1
|
Sone D, Sato N, Shigemoto Y, Kimura Y, Matsuda H. Upper cerebellar glucose hypermetabolism in patients with temporal lobe epilepsy and interictal psychosis. Epilepsia Open 2022; 7:657-664. [PMID: 35977826 PMCID: PMC9712471 DOI: 10.1002/epi4.12645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/12/2022] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Psychosis is an important comorbidity in epilepsy, but its pathophysiology is still unknown. The imaging modality 18 F-fluorodeoxyglucose-positron emission tomography (18 F-FDG PET) is widely used to measure brain glucose metabolism, and we speculated that 18 F-FDG PET may detect characteristic alteration patterns in individuals with temporal lobe epilepsy (TLE) and psychosis. METHODS We enrolled 13 patients with TLE and interictal psychosis (TLE-P) and 21 patients with TLE without psychosis (TLE-N). All underwent interictal 18 F-FDG-PET scanning. Statistical Parametric Mapping (SPM)12 software was used for the normalization process, and we performed a voxel-wise comparison of the TLE-P and TLE-N groups. RESULTS Cerebral hypometabolic areas were observed in the ipsilateral temporal pole to hippocampus in both patient groups. In the TLE-P group, the voxel-wise comparison revealed significantly increased 18 F-FDG signals in the upper cerebellum, superior cerebellar peduncle, and midbrain. There were no significant between-group metabolic differences around the focus or other cerebral areas. SIGNIFICANCE Our results demonstrated significant hypermetabolism around the upper cerebellum in patients with TLE and interictal psychosis compared to patients with TLE without psychosis. These findings may reflect the involvement of the cerebellum in the underlying neurobiology of interictal psychosis and could contribute to a better understanding of this disorder.
Collapse
Affiliation(s)
- Daichi Sone
- Department of RadiologyNational Center of Neurology and PsychiatryTokyoJapan,Department of PsychiatryJikei University School of MedicineTokyoJapan
| | - Noriko Sato
- Department of RadiologyNational Center of Neurology and PsychiatryTokyoJapan
| | - Yoko Shigemoto
- Department of RadiologyNational Center of Neurology and PsychiatryTokyoJapan,Drug Discovery and Cyclotron Research CenterSouthern Tohoku Research Institute for NeuroscienceFukushimaJapan
| | - Yukio Kimura
- Department of RadiologyNational Center of Neurology and PsychiatryTokyoJapan
| | - Hiroshi Matsuda
- Department of RadiologyNational Center of Neurology and PsychiatryTokyoJapan,Drug Discovery and Cyclotron Research CenterSouthern Tohoku Research Institute for NeuroscienceFukushimaJapan
| |
Collapse
|
2
|
Autoimmune cerebellar hypermetabolism: Report of three cases and literature overview. Rev Neurol (Paris) 2021; 178:337-346. [PMID: 34657731 DOI: 10.1016/j.neurol.2021.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 11/23/2022]
Abstract
We report three cases of vermian cerebellar hypermetabolism in patients with autoimmune encephalitis. One of our patients was positive for anti-Ma2 antibodies and one for anti-Zic4 antibodies while the remaining patient did not present any known antibodies. The seronegative patient deteriorated after immune checkpoint inhibitor treatment for a pulmonary adenocarcinoma and improved with immunosuppressive drugs, which is in favour of an underlying autoimmune mechanism. They all presented with subacute neurological symptoms. Brain magnetic resonance imaging was normal except in one patient, where hyperintensities were present on FLAIR sequence around the third ventricle and the cerebral aqueduct. 18F-FDG brain positron emission tomography with computed tomography (18F-FDG PET-CT) demonstrated an unusual vermian cerebellar hypermetabolism in the three cases. While cerebellar hypermetabolism on 18F-FDG PET-CT has been described in various neurological diseases, such vermian - and more broadly cerebellar - hypermetabolism was seldom described in previous studies on autoimmune encephalitis. When differential diagnoses have been ruled out, this pattern may be of interest for the positive diagnosis of autoimmune encephalitis in difficult diagnostic cases.
Collapse
|
3
|
Raji CA, Henderson TA. PET and Single-Photon Emission Computed Tomography in Brain Concussion. Neuroimaging Clin N Am 2018; 28:67-82. [PMID: 29157854 DOI: 10.1016/j.nic.2017.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This article offers an overview of the application of PET and single photon emission computed tomography brain imaging to concussion, a type of mild traumatic brain injury and traumatic brain injury, in general. The article reviews the application of these neuronuclear imaging modalities in cross-sectional and longitudinal studies. Additionally, this article frames the current literature with an overview of the basic physics and radiation exposure risks of each modality.
