1
|
McDonald EO, Amanullah AA, Park PSU, Song W, Werner TJ, Alavi A, Revheim ME. The role of 18F-FDG PET/CT in primary cutaneous lymphoma: an educational review. Ann Nucl Med 2023; 37:328-348. [PMID: 37095393 DOI: 10.1007/s12149-023-01830-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/05/2023] [Indexed: 04/26/2023]
Abstract
INTRODUCTION Primary cutaneous lymphoma (PCL) is a cutaneous non-Hodgkin's lymphoma that originates in the skin and lacks extracutaneous spread upon initial diagnosis. The clinical management of secondary cutaneous lymphomas is different from that of PCLs, and earlier detection is associated with better prognosis. Accurate staging is necessary to determine the extent of disease and to choose the appropriate treatment. The aim of this review is to investigate the current and potential roles of 18F- fluorodeoxyglucose positron emission tomography-computed tomography (18F-FDG PET/CT) in the diagnosis, staging, and monitoring of PCLs. METHODS A focused review of the scientific literature was performed using inclusion criteria to filter results pertaining to human clinical studies performed between 2015 and 2021 that analyzed cutaneous PCL lesions on 18F PET/CT imaging. RESULTS & CONCLUSION A review of 9 clinical studies published after 2015 concluded that 18F-FDG PET/CT is highly sensitive and specific for aggressive PCLs and proved valuable for identifying extracutaneous disease. These studies found 18F-FDG PET/CT highly useful for guiding lymph node biopsy and that imaging results influenced therapeutic decision in many cases. These studies also predominantly concluded that 18F-FDG PET/CT is more sensitive than computed tomography (CT) alone for detection of subcutaneous PCL lesions. Routine revision of nonattenuation-corrected (NAC) PET images may improve the sensitivity of 18F-FDG PET/CT for detection of indolent cutaneous lesions and may expand the potential uses of 18F-FDG PET/CT in the clinic. Furthermore, calculating a global disease score from 18F-FDG PET/CT at every follow-up visit may simplify assessment of disease progression in the early clinical stages, as well as predict the prognosis of disease in patients with PCL.
Collapse
Affiliation(s)
| | - Amir A Amanullah
- Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Peter Sang Uk Park
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - William Song
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Thomas J Werner
- Department of Radiology, University of Pennsylvania Hospital, Philadelphia, PA, USA
| | - Abass Alavi
- Department of Radiology, University of Pennsylvania Hospital, Philadelphia, PA, USA
| | - Mona-Elisabeth Revheim
- The Intervention Center, Division of Technology and Innovation, Oslo University Hospital, Oslo, Norway.
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway.
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
2
|
Singh SB, Bhandari S, Siwakoti S, Bhatta R, Raynor WY, Werner TJ, Alavi A, Hess S, Revheim ME. Is Imaging Bacteria with PET a Realistic Option or an Illusion? Diagnostics (Basel) 2023; 13:diagnostics13071231. [PMID: 37046449 PMCID: PMC10093025 DOI: 10.3390/diagnostics13071231] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
The application of [18F]-fluorodeoxyglucose ([18F]FDG) as a radiotracer to detect sites of inflammation (either due to bacterial infection or primary inflammation) has led to exploring the role of PET in visualizing bacteria directly at sites of infection. However, the results from such efforts are controversial and inconclusive so far. We aimed to assess the limitations of PET as an effective modality in the diagnosis of bacterial infections. Inflammation due to bacterial infections can be visualized by using [18F]FDG-PET. However, the non-specificity of [18F]FDG makes it undesirable to visualize bacteria as the underlying cause of inflammation. Hence, more specific radiotracers that possibly bind to or accumulate in bacteria-specific receptors or enzymes are being explored. Several radiotracers, including 2-deoxy-2-[18F]fluorosorbitol ([18F]FDS), 6-[18F]-fluoromaltose, [11C]para-aminobenzoic acid ([11C]PABA), radiolabeled trimethoprim (11C-TMP) and its analog fluoropropyl-trimethoprim (18F-FPTMP), other radiolabeled sugars, and antimicrobial drugs have been used to image microorganisms. Unfortunately, no progress has been made in translating the results to routine human use; feasibility and other factors have constrained their success in clinical settings. In the current article, we discuss the limitations of direct bacterial visualization with PET tracers, but emphasize the important role of [18F]FDG-PET as the only option for detecting evidence of infection.
