1
|
Chunowski P, Madetko-Alster N, Alster P. Asymmetry in Atypical Parkinsonian Syndromes-A Review. J Clin Med 2024; 13:5798. [PMID: 39407856 PMCID: PMC11477316 DOI: 10.3390/jcm13195798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Atypical parkinsonian syndromes (APSs) are a group of neurodegenerative disorders that differ from idiopathic Parkinson's disease (IPD) in their clinical presentation, underlying pathology, and response to treatment. APSs include conditions such as multiple system atrophy (MSA), progressive supranuclear palsy (PSP), corticobasal syndrome (CBS), and dementia with Lewy bodies (DLB). These disorders are characterized by a combination of parkinsonian features and additional symptoms, such as autonomic dysfunction, supranuclear gaze palsy, and asymmetric motor symptoms. Many hypotheses attempt to explain the causes of neurodegeneration in APSs, including interactions between environmental toxins, tau or α-synuclein pathology, oxidative stress, microglial activation, and vascular factors. While extensive research has been conducted on APSs, there is a limited understanding of the symmetry in these diseases, particularly in MSA. Neuroimaging studies have revealed metabolic, structural, and functional abnormalities that contribute to the asymmetry in APSs. The asymmetry in CBS is possibly caused by a variable reduction in striatal D2 receptor binding, as demonstrated in single-photon emission computed tomography (SPECT) examinations, which may explain the disease's asymmetric manifestation and poor response to dopaminergic therapy. In PSP, clinical dysfunction correlates with white matter tract degeneration in the superior cerebellar peduncles and corpus callosum. MSA often involves atrophy in the pons, putamen, and cerebellum, with clinical symmetry potentially depending on the symmetry of the atrophy. The aim of this review is to present the study findings on potential symmetry as a tool for determining potential neuropsychological disturbances and properly diagnosing APSs to lessen the misdiagnosis rate. Methods: A comprehensive review of the academic literature was conducted using the medical literature available in PubMed. Appropriate studies were evaluated and examined based on patient characteristics and clinical and imaging examination outcomes in the context of potential asymmetry. Results: Among over 1000 patients whose data were collected, PSP-RS was symmetrical in approximately 84% ± 3% of cases, with S-CBD showing similar results. PSP-P was symmetrical in about 53-55% of cases, while PSP-CBS was symmetrical in fewer than half of the cases. MSA-C was symmetrical in around 40% of cases. It appears that MSA-P exhibits symmetry in about 15-35% of cases. CBS, according to the criteria, is a disease with an asymmetrical clinical presentation in 90-99% of cases. Similar results were obtained via imaging methods, but transcranial sonography produced different results. Conclusions: Determining neurodegeneration symmetry may help identify functional deficits and improve diagnostic accuracy. Patients with significant asymmetry in neurodegeneration may exhibit different neuropsychological symptoms based on their individual brain lateralization, impacting their cognitive functioning and quality of life.
Collapse
Affiliation(s)
- Patryk Chunowski
- Department of Neurology, Medical University of Warsaw, 03-242 Warsaw, Poland; (N.M.-A.); (P.A.)