Collapse
Affiliation(s)
- Cyrus A Raji
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, UCSF China Basin, 185 Berry Street, Suite 350, San Francisco, CA 94158, USA
| | - Theodore A Henderson
- The Synaptic Space Inc, Neuro-Laser Foundation, Neuro-Luminance Brain Health Centers Inc, Dr. Theodore Henderson Inc, 3979 East Arapahoe Road, Suite 200, Centennial, CO 80122, USA.
| |
Collapse
|
4
|
Wang Z, Wu W, Liu Y, Wang T, Chen X, Zhang J, Zhou G, Chen R. Altered Cerebellar White Matter Integrity in Patients with Mild Traumatic Brain Injury in the Acute Stage. PLoS One 2016; 11:e0151489. [PMID: 26967320 PMCID: PMC4788444 DOI: 10.1371/journal.pone.0151489] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 02/29/2016] [Indexed: 11/18/2022] Open
Abstract
Background and Purpose Imaging studies of traumatic brain injury demonstrate that the cerebellum is often affected. We aim to examine fractional anisotropy alteration in acute-phase mild traumatic brain injury patients in cerebellum-related white matter tracts. Materials and Methods This prospective study included 47 mild traumatic brain injury patients in the acute stage and 37 controls. MR imaging and neurocognitive tests were performed in patients within 7 days of injury. White matter integrity was examined by using diffusion tensor imaging. We used three approaches, tract-based spatial statistics, graphical-model-based multivariate analysis, and region-of-interest analysis, to detect altered cerebellar white matter integrity in mild traumatic brain injury patients. Results Results from three analysis methods were in accordance with each other, and suggested fractional anisotropy in the middle cerebellar peduncle and the pontine crossing tract was changed in the acute-phase mild traumatic brain injury patients, relative to controls (adjusted p-value < 0.05). Higher fractional anisotropy in the middle cerebellar peduncle was associated with worse performance in the fluid cognition composite (r = -0.289, p-value = 0.037). Conclusion Altered cerebellar fractional anisotropy in acute-phase mild traumatic brain injury patients is localized in specific regions and statistically associated with cognitive deficits detectable on neurocognitive testing.
Collapse
Affiliation(s)
- Zhongqiu Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing 210029, Jiangsu, China
| | - Wenzhong Wu
- Department of Acupuncture & Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing 210029, Jiangsu, China
| | - Yongkang Liu
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing 210029, Jiangsu, China
| | - Tianyao Wang
- Department of Radiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Xiao Chen
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing 210029, Jiangsu, China
| | - Jianhua Zhang
- Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Guoxing Zhou
- Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Rong Chen
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| |
Collapse
|
5
|
Abstract
Traumatic brain injury represents a substantial public health problem for which clinicians have limited treatment avenues. Traditional FDG-positron emission tomography (PET) brain imaging has provided unique insights into this disease including prognostic information. With the advent and implementation of novel tracers as well as improvement in instrumentation, molecular brain imaging using PET can further illustrate traumatic brain injury pathophysiology and point to novel treatment strategies.
Collapse
Affiliation(s)
- Jacob G Dubroff
- Division of Nuclear Medicine, Department of Radiology, Hospital of the University of Pennsylvania, Room 110, Donner Building, Philadelphia, PA 19104, USA
| | - Andrew B Newberg
- Division of Nuclear Medicine, Department of Radiology, Hospital of the University of Pennsylvania, Room 110, Donner Building, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Nifosì F, Martinuzzi A, Toffanin T, Costanzo R, Vestri A, Battaglia M, Bertagnoni GE, Lupi A, Amistà P, Carollo C, Perini G. Hippocampal remodelling after MDMA neurotoxicity: a single case study. World J Biol Psychiatry 2010; 10:961-8. [PMID: 18609419 DOI: 10.1080/15622970701870933] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Acute ingestion of MDMA (ecstasy) causes a transient marked increase in serotonin and dopamine at central synapses. Recent studies demonstrated that MDMA induces damage of serotonergic nerve terminals and alters hippocampal processing. Pronounced cognitive deficits in MDMA users affect learning and memory abilities. This pattern of predominant and long-lasting memory dysfunction suggests that the functioning of the hippocampus might be affected by the neurotoxic effects of MDMA. We present the case of a 16-year-old girl who developed an acute organic and psychotic syndrome caused by occasional use of low to moderate dose of MDMA. Serial neuroimaging ((18)F-FDG-PET and brain MRI) were correlated with her neurocognitive performance and clinical evolution. The structural and metabolic changes correlated with a severe cognitive impairment. After 16 months of intensive neuropsychological rehabilitation she showed significant improvement in hippocampal-related memory cognitive functions, which correlated with normalization of her (18)F-FDG-PET and remarkable hippocampal remodelling. This case report indicates that even non-chronic MDMA use may cause subacute toxic encephalopathy in which the clinical evolution is paralleled by neuroimaging changes in specific cerebral areas. The most relevant aspect is the reversibility of the volumetric changes, which may be the structural correlate of an ongoing hippocampal remodelling.