Collapse
Affiliation(s)
- Shashi B Singh
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Sadikshya Bhandari
- Kathmandu University School of Medical Sciences, Dhulikhel Hospital, Dhulikhel 45200, Nepal
| | - Shisir Siwakoti
- Kathmandu University School of Medical Sciences, Dhulikhel Hospital, Dhulikhel 45200, Nepal
| | - Rabi Bhatta
- Universal College of Medical Sciences, Bhairahawa 32900, Nepal
| | - William Y Raynor
- Department of Radiology, Rutgers Robert Wood Johnson Medical School, 1 Robert Wood Johnson Place, MEB #404, New Brunswick, NJ 08901, USA
| | - Thomas J Werner
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Soren Hess
- Department of Radiology and Nuclear Medicine, Hospital Southwest Jutland, 6700 Esbjerg, Denmark
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Mona-Elisabeth Revheim
- The Intervention Center, Division of Technology and Innovation, Oslo University Hospital, 0424 Oslo, Norway
- Division for Radiology and Nuclear Medicine, Oslo University Hospital, 0424 Oslo, Norway
- Norway and Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0315 Oslo, Norway
| |
Collapse
|
3
|
Atherosclerosis Burdens in Diabetes Mellitus: Assessment by PET Imaging. Int J Mol Sci 2022; 23:ijms231810268. [PMID: 36142181 PMCID: PMC9499611 DOI: 10.3390/ijms231810268] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 01/14/2023] Open
Abstract
Arteriosclerosis and its sequelae are the most common cause of death in diabetic patients and one of the reasons why diabetes has entered the top 10 causes of death worldwide, fatalities having doubled since 2000. The literature in the field claims almost unanimously that arteriosclerosis is more frequent or develops more rapidly in diabetic than non-diabetic subjects, and that the disease is caused by arterial inflammation, the control of which should therefore be the goal of therapeutic efforts. These views are mostly based on indirect methodologies, including studies of artery wall thickness or stiffness, or on conventional CT-based imaging used to demonstrate tissue changes occurring late in the disease process. In contrast, imaging with positron emission tomography and computed tomography (PET/CT) applying the tracers 18F-fluorodeoxyglucose (FDG) or 18F-sodium fluoride (NaF) mirrors arterial wall inflammation and microcalcification, respectively, early in the course of the disease, potentially enabling in vivo insight into molecular processes. The present review provides an overview of the literature from the more than 20 and 10 years, respectively, that these two tracers have been used for the study of atherosclerosis, with emphasis on what new information they have provided in relation to diabetes and which questions remain insufficiently elucidated.
Collapse
|
4
|
Cerne JW, Liu S, Umair M, Pathrose A, Moore JE, Allen BD, Markl M, Carr JC, Savas H, Wilsbacher L, Avery R. Combined modality PET/MR for the detection of severe large vessel vasculitis. Eur J Hybrid Imaging 2022; 6:16. [PMID: 35965266 PMCID: PMC9376186 DOI: 10.1186/s41824-022-00136-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/10/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Large vessel vasculitis (LVV) can be characterized based on symptom severity, and this characterization helps clinicians decide upon treatment approach. Our aim was to compare the imaging findings of combined modality positron emission tomography/magnetic resonance (PET/MR) and inflammatory markers between severe and non-severe LVV. A retrospective query was performed to identify all patients with LVV who underwent PET/MR at our institution between January 2015 and January 2021.
Results
Eleven patients (nine females; age 62.2 ± 16.4 years) underwent 15 PET/MR scans. Positivity was defined by findings indicative of active LVV on each modality: PET positive if vessel metabolic activity > liver metabolic activity; MR positive if wall thickening or contrast enhancement. When positive PET or positive MR findings were considered a positive scan, LVV patients with severe disease (n = 9 scans) showed a higher number of positive scans (n = 9) compared to the number of positive scans in non-severe patients (n = 3) (p < 0.05). The sensitivity and specificity for the detection of severe LVV were 1.00 and 0.50, respectively. When only the presence of both positive PET and positive MR findings were considered a positive scan, inflammatory marker levels were not significantly different between severe and non-severe LVV groups (severe: erythrocyte sedimentation rate (ESR) = 9.8 ± 10.6 mm/h; C-reactive protein (CRP) = 0.6 ± 0.4 mg/dL) (non-severe: ESR = 14.3 ± 22.4 mm/h; CRP = 0.5 ± 0.6 mg/dL). Blood- and liver-normalized maximum standardized uptake values were not significantly different between severe and non-severe patients (1.4 ± 0.3 vs 1.5 ± 0.4; 1.1 ± 0.4 vs 1.0 ± 0.3, respectively).
Conclusions
Because of the differences observed, PET/MR appears to be better suited to facilitate the characterization of LVV as severe or non-severe compared to inflammatory marker measurements and quantitative measurements of metabolic activity. Qualitative assessment of PET and MR positivity by 18F-fluorodeoxyglucose PET/MR may be able to supplement clinical symptoms-based LVV classification decisions and may be helpful when clinical symptoms overlap with other disease processes.