| | | | | |
Collapse
|
2
|
Kim MS, Park DG, Shin IJ, An YS, Yoon JH. The Role of Dual-Phase 18 F-FP-CIT PET to Early Diagnosis of Corticobasal Syndrome. Clin Nucl Med 2024; 49:124-130. [PMID: 38015725 DOI: 10.1097/rlu.0000000000004979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
BACKGROUND Corticobasal syndrome (CBS) is a neurodegeneration characterized by asymmetric parkinsonism, dystonia, myoclonus, and apraxia. In the early stage, CBS presents with asymmetric parkinsonism and cortical symptoms (apraxia and alien hand), and neuroimaging finding is often vague, making early clinical differentiation from idiopathic Parkinson disease (IPD) challenging. This study was performed to delineate the specific patterns of cortical hypoperfusion, dopamine transporter (DAT) uptake using dual-phase FP-CIT PET in discriminating between CBS and IPD at early stage. PATIENTS AND METHODS The study enrolled clinically diagnosed CBS (n = 11) and IPD (n = 22) patients (age and sex matched). All participants underwent dual-phase 18 F-FP-CIT PET, and regional SUV ratio (SUVR) was obtained by semiquantitative analysis. The early perfusion imaging and DAT imaging were compared between groups. RESULTS The regional SUVRs (early phase) of the frontal lobe, thalamus, cingulate, and caudate were significantly lower in patients with CBS, whereas the SUVR of occipital lobe was lower in the IPD group. The CBS group exhibited more prominent asymmetry than the IPD group, particularly in the perirolandic area, superior frontal gyrus, and anterior parietal lobe in early phase PET. Striatal DAT uptake (delayed phase) revealed that the caudate showed lower SUVR and prominent asymmetry in the CBS group, and the caudate-to-putamen ratio (CP ratio) was significantly lower in CBS patients ( P < 0.001). Among the parameters (early and delayed), the CP ratio in DAT exhibited the most powerful discriminative power from receiver operating characteristic curve comparison (area under curve = 0.983). CONCLUSIONS This study demonstrated that the dual-phase FP-CIT PET is useful in differentiating CBS and IPD in the early stage of the disease, and a lower CP ratio of DAT imaging is highly informative for distinguishing between corticobasal degeneration and IPD.
Collapse
Affiliation(s)
| | - Dong Gueu Park
- From the Department of Neurology, Ajou University School of Medicine, Suwon
| | - In Ja Shin
- From the Department of Neurology, Ajou University School of Medicine, Suwon
| | - Young Sil An
- Department of Nuclear Medicine, Ajou University School of Medicine, Suwon, South Korea
| | - Jung Han Yoon
- From the Department of Neurology, Ajou University School of Medicine, Suwon
| |
Collapse
|
3
|
Zhang W, Mao W, Xu E, Chhetri JK, Chan P. Progressive supranuclear palsy presenting with hyperkinetic movement disorder and hemiplegic dystonia: a case report. Int J Neurosci 2020; 130:1278-1281. [PMID: 32075473 DOI: 10.1080/00207454.2020.1732965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background: Progressive supranuclear palsy (PSP) is a progressive neurodegenerative brain disease which has been rarely described in association with hyperkinetic symptoms. Here, we report a case of PSP that was presented with hyperkinetic movement disorder, hemiplegic dystonia, and other clinical features that overlap with behavioral variant frontotemporal dementia (bvFTD) and corticobasal syndrome (CBS).Case presentation: A 63-year-old female presented to our hospital with a history of frontal lobe symptoms, impaired cognition, hyperkinetic movement disorders, dystonia, and frequent falls. Her magnetic resonance imaging (MRI) scan showed atrophy of midbrain and right temporal lobe. [18F]FDG PET result revealed reduced 18F-FDG uptake with obvious laterality (right > left). [18F]THK5317 PET scan showed evident increased uptake in the brain stem and basal ganglia. Treatment with Tiapride significantly improved hyperkinetic symptoms, but other motor symptoms were not alleviated. Three years later, the patient could hardly walk even with assistance.Conclusion: PSP can present hyperkinetic movement disorders and asymmetry in image that widen the existing phenotypic spectrum.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing Institute of Geriatrics, Beijing, China.,Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wei Mao
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing Institute of Geriatrics, Beijing, China.,Clinical Center for Parkinson's Disease, Capital Medical University, Beijing, China.,Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Parkinson Disease Center of Beijing Institute for Brain Disorders, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Erhe Xu
