| |
Collapse
|
32
|
Optimizing Contrast Media Injection Protocols in Computed Tomography Angiography at Different Tube Voltages. J Comput Assist Tomogr 2017; 41:804-810. [DOI: 10.1097/rct.0000000000000613] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Tamura A, Kato K, Kamata M, Suzuki T, Suzuki M, Nakayama M, Tomabechi M, Nakasato T, Ehara S. Selection of peripheral intravenous catheters with 24-gauge side-holes versus those with 22-gauge end-hole for MDCT: A prospective randomized study. Eur J Radiol 2016; 87:8-12. [PMID: 28065379 DOI: 10.1016/j.ejrad.2016.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/04/2016] [Accepted: 12/03/2016] [Indexed: 11/19/2022]
Abstract
PURPOSE To compare the 24-gauge side-holes catheter and conventional 22-gauge end-hole catheter in terms of safety, injection pressure, and contrast enhancement on multi-detector computed tomography (MDCT). MATERIALS & METHODS In a randomized single-center study, 180 patients were randomized to either the 24-gauge side-holes catheter or the 22-gauge end-hole catheter groups. The primary endpoint was safety during intravenous administration of contrast material for MDCT, using a non-inferiority analysis (lower limit 95% CI greater than -10% non-inferiority margin for the group difference). The secondary endpoints were injection pressure and contrast enhancement. RESULTS A total of 174 patients were analyzed for safety during intravenous contrast material administration for MDCT. The overall extravasation rate was 1.1% (2/174 patients); 1 (1.2%) minor episode occurred in the 24-gauge side-holes catheter group and 1 (1.1%) in the 22-gauge end-hole catheter group (difference: 0.1%, 95% CI: -3.17% to 3.28%, non-inferiority P=1). The mean maximum pressure was higher with the 24-gauge side-holes catheter than with the 22-gauge end-hole catheter (8.16±0.95kg/cm2 vs. 4.79±0.63kg/cm2, P<0.001). The mean contrast enhancement of the abdominal aorta, celiac artery, superior mesenteric artery, and pancreatic parenchyma in the two groups were not significantly different. CONCLUSION In conclusion, our study showed that the 24-gauge side-holes catheter is safe and suitable for delivering iodine with a concentration of 300mg/mL at a flow-rate of 3mL/s, and it may contribute to the care of some patients, such as patients who have fragile and small veins. (Trial registration: UMIN000023727).
Collapse
Affiliation(s)
- Akio Tamura
- Department of Radiology, Iwate Medical University School of Medicine, 19-1 Uchimaru, Morioka 020-8505, Japan.
| | - Kenichi Kato
- Department of Radiology, Iwate Medical University School of Medicine, 19-1 Uchimaru, Morioka 020-8505, Japan.
| | - Masayoshi Kamata
- Iwate Medical University Hospital, 19-1 Uchimaru, Morioka 020-8505, Japan.
| | - Tomohiro Suzuki
- Department of Radiology, Iwate Medical University School of Medicine, 19-1 Uchimaru, Morioka 020-8505, Japan.
| | - Michiko Suzuki
- Department of Radiology, Iwate Medical University School of Medicine, 19-1 Uchimaru, Morioka 020-8505, Japan.
| | - Manabu Nakayama
- Department of Radiology, Iwate Medical University School of Medicine, 19-1 Uchimaru, Morioka 020-8505, Japan.
| | - Makiko Tomabechi
- Department of Radiology, Iwate Medical University School of Medicine, 19-1 Uchimaru, Morioka 020-8505, Japan.
| | - Tatsuhiko Nakasato
- Department of Radiology, Southern Tohoku Research Institute for Neuroscience, 7-115 Yatsuyamada, Koriyama 963-8563, Japan.
| | - Shigeru Ehara
- Department of Radiology, Iwate Medical University School of Medicine, 19-1 Uchimaru, Morioka 020-8505, Japan.
| |
Collapse
|
34
|
|
35
|
Kok M, Mihl C, Hendriks BMF, Altintas S, Kietselaer BLJH, Wildberger JE, Das M. Optimizing contrast media application in coronary CT angiography at lower tube voltage: Evaluation in a circulation phantom and sixty patients. Eur J Radiol 2016; 85:1068-74. [PMID: 27161054 DOI: 10.1016/j.ejrad.2016.03.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 02/09/2016] [Accepted: 03/20/2016] [Indexed: 01/11/2023]
Affiliation(s)
- Madeleine Kok
- Department of Radiology, Maastricht University Medical Center, The Netherlands; CARIM, School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands.