Collapse
Affiliation(s)
- Francesco Nifosì
- Department of Neurosciences, Psychiatric Clinic, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Significant fluctuations in serum glucose levels accompany the stress response of surgery or acute injury and may be associated with vascular or neurologic morbidity. Maintenance of euglycemia with intensive insulin therapy (IIT) continues to be investigated as a therapeutic intervention to decrease morbidity associated with derangements in glucose metabolism. Hypoglycemia is a common side effect of IIT with potential for significant morbidity, especially in the neurologically injured patient. Differences in cerebral versus systemic glucose metabolism, the time course of cerebral response to injury, and heterogeneity of pathophysiology in neurosurgical patient populations are important to consider in evaluating the risks and benefits of IIT. While extremes of glucose levels are to be avoided, there are little data to support specific use of IIT for maintenance of euglycemia in the perioperative management of neurosurgical patients. Existing data are summarized and reviewed in this context.
Collapse
Affiliation(s)
- Joshua H Atkins
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
8
|
Potts MB, Adwanikar H, Noble-Haeusslein LJ. Models of traumatic cerebellar injury. THE CEREBELLUM 2009; 8:211-21. [PMID: 19495901 PMCID: PMC2734258 DOI: 10.1007/s12311-009-0114-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 05/07/2009] [Indexed: 01/16/2023]
Abstract
Traumatic brain injury (TBI) is a major cause of morbidity and mortality worldwide. Studies of human TBI demonstrate that the cerebellum is sometimes affected even when the initial mechanical insult is directed to the cerebral cortex. Some of the components of TBI, including ataxia, postural instability, tremor, impairments in balance and fine motor skills, and even cognitive deficits, may be attributed in part to cerebellar damage. Animal models of TBI have begun to explore the vulnerability of the cerebellum. In this paper, we review the clinical presentation, pathogenesis, and putative mechanisms underlying cerebellar damage with an emphasis on experimental models that have been used to further elucidate this poorly understood but important aspect of TBI. Animal models of indirect (supratentorial) trauma to the cerebellum, including fluid percussion, controlled cortical impact, weight drop impact acceleration, and rotational acceleration injuries, are considered. In addition, we describe models that produce direct trauma to the cerebellum as well as those that reproduce specific components of TBI including axotomy, stab injury, in vitro stretch injury, and excitotoxicity. Overall, these models reveal robust characteristics of cerebellar damage including regionally specific Purkinje cell injury or loss, activation of glia in a distinct spatial pattern, and traumatic axonal injury. Further research is needed to better understand the mechanisms underlying the pathogenesis of cerebellar trauma, and the experimental models discussed here offer an important first step toward achieving that objective.
Collapse
Affiliation(s)
- Matthew B Potts
- Department of Neurological Surgery, University of California, Brain and Spinal Injury Center, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
9
|
Lu HX, Levis H, Melhem N, Parker T. Toxin-produced Purkinje cell death: a model for neural stem cell transplantation studies. Brain Res 2008; 1207:207-13. [PMID: 18374311 DOI: 10.1016/j.brainres.2008.02.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2007] [Revised: 02/05/2008] [Accepted: 02/06/2008] [Indexed: 11/18/2022]
Abstract
Purkinje cell loss is the hallmark of the cerebellar ataxias. Here the fungal neurotoxin Penitrem A was used to create partially Purkinje-cell-deficient cerebella in neonate and young adult rats suitable for use in neural stem cell transplantation studies. I.p. administration of Penitrem A to P3, P6 and 11-week old rats caused noticeable tremor in all treated animals that lasted between 1 and 3 days and was more immediate in the rat pups than in the 11-week old rats. Quantification of cresyl violet stained sections showed that Purkinje cells were preferentially lost in the cerebellar vermis and specifically in folia VI to IX (P<0.001-0.05). No change occurred in Purkinje cell number in folia I-III and folium X. These results were confirmed by the loss of calbindin binding cells in the Purkinje cell layer and the appearance of enlarged vacuolated mitochondria. The results of the present study show that the Penitrem A can remove Purkinje cells in the immature rat cerebellum and thus provide a potential model to study the micro-environmental cues in vivo for the differentiation of Purkinje cells from transplanted and/or intrinsic neural stem cells.
Collapse
Affiliation(s)
- Hai-xia Lu
- Institute of Neurobiology, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, PR China
| | | | | | | |
Collapse
|