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing Institute of Geriatrics, Beijing, China.,Clinical Center for Parkinson's Disease, Capital Medical University, Beijing, China.,Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Parkinson Disease Center of Beijing Institute for Brain Disorders, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Jagadish K Chhetri
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing Institute of Geriatrics, Beijing, China.,Clinical Center for Parkinson's Disease, Capital Medical University, Beijing, China.,Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Parkinson Disease Center of Beijing Institute for Brain Disorders, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Piu Chan
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing Institute of Geriatrics, Beijing, China.,Clinical Center for Parkinson's Disease, Capital Medical University, Beijing, China.,Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Parkinson Disease Center of Beijing Institute for Brain Disorders, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| |
Collapse
|
4
|
Alster P, Madetko NK, Koziorowski DM, Królicki L, Budrewicz S, Friedman A. Accumulation of Tau Protein, Metabolism and Perfusion-Application and Efficacy of Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT) Imaging in the Examination of Progressive Supranuclear Palsy (PSP) and Corticobasal Syndrome (CBS). Front Neurol 2019; 10:101. [PMID: 30837933 PMCID: PMC6383629 DOI: 10.3389/fneur.2019.00101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 01/25/2019] [Indexed: 11/13/2022] Open
Abstract
Neuroimaging in the context of examining atypical parkinsonian tauopathies is an evolving matter. Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT) bring tools, which may be reasonable in supplementary examination, however cannot be interpreted as a gold standard for correct diagnosis. The review presents advantages and limitations of tau radiotracers in PET, metabolic PET and perfusion SPECT. The aim of this paper is to highlight the possibilities and boundaries in the supplementary examination of tauopathic parkinsonian syndromes.
Collapse
Affiliation(s)
- Piotr Alster
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | | | | | - Leszek Królicki
- Department of Nuclear Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | - Andrzej Friedman
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
5
|
Walker Z, Gandolfo F, Orini S, Garibotto V, Agosta F, Arbizu J, Bouwman F, Drzezga A, Nestor P, Boccardi M, Altomare D, Festari C, Nobili F. Clinical utility of FDG PET in Parkinson's disease and atypical parkinsonism associated with dementia. Eur J Nucl Med Mol Imaging 2018; 45:1534-1545. [PMID: 29779045 PMCID: PMC6061481 DOI: 10.1007/s00259-018-4031-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 12/11/2022]
Abstract
Purpose There are no comprehensive guidelines for the use of FDG PET in the following three clinical scenarios: (1) diagnostic work-up of patients with idiopathic Parkinson’s disease (PD) at risk of future cognitive decline, (2) discriminating idiopathic PD from progressive supranuclear palsy, and (3) identifying the underlying neuropathology in corticobasal syndrome. Methods We therefore performed three literature searches and evaluated the selected studies for quality of design, risk of bias, inconsistency, imprecision, indirectness and effect size. Critical outcomes were the sensitivity, specificity, accuracy, positive/negative predictive value, area under the receiving operating characteristic curve, and positive/negative likelihood ratio of FDG PET in detecting the target condition. Using the Delphi method, a panel of seven experts voted for or against the use of FDG PET based on published evidence and expert opinion. Results Of 91 studies selected from the three literature searches, only four included an adequate quantitative assessment of the performance of FDG PET. The majority of studies lacked robust methodology due to lack of critical outcomes, inadequate gold standard and no head-to-head comparison with an appropriate reference standard. The panel recommended the use of FDG PET for all three clinical scenarios based on nonquantitative evidence of clinical utility. Conclusion Despite widespread use of FDG PET in clinical practice and extensive research, there is still very limited good quality evidence for the use of FDG PET. However, in the opinion of the majority of the panellists, FDG PET is a clinically useful imaging biomarker for idiopathic PD and atypical parkinsonism associated with dementia.