| | - Casper Mihl
- Department of Radiology, Maastricht University Medical Center, The Netherlands; CARIM, School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands.
| | - Babs M F Hendriks
- Department of Radiology, Maastricht University Medical Center, The Netherlands.
| | - Sibel Altintas
- CARIM, School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Cardiology, Maastricht University Medical Center, The Netherlands.
| | - Bas L J H Kietselaer
- Department of Radiology, Maastricht University Medical Center, The Netherlands; CARIM, School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Cardiology, Maastricht University Medical Center, The Netherlands.
| | - Joachim E Wildberger
- Department of Radiology, Maastricht University Medical Center, The Netherlands; CARIM, School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands.
| | - Marco Das
- Department of Radiology, Maastricht University Medical Center, The Netherlands; CARIM, School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands.
| |
Collapse
|
36
|
Computed Tomography Angiography With High Flow Rates: An In Vitro and In Vivo Feasibility Study. Invest Radiol 2016; 50:464-9. [PMID: 25816214 DOI: 10.1097/rli.0000000000000153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The aims of this study were to test high-flow application of contrast media (CM) using novel high-flow needles and to assess injection- and flow-related parameters in a circulation phantom and in an in vivo population. MATERIALS AND METHODS A circulation phantom simulating physiological parameters was used. Preheated CM (300 mg/mL) was injected at flow rates varying between 5 and 15 mL/s through a novel 18-gauge high-flow intravenous injection needle. In addition, feasibility of these high-flow needles was tested with administration of flow rates of 9 mL/s in 20 patients referred for pre-transcatheter aortic valve implantation assessment. Injection parameters (eg, peak pressures, peak flow rates) in both phantom and in vivo setup were continuously monitored by a data acquisition program. Attenuation at predefined levels of the aorta (eg, aortic root to common femoral arteries) was measured in all patients to determine clinical applicability. RESULTS In the phantom setup, injection rates up to 15 mL/s were feasible. An enhancement plateau was reached at 11 mL/s (464 [20] HU). In patients, no pressure- or flow-related complications (eg, extravasation) were recorded (mean [SD] peak pressure, 154 [8] psi; mean [SD] peak flow rate, 9.2 [0.1 mL/s; range, 9.1-9.6]). Diagnostic attenuation values were reached at all predefined levels of the aorta (330.8 [113.1] HU to 622.9 [81.5] HU). CONCLUSIONS These results indicate that injections with 9 mL/s using high-flow injection needles are safe. The pressure limit of 325 psi was not reached, and the injections resulted in diagnostic attenuation values. Using this dedicated needle, high flow rates should not be considered a drawback for CM application in routine CT angiography examinations.
Collapse
|
37
|
Automated Tube Voltage Selection for Radiation Dose Reduction in CT Angiography Using Different Contrast Media Concentrations and a Constant Iodine Delivery Rate. AJR Am J Roentgenol 2016; 205:1332-8. [PMID: 26587942 DOI: 10.2214/ajr.14.13957] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE The purpose of this study was to systematically investigate radiation dose reduction using automated tube voltage selection during CT angiography (CTA) and to evaluate the impact of contrast medium (CM) injection protocols on dose reduction. MATERIALS AND METHODS A circulation phantom containing the thoracic and abdominal vasculature was used. Four different concentrations of CM (iopromide 300 and 370 mg I/mL and iomeprol 350 and 400 mg I/mL) were administered while maintaining an identical iodine delivery rate (1.8 g I/s) and total iodine load (20.0 g). Three different scanning protocols for CTA of the thoracoabdominal aorta were used: protocol A, no dose modulation; protocol B, automated tube current modulation (CARE Dose4D); and protocol C, automated tube voltage selection (CARE kV). The dose-length product was recorded to calculate the effective dose. Attenuation values (in Hounsfield units), image noise levels, and signal-to-noise ratios (SNRs) in six predefined intravascular sites (three thoracic and three abdominal) were measured by two readers. All values were analyzed using the Kruskal-Wallis test and two-way ANOVA. RESULTS There was a significant reduction in the effective dose (in millisieverts) for protocols B (mean ± SD, 2.03 ± 0.1 mSv) and C (1.00 ± 0.0 mSv) compared with protocol A (4.34 ± 0.0 mSv). The dose was reduced by 53% for protocol B and by 77% for protocol C. No significant differences were found in the effective dose among the different CM injection protocols within the scanning protocols; all p values were > 0.05. The attenuation values and SNRs were comparable among all the different CM injection protocols; all p values were > 0.05. CONCLUSION A large radiation dose reduction (77%) can be achieved using automated tube voltage selection independent of the CM injection protocol.