Collapse
|
5
|
Saboury B, Edenbrandt L, Piri R, Gerke O, Werner T, Arbab-Zadeh A, Alavi A, Høilund-Carlsen PF. Alavi-Carlsen Calcification Score (ACCS): A Simple Measure of Global Cardiac Atherosclerosis Burden. Diagnostics (Basel) 2021; 11:1421. [PMID: 34441355 PMCID: PMC8391812 DOI: 10.3390/diagnostics11081421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 11/21/2022] Open
Abstract
Multislice cardiac CT characterizes late stage macrocalcification in epicardial arteries as opposed to PET/CT, which mirrors early phase arterial wall changes in epicardial and transmural coronary arteries. With regard to tracer, there has been a shift from using mainly 18F-fluorodeoxyglucose (FDG), indicating inflammation, to applying predominantly 18F-sodium fluoride (NaF) due to its high affinity for arterial wall microcalcification and more consistent association with cardiovascular risk factors. To make NaF-PET/CT an indispensable adjunct to clinical assessment of cardiac atherosclerosis, the Alavi-Carlsen Calcification Score (ACCS) has been proposed. It constitutes a global assessment of cardiac atherosclerosis burden in the individual patient, supported by an artificial intelligence (AI)-based approach for fast observer-independent segmentation. Common measures for characterizing epicardial coronary atherosclerosis by NaF-PET/CT as the maximum standardized uptake value (SUV) or target-to-background ratio are more versatile, error prone, and less reproducible than the ACCS, which equals the average cardiac SUV. The AI-based approach ensures a quick and easy delineation of the entire heart in 3D to obtain the ACCS expressing ongoing global cardiac atherosclerosis, even before it gives rise to CT-detectable coronary calcification. The quantification of global cardiac atherosclerotic burden by the ACCS is suited for management triage and monitoring of disease progression with and without intervention.
Collapse
Affiliation(s)
- Babak Saboury
- Clinical Center, Department of Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD 20892, USA;
- Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Lars Edenbrandt
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 41345 Gothenburg, Sweden;
- Department of Clinical Physiology, Sahlgrenska University Hospital, Region Västra Götaland, 41345 Gothenburg, Sweden
| | - Reza Piri
- Department of Nuclear Medicine, Odense University Hospital, 5000 Odense C, Denmark; (R.P.); (O.G.)
- Department of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Oke Gerke
- Department of Nuclear Medicine, Odense University Hospital, 5000 Odense C, Denmark; (R.P.); (O.G.)
- Department of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Tom Werner
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Armin Arbab-Zadeh
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Poul Flemming Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, 5000 Odense C, Denmark; (R.P.); (O.G.)
- Department of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
| |
Collapse
|
6
|
Saboury B, Morris MA, Nikpanah M, Werner TJ, Jones EC, Alavi A. Reinventing Molecular Imaging with Total-Body PET, Part II: Clinical Applications. PET Clin 2020; 15:463-475. [PMID: 32888545 PMCID: PMC7462547 DOI: 10.1016/j.cpet.2020.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Total-body PET scans will initiate a new era for the PET clinic. The benefits of 40-fold effective sensitivity improvement provide new capabilities to image with lower radiation dose, perform delayed imaging, and achieve improved temporal resolution. These technical features are detailed in the first of this 2-part series. In this part, the clinical impacts of the novel features of total-body PET scans are further explored. Applications of total-body PET scans focus on the real-time interrogation of systemic disease manifestations in a variety of practical clinical contexts. Total-body PET scans make clinical systems biology imaging a reality.
Collapse
Affiliation(s)
- Babak Saboury
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA; Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, MD, USA; Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104, USA
| | - Michael A Morris
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA; Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Moozhan Nikpanah
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Thomas J Werner
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104, USA
| | - Elizabeth C Jones
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Alavi A, Werner TJ, Høilund-Carlsen PF. Reply to: Clinical brain PET research must embrace multi-centre collaboration and data sharing or risk its demise: emphasis should also be placed on the critical role of image analysis schemes. Eur J Nucl Med Mol Imaging 2020; 47:1806-1807. [PMID: 32200402 DOI: 10.1007/s00259-020-04765-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
| | - Thomas J Werner
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Poul F Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, 5000, Odense C, Denmark
- Research Unit of Clinical Physiology and Nuclear Medicine, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
8
|
Alavi A, Barrio JR, Werner TJ, Khosravi M, Newberg A, Høilund-Carlsen PF. Suboptimal validity of amyloid imaging-based diagnosis and management of Alzheimer’s disease: why it is time to abandon the approach. Eur J Nucl Med Mol Imaging 2019; 47:225-230. [DOI: 10.1007/s00259-019-04564-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Høilund-Carlsen PF, Edenbrandt L, Alavi A. Global disease score (GDS) is the name of the game! Eur J Nucl Med Mol Imaging 2019; 46:1768-1772. [PMID: 31183636 PMCID: PMC6647113 DOI: 10.1007/s00259-019-04383-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Poul F Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, 5000, Odense C, Denmark.