Collapse
Affiliation(s)
- Zuzana Walker
- Division of Psychiatry, University College London, London, UK. .,St Margaret's Hospital, Essex Partnership University NHS Foundation Trust, Epping, CM16 6TN, UK.
| | - Federica Gandolfo
- Alzheimer Operative Unit, IRCCS S. Giovanni di Dio, Fatebenefratelli, Brescia, Italy
| | - Stefania Orini
- Alzheimer Operative Unit, IRCCS S. Giovanni di Dio, Fatebenefratelli, Brescia, Italy
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Department of Medical Imaging, University Hospitals of Geneva, Geneva University, Geneva, Switzerland
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Javier Arbizu
- Department of Nuclear Medicine, Clinica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Femke Bouwman
- Department of Neurology & Alzheimer Center, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Alexander Drzezga
- Department of Nuclear Medicine, University Hospital of Cologne, University of Cologne and German Center for Neurodegenerative Diseases (DZNE), Cologne, Germany
| | - Peter Nestor
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Queensland Brain Institute, University of Queensland and the Mater Hospital, Brisbane, Australia
| | - Marina Boccardi
- LANVIE (Laboratoire de Neuroimagerie du Vieillissement), Department of Psychiatry, University of Geneva, Geneva, Switzerland.,LANE - Laboratory of Alzheimer's Neuroimaging & Epidemiology, IRCCS S. Giovanni di Dio, Fatebenefratelli, Brescia, Italy
| | - Daniele Altomare
- LANE - Laboratory of Alzheimer's Neuroimaging & Epidemiology, IRCCS S. Giovanni di Dio, Fatebenefratelli, Brescia, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Cristina Festari
- LANE - Laboratory of Alzheimer's Neuroimaging & Epidemiology, IRCCS S. Giovanni di Dio, Fatebenefratelli, Brescia, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Flavio Nobili
- Department of Neuroscience (DINOGMI), University of Genoa & Clinical Neurology Polyclinic IRCCS San Martino-IST, Genoa, Italy.
| | | |
Collapse
|
6
|
Riederer P, Jellinger KA, Kolber P, Hipp G, Sian-Hülsmann J, Krüger R. Lateralisation in Parkinson disease. Cell Tissue Res 2018; 373:297-312. [PMID: 29656343 DOI: 10.1007/s00441-018-2832-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/21/2018] [Indexed: 01/11/2023]
Abstract
Asymmetry of dopaminergic neurodegeneration and subsequent lateralisation of motor symptoms are distinctive features of Parkinson's disease compared to other forms of neurodegenerative or symptomatic parkinsonism. Even 200 years after the first description of the disease, the underlying causes for this striking clinicopathological feature are not yet fully understood. There is increasing evidence that lateralisation of disease is due to a complex interplay of hereditary and environmental factors that are reflected not only in the concept of dominant hemispheres and handedness but also in specific susceptibilities of neuronal subpopulations within the substantia nigra. As a consequence, not only the obvious lateralisation of motor symptoms occurs but also patterns of associated non-motor signs are defined, which include cognitive functions, sleep behaviour or olfaction. Better understanding of the mechanisms contributing to lateralisation of neurodegeneration and the resulting patterns of clinical phenotypes based on bilateral post-mortem brain analyses and clinical studies focusing on right/left hemispheric symptom origin will help to develop more targeted therapeutic approaches, taking into account subtypes of PD as a heterogeneous disorder.
Collapse
Affiliation(s)
- P Riederer
- Center of Mental Health, Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany. .,Psychiatry Department of Clinical Research, University of Southern Denmark, Odense University Hospital, J.B. Winsløws Vej 18, Indgang 220 A, DK-5000, Odense C, Denmark.