Collapse
|
38
|
Hendriks BMF, Kok M, Mihl C, Bekkers SCAM, Wildberger JE, Das M. Individually tailored contrast enhancement in CT pulmonary angiography. Br J Radiol 2016; 89:20150850. [PMID: 26689096 DOI: 10.1259/bjr.20150850] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE The purpose was to evaluate individually shaped contrast media (CM) delivery in CT pulmonary angiography (CTPA) for suspected pulmonary embolism (PE). METHODS 100 consecutive emergency patients with clinical suspicion of PE were evaluated. High-pitch CTPA was performed on a second-generation dual-source CT using the following parameters: 100 kV, 200-250 mAsref, rotation time 0.28 s, 128 × 0.6 mm col. and image reconstruction 1.0/0.8 mm (B30f). Group 1 (n = 50) then received a fixed CM bolus (300 = mgI ml(-1), volume = 90 ml and flow rate = 6 ml s(-1)); Group 2 (n = 50) received a body weight-adapted CM bolus determined by dedicated contrast injection software. For analysis, groups were further subdivided into low-weight (40-75 kg) and high-weight (76-117 kg) groups. Technical image quality was graded using a four-point Likert scale (1 = non-diagnostic; 2 = diagnostic; 3 = good and 4 = excellent image quality) at the level of the pulmonary trunk and pulmonary arteries. Objective image quality analysis was performed by measuring contrast enhancement in Hounsfield units (HU) at the same levels. Attenuation levels > 180 HU were considered diagnostic. RESULTS All examinations were graded as diagnostic at each level. The individual minimum pulmonary attenuation was 184 and 270 HU for Group 1 and 2, respectively. Mean attenuation was as follows: Group 1: 475 ± 105 HU (40-75 kg) and 402 ± 115 HU (76-117 kg), p < 0.03. Group 2: 424 ± 76 HU (40-75 kg) and 418 ± 100 HU (76-117 kg), p = 0.8. For Group 2, CM volumes were: 55 ± 5 ml (40-75 kg) and 66 ± 5 ml (76-117 kg), leading to 16-51% CM reduction. CONCLUSION Even under emergency conditions, individualized CM protocols can provide diagnostic and robust image quality in CTPA for PE with a substantial reduction of CM volume for lower weight patients, compared with a fixed CM protocol. ADVANCES IN KNOWLEDGE CM volume can substantially be reduced by using individualized CM protocols in CT angiography for PE without compromising the diagnostic image quality.
Collapse
Affiliation(s)
- Babs M F Hendriks
- 1 Departments of Radiology, Maastricht University Medical Center, Maastricht, Netherlands.,2 CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, Netherlands
| | - Madeleine Kok
- 1 Departments of Radiology, Maastricht University Medical Center, Maastricht, Netherlands.,2 CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, Netherlands
| | - Casper Mihl
- 1 Departments of Radiology, Maastricht University Medical Center, Maastricht, Netherlands.,2 CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, Netherlands
| | - Sebastiaan C A M Bekkers
- 2 CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, Netherlands.,3 Departments of Cardiology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Joachim E Wildberger
- 1 Departments of Radiology, Maastricht University Medical Center, Maastricht, Netherlands.,2 CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, Netherlands
| | - Marco Das
- 1 Departments of Radiology, Maastricht University Medical Center, Maastricht, Netherlands.,2 CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, Netherlands
| |
Collapse
|
39
|
Contrast Gradient-Based Blood Velocimetry With Computed Tomography: Theory, Simulations, and Proof of Principle in a Dynamic Flow Phantom. Invest Radiol 2015; 51:41-9. [PMID: 26309186 DOI: 10.1097/rli.0000000000000202] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The aim of this study was to introduce a new theoretical framework describing the relationship between the blood velocity, computed tomography (CT) acquisition velocity, and iodine contrast enhancement in CT images, and give a proof of principle of contrast gradient-based blood velocimetry with CT. MATERIALS AND METHODS The time-averaged blood velocity (v(blood)) inside an artery along the axis of rotation (z axis) is described as the mathematical division of a temporal (Hounsfield unit/second) and spatial (Hounsfield unit/centimeter) iodine contrast gradient. From this new theoretical framework, multiple strategies for calculating the time-averaged blood velocity from existing clinical CT scan protocols are derived, and contrast gradient-based blood velocimetry was introduced as a new method that can calculate v(blood) directly from contrast agent gradients and the changes therein. Exemplarily, the behavior of this new method was simulated for image acquisition with an adaptive 4-dimensional spiral mode consisting of repeated spiral acquisitions with alternating scan direction. In a dynamic flow phantom with flow velocities between 5.1 and 21.2 cm/s, the same acquisition mode was used to validate the simulations and give a proof of principle of contrast gradient-based blood velocimetry in a straight cylinder of 2.5 cm diameter, representing the aorta. RESULTS In general, scanning with the direction of blood flow results in decreased and scanning against the flow in increased temporal contrast agent gradients. Velocity quantification becomes better for low blood and high acquisition speeds because the deviation of the measured contrast agent gradient from the temporal gradient will increase. In the dynamic flow phantom, a modulation of the enhancement curve, and thus alternation of the contrast agent gradients, can be observed for the adaptive 4-dimensional spiral mode and is in agreement with the simulations. The measured flow velocities in the downslopes of the enhancement curves were in good agreement with the expected values, although the accuracy and precision worsened with increasing flow velocities. CONCLUSIONS The new theoretical framework increases the understanding of the relationship between the blood velocity, CT acquisition velocity, and iodine contrast enhancement in CT images, and it interconnects existing blood velocimetry methods with research on transluminary attenuation gradients. With these new insights, novel strategies for CT blood velocimetry, such as the contrast gradient-based method presented in this article, may be developed.