- Research Unit of Clinical Physiology and Nuclear Medicine, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Lars Edenbrandt
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden
| | - Abass Alavi
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
10
|
Schmall JP, Karp JS, Alavi A. The Potential Role of Total Body PET Imaging in Assessment of Atherosclerosis. PET Clin 2019; 14:245-250. [PMID: 30826022 DOI: 10.1016/j.cpet.2018.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Recent advances in molecular imaging and PET instrumentation will be of great value in assessing atherosclerosis plaques and other cardiovascular disorders. Atherosclerosis is systemic and involves critical arteries. Total body PET imaging will allow assessment of disease throughout the body as well as therapeutic monitoring. Because of the high sensitivity of total body PET, delayed imaging can be performed hours after administering tracer compounds, resulting in higher contrast at the disease site. Global assessment of the plaque burden throughout the body will substantially improve our ability to quantify plaque activity in the course of the disease.
Collapse
Affiliation(s)
- Jeffrey P Schmall
- Department of Radiology, University of Pennsylvania, 3620 Hamilton Walk, 1st Floor John Morgan Building, Philadelphia, PA 19104, USA.
| | - Joel S Karp
- Department of Radiology, University of Pennsylvania, 3620 Hamilton Walk, 1st Floor John Morgan Building, Philadelphia, PA 19104, USA
| | - Abass Alavi
- Department of Radiology, University of Pennsylvania, 3620 Hamilton Walk, 1st Floor John Morgan Building, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Millar BC, de Camargo RA, Alavi A, Moore JE. PET/Computed Tomography Evaluation of Infection of the Heart. PET Clin 2019; 14:251-269. [PMID: 30826023 DOI: 10.1016/j.cpet.2018.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The 2015 European Society of Cardiology guidelines for the management of infective endocarditis included 18F-fluorodeoxyglucose (18F-FDG) PET/computed tomography (CT) in the diagnostic work-up of prosthetic valve endocarditis. This article examines the literature from the last 3 years to highlight the additional role 18F-FDG-PET/CT can contribute to an accurate diagnosis of cardiac infections and associated infectious complications. The challenges and pitfalls associated with 18F-FDG-PET/CT in such clinical settings must be recognized and these are discussed along with the suggested protocols that may be incorporated in an attempt to address these issues.
Collapse
Affiliation(s)
- Beverley Cherie Millar
- Northern Ireland Public Health Laboratory, Department of Bacteriology, Corry Building, Belfast City Hospital, Lisburn Road, Belfast, Co. Antrim BT9 7AD, Northern Ireland, UK.
| | - Raphael Abegão de Camargo
- Nuclear Medicine and Infectious Diseases, University of Sao Paulo Medical School (FMUSP), Sao Paulo, Sao Paulo, Brazil; Hospital Aristides Maltez, Avenida Dom João VI, n° 332, Serviço de Medicina Nuclear, 2° subssolo, Brotas, CEP: 40285-001, Salvador-BA, Brazil
| | - Abass Alavi
- Division of Nuclear Medicine, Department of Radiology, Hospital of the University of Pennsylvania, 110 Donner Building, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - John Edmund Moore
- Northern Ireland Public Health Laboratory, Department of Bacteriology, Corry Building, Belfast City Hospital, Lisburn Road, Belfast, Co. Antrim BT9 7AD, Northern Ireland, UK
| |
Collapse
|
12
|
Moghbel M, Al-Zaghal A, Werner TJ, Constantinescu CM, Høilund-Carlsen PF, Alavi A. The Role of PET in Evaluating Atherosclerosis: A Critical Review. Semin Nucl Med 2018; 48:488-497. [DOI: 10.1053/j.semnuclmed.2018.07.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Alavi A, Werner TJ, Høilund-Carlsen PF. PET-based imaging to detect and characterize cardiovascular disorders: Unavoidable path for the foreseeable future. J Nucl Cardiol 2018; 25:203-207. [PMID: 28900846 DOI: 10.1007/s12350-017-1062-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 08/24/2017] [Indexed: 02/01/2023]
Affiliation(s)
- Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| | - Thomas J Werner
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Poul Flemming Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
14
|
Alavi A, Werner TJ, Hess S, Høilund-Carlsen PF. Regarding “ 18F-GP1, a Novel PET Tracer Designed for High-Sensitivity, Low-Background Detection of Thrombi”. J Nucl Med 2018; 59:350-351. [DOI: 10.2967/jnumed.117.200378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
15
|
Hess S, Alavi A, Werner T, Høilund-Carlsen PF. Molecular Imaging of Bacteria in Patients Is an Attractive Fata Morgana, Not a Realistic Option. J Nucl Med 2018; 59:716-717. [DOI: 10.2967/jnumed.117.207001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|