| | - K A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150, Vienna, Austria
| | - P Kolber
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - G Hipp
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - J Sian-Hülsmann
- Department of Medical Physiology, University of Nairobi, PO Box 30197, Nairobi, 00100, Kenya
| | - R Krüger
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| |
Collapse
|
7
|
Xu Z, Arbizu J, Pavese N. PET Molecular Imaging in Atypical Parkinsonism. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 142:3-36. [DOI: 10.1016/bs.irn.2018.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Meyer PT, Frings L, Rücker G, Hellwig S. 18F-FDG PET in Parkinsonism: Differential Diagnosis and Evaluation of Cognitive Impairment. J Nucl Med 2017; 58:1888-1898. [DOI: 10.2967/jnumed.116.186403] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/10/2017] [Indexed: 12/30/2022] Open
|
9
|
A systematic review of lessons learned from PET molecular imaging research in atypical parkinsonism. Eur J Nucl Med Mol Imaging 2016; 43:2244-2254. [PMID: 27470326 PMCID: PMC5047923 DOI: 10.1007/s00259-016-3464-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/11/2016] [Indexed: 12/27/2022]
Abstract
PURPOSE To systematically review the previous studies and current status of positron emission tomography (PET) molecular imaging research in atypical parkinsonism. METHODS MEDLINE, ISI Web of Science, Cochrane Library, and Scopus electronic databases were searched for articles published until 29th March 2016 and included brain PET studies in progressive supranuclear palsy (PSP), multiple system atrophy (MSA), and corticobasal syndrome (CBS). Only articles published in English and in peer-reviewed journals were included in this review. Case-reports, reviews, and non-human studies were excluded. RESULTS Seventy-seven PET studies investigating the dopaminergic system, glucose metabolism, microglial activation, hyperphosphorilated tau, opioid receptors, the cholinergic system, and GABAA receptors in PSP, MSA, and CBS patients were included in this review. Disease-specific patterns of reduced glucose metabolism have shown higher accuracy than dopaminergic imaging techniques to distinguish between parkinsonian syndromes. Microglial activation has been found in all forms of atypical parkinsonism and reflects the known distribution of neuropathologic changes in these disorders. Opioid receptors are decreased in the striatum of PSP and MSA patients. Subcortical cholinergic dysfunction was more severe in MSA and PSP than Parkinson's disease patients although no significant changes in cortical cholinergic receptors were seen in PSP with cognitive impairment. GABAA receptors were decreased in metabolically affected cortical and subcortical regions in PSP patients. CONCLUSIONS PET molecular imaging has provided valuable insight for understanding the mechanisms underlying atypical parkinsonism. Changes at a molecular level occur early in the course of these neurodegenerative diseases and PET imaging provides the means to aid differential diagnosis, monitor disease progression, identify of novel targets for pharmacotherapy, and monitor response to new treatments.
Collapse
|
10
|
Hellwig S, Frings L, Amtage F, Buchert R, Spehl TS, Rijntjes M, Tüscher O, Weiller C, Weber WA, Vach W, Meyer PT. 18F-FDG PET Is an Early Predictor of Overall Survival in Suspected Atypical Parkinsonism. J Nucl Med 2015; 56:1541-6. [DOI: 10.2967/jnumed.115.159822] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/14/2015] [Indexed: 12/21/2022] Open
|
11
|
Abstract
PURPOSE OF REVIEW To give an update on recent findings concerning the use of single-photon emission computed tomography (SPECT) and positron emission tomography (PET) for differential diagnosis and prognosis of neurodegenerative parkinsonism and related disorders. RECENT FINDINGS Several studies confirmed the very high diagnostic accuracy and clinical impact of imaging nigrostriatal function (most notably with [I]FP-CIT-SPECT) for diagnosing neurodegenerative parkinsonism and dementia with Lewy bodies. Accurate differential diagnosis of neurodegenerative parkinsonism can be achieved by imaging disease-specific patterns of cerebral glucose metabolism with [18F]fluorodeoxyglucose-PET, which surpasses the diagnostic accuracy of other currently available radionuclide imaging techniques. SUMMARY SPECT and PET are established methods for the differential diagnosis of parkinsonism with significant therapeutic and prognostic impact. Given the limited accuracy of the clinical diagnosis as the reference standard, future studies with post-mortem verification are needed for validation of diagnostic imaging pattern, particularly in tauopathies.
Collapse
|