Collapse
|
40
|
Evaluation of A New Bolus Tracking–Based Algorithm for Predicting A Patient-Specific Time of Arterial Peak Enhancement in Computed Tomography Angiography. Invest Radiol 2015; 50:531-8. [DOI: 10.1097/rli.0000000000000160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Coronary CT angiography using low concentrated contrast media injected with high flow rates: Feasible in clinical practice. Eur J Radiol 2015; 84:2155-60. [PMID: 26277498 DOI: 10.1016/j.ejrad.2015.06.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 06/01/2015] [Accepted: 06/24/2015] [Indexed: 11/24/2022]
Abstract
PURPOSE Aim of this study was to test the hypothesis that peak injection pressures and image quality using low concentrated contrast media (CM) (240 mg/mL) injected with high flow rates will be comparable to a standard injection protocol (CM: 300 mg/mL) in coronary computed tomographic angiography (CCTA). MATERIAL AND METHODS One hundred consecutive patients were scanned on a 2nd generation dual-source CT scanner. Group 1 (n=50) received prewarmed Iopromide 240 mg/mL at an injection rate of 9 mL/s, followed by a saline chaser. Group 2 (n=50) received the standard injection protocol: prewarmed Iopromide 300 mg/mL; flow rate: 7.2 mL/s. For both protocols, the iodine delivery rate (IDR, 2.16 gI/s) and the total iodine load (22.5 gI) were kept identical. Injection pressure (psi) was continuously monitored by a data acquisition program. Contrast enhancement was measured in the thoracic aorta and all proximal and distal coronary segments. Subjective and objective image quality was evaluated between both groups. RESULTS No significant differences in peak injection pressures were found between both CM groups (121 ± 5.6 psi vs. 120 ± 5.3 psi, p=0.54). Flow rates of 9 mL/s were safely injected without any complications. No significant differences in contrast-to-noise ratio, signal-to-noise ratio and subjective image quality were found (all p>0.05). No significant differences in attenuation levels were found in the thoracic aorta and all segments of the coronary arteries (all p>0.05). CONCLUSION Usage of low iodine concentration CM and injection with high flow rates is feasible. High flow rates (9 mL/s) of Iopromide 240 were safely injected without complications and should not be considered a drawback in clinical practice. No significant differences in peak pressure and image quality were found. This creates a doorway towards applicability of a broad variety in flow rates and IDRs and subsequently more individually tailored injection protocols.
Collapse
|
42
|
Xing Y, Azati G, Pan CX, Dang J, Jha S, Liu WY. Improving Patient to Patient CT Value Uniformity with an Individualized Contrast Medium Protocol Tailored to Body Weight and Contrast Medium Concentration in Coronary CT Angiography. PLoS One 2015; 10:e0132412. [PMID: 26167680 PMCID: PMC4500390 DOI: 10.1371/journal.pone.0132412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 06/14/2015] [Indexed: 11/19/2022] Open
Abstract
To determine whether body weight and concentration dependent contrast medium (CM) injection protocols can improve patient to patient CT value uniformity more than the conventional injection protocols with fixed injection parameters in coronary CT angiography (CCTA), one hundred and sixty patients who underwent CCTA were prospectively randomized into two groups. Group A (n = 80) used individualized-protocol with adjusted injection rate based on patient weight and contrast medium concentration to obtain constant iodine load of 280 mgI/kg while group B (n = 80) followed the conventional contrast injection protocol with total injection volume of 80ml and constant injection rate of 5.5ml/s. For both groups, patients were further divided into four subgroups with different CM concentrations: A1, B1 (300 mg I/ml); A2, B2 (320 mg I/ml); A3, B3 (350 mg I/ml) and A4 and B4 (370 mg I/ml). For each patient, the CT values of the ascending aorta, left ventricle and coronary arteries were measured. One-way analysis of variance was used to compare CT values among subgroups. Among the subgroups of A, sufficient attenuation of greater than 300HU was obtained in all target vessels with no difference among them. Among the subgroups of B, the CT values had significant difference in left ventricle, left circumflex branch, proximal and distal segment of the right coronary artery (all p < 0.05), and the attenuation with 300 mg I/ml CM concentration was significantly lower than that with 370 mg I/ml. Compared with group B, group A used less volume (62.83 ml vs. 80.00 ml, P<0.001) and lower rate (5.21 ml/s vs. 5.50 ml/s, P<0.001) of CM. Compared with the conventional contrast medium injection protocol with fixed volume and injection rate, the individualized-protocol based on patient weight and contrast concentration provides overall contrast dose reduction and achieves more homogenous attenuation among different coronary vessels and patients.
Collapse
Affiliation(s)
- Yan Xing
- Department of Radiology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Gulina Azati
- Department of Radiology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Cun-xue Pan
- Department of Radiology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jun Dang
- Department of Radiology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Sailendra Jha
- Department of Radiology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Wen-ya Liu
- Department of Radiology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- * E-mail:
| |
Collapse
|
43
|
Quantitative Evaluation of the Performance of a New Test Bolus–Based Computed Tomographic Angiography Contrast-Enhancement–Prediction Algorithm. Invest Radiol 2015; 50:1-8. [DOI: 10.1097/rli.0000000000000088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Influence of contrast media viscosity and temperature on injection pressure in computed tomographic angiography: a phantom study. Invest Radiol 2014; 49:217-23. [PMID: 24442161 DOI: 10.1097/rli.0000000000000019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Iodinated contrast media (CM) in computed tomographic angiography is characterized by its concentration and, consecutively, by its viscosity. Viscosity itself is directly influenced by temperature, which will furthermore affect injection pressure. Therefore, the purposes of this study were to systematically evaluate the viscosity of different CM at different temperatures and to assess their impact on injection pressure in a circulation phantom. MATERIALS AND METHODS Initially, viscosity of different contrast media concentrations (240, 300, 370, and 400 mgI/mL) was measured at different temperatures (20°C-40°C) with a commercially available viscosimeter. In the next step, a circulation phantom with physical conditions was used. Contrast media were prepared at different temperatures (20°C, 30°C, 37°C) and injected through a standard 18-gauge needle. All other relevant parameters were kept constant (iodine delivery rate, 1.9 g I/s; total amount of iodine, 15 g I). Peak flow rate (in milliliter per second) and injection pressure (psi) were monitored. Differences in significance were tested using the Kruskal-Wallis test (Statistical Package for the Social Sciences). RESULTS Viscosities for iodinated CM of 240, 300, 370, and 400 mg I/mL at 20°C were 5.1, 9.1, 21.2, and 28.8 mPa.s, respectively, whereas, at 40°C, these were substantially lower (2.8, 4.4, 8.7, and 11.2 mPa.s). In the circulation phantom, mean (SD) peak pressures for CM of 240 mg I/mL at 20°C, 30°C, and 37°C were 107 (1.5), 95 (0.6), and 92 (2.1) psi; for CM of 300 mg I/mL, 119 (1.5), 104 (0.6), and 100 (3.6) psi; for CM of 370 mg I/mL, 150 (0.6), 133 (4.4), and 120 (3.5) psi; and for CM of 400 mg I/mL, 169 (1.0), 140 (2.1), and 135 (2.9) psi, respectively, with all P values less than 0.05. CONCLUSIONS Low concentration, low viscosity, and high temperatures of CM are beneficial in terms of injection pressure. This should also be considered for individually tailored contrast protocols in daily routine scanning.
Collapse
|
45
|
Paparo F, Garello I, Bacigalupo L, Marziano A, Galletto Pregliasco A, Rollandi L, Puppo C, Mattioli F, Puntoni M, Rollandi GA. CT of the abdomen: Degree and quality of enhancement obtained with two concentrations of the same iodinated contrast medium with fixed iodine delivery rate and total iodine load. Eur J Radiol 2014; 83:1995-2000. [DOI: 10.1016/j.ejrad.2014.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/09/2014] [Accepted: 07/15/2014] [Indexed: 01/21/2023]
|