1
|
Liu G, Gu T, Chen S, Gu Y, Yu H, Shi H. Total-body dynamic PET/CT imaging reveals kinetic distribution of [ 13N]NH 3 in normal organs. Eur J Nucl Med Mol Imaging 2024; 51:3888-3899. [PMID: 38976037 DOI: 10.1007/s00259-024-06826-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/30/2024] [Indexed: 07/09/2024]
Abstract
PURPOSE To systematically investigate kinetic metrics and metabolic trapping of [13N]NH3 in organs. METHODS Eleven participants performed total-body [13N]NH3 dynamic positron emission tomography (PET). Regions of interest were drawn in organs to obtain time-to-activity curves (TACs), which were fitted with an irreversible two-tissue compartment model (2TC) to investigate constant rates K1, k2 and k3, and to calculate Ki. Additionally, one-tissue compartment model using full data (1TCfull) and the first four minutes of data (1TC4min) were fitted to TAC data. K1 and k2 were compared among different models to assess [13N]NH3 trapping in organs. RESULTS Kinetic rates of [13N]NH3 varied significantly among organs. The mean K1 ranged from 0.049 mL/cm3/min in the muscle to 2.936 mL/cm3/min in the kidney. The k2 and k3 were lowest in the liver (0.001 min- 1) and in the pituitary (0.009 min- 1), while highest in the kidney (0.587 min- 1) and in the liver (0.800 min- 1), respectively. The Ki was largest in the myocardium (0.601 ± 0.259 mL/cm3/min) while smallest in the bone marrow (0.028 ± 0.022 mL/cm3/min). Three groups of organs with similar kinetic characteristics were revealed: (1) the thyroid, the lung, the spleen, the pancreas, and the kidney; (2) the liver and the muscle; and (3) the cortex, the white matter, the cerebellum, the pituitary, the parotid, the submandibular gland, the myocardium, the bone, and the bone marrow. Obvious k3 was identified in multiple organs, and significant changes of K1 in multiple organs and k2 in most organs were found between 2TC and 1TCfull, but both K1 and k2 were comparable between 2TC and 1TC4min. CONCLUSION The kinetic rates of [13N]NH3 differed among organs with some have obvious 13N-anmmonia trapping. The normal distribution of kinetic metrics of 13N-anmmonia in organs can serve as a reference for its potential use in tumor imaging.
Collapse
Affiliation(s)
- Guobing Liu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, P.R. China
- Institute of Nuclear Medicine, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Taoying Gu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, P.R. China
- Institute of Nuclear Medicine, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuguang Chen
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, P.R. China
- Institute of Nuclear Medicine, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yushen Gu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, P.R. China
- Institute of Nuclear Medicine, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haojun Yu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, P.R. China
- Institute of Nuclear Medicine, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, P.R. China.
- Institute of Nuclear Medicine, Fudan University, Shanghai, China.
- Shanghai Institute of Medical Imaging, Shanghai, China.
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Jochumsen MR, Overgaard DL, Vendelbo MH, Madsen MA, Tolbod LP, Gormsen LC, Barkholt TØ. Extracardiac findings with increased perfusion during clinical O-15-H 2O PET/CT myocardial perfusion imaging: A case series. J Nucl Cardiol 2023; 30:1458-1468. [PMID: 36600173 PMCID: PMC9812748 DOI: 10.1007/s12350-022-03156-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/08/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Coincidental extracardiac findings with increased perfusion were reported during myocardial perfusion imaging (MPI) with various retention radiotracers. Clinical parametric O-15-H2O PET MPI yielding quantitative measures of myocardial blood flow (MBF) was recently implemented at our facility. We aim to explore whether similar extracardiac findings are observed using O-15-H2O. METHODS AND RESULTS All patients (2963) were scanned with O-15-H2O PET MPI according to international guidelines and extracardiac findings were collected. In contrast to parametric O-15-H2O MBF images, extracardiac perfusion was assessed using summed images. Biopsy histopathology and other imaging modalities served as reference standards. Various malignant lesions with increased perfusion were detected, including lymphomas, large-celled neuroendocrine tumour, breast, and lung cancer plus metastases from colonic and renal cell carcinomas. Furthermore, inflammatory and hyperplastic benign conditions with increased perfusion were observed: rib fractures, gynecomastia, atelectasis, sarcoidosis, pneumonia, chronic lung inflammation and fibrosis, benign lung nodule, chronic diffuse lung infiltrates, pleural plaques and COVID-19 infiltrates. CONCLUSIONS Malignant and benign extracardiac coincidental findings with increased perfusion are readily visible and frequently seen on O-15-H2O PET MPI. We recommend evaluating the summed O-15-H2O PET images in addition to the low-dose CT attenuation images.
Collapse
Affiliation(s)
- Mads Ryø Jochumsen
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, Aarhus N, Denmark
| | - David Lyse Overgaard
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
| | - Mikkel Holm Vendelbo
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Michael Alle Madsen
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
| | - Lars Poulsen Tolbod
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, Aarhus N, Denmark
| | - Lars Christian Gormsen
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, Aarhus N, Denmark
| | - Trine Ørhøj Barkholt
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
| |
Collapse
|
3
|
Russo G, Stefano A, Alongi P, Comelli A, Catalfamo B, Mantarro C, Longo C, Altieri R, Certo F, Cosentino S, Sabini MG, Richiusa S, Barbagallo GMV, Ippolito M. Feasibility on the Use of Radiomics Features of 11[C]-MET PET/CT in Central Nervous System Tumours: Preliminary Results on Potential Grading Discrimination Using a Machine Learning Model. Curr Oncol 2021; 28:5318-5331. [PMID: 34940083 PMCID: PMC8700249 DOI: 10.3390/curroncol28060444] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Background/Aim: Nowadays, Machine Learning (ML) algorithms have demonstrated remarkable progress in image-recognition tasks and could be useful for the new concept of precision medicine in order to help physicians in the choice of therapeutic strategies for brain tumours. Previous data suggest that, in the central nervous system (CNS) tumours, amino acid PET may more accurately demarcate the active disease than paramagnetic enhanced MRI, which is currently the standard method of evaluation in brain tumours and helps in the assessment of disease grading, as a fundamental basis for proper clinical patient management. The aim of this study is to evaluate the feasibility of ML on 11[C]-MET PET/CT scan images and to propose a radiomics workflow using a machine-learning method to create a predictive model capable of discriminating between low-grade and high-grade CNS tumours. Materials and Methods: In this retrospective study, fifty-six patients affected by a primary brain tumour who underwent 11[C]-MET PET/CT were selected from January 2016 to December 2019. Pathological examination was available in all patients to confirm the diagnosis and grading of disease. PET/CT acquisition was performed after 10 min from the administration of 11C-Methionine (401–610 MBq) for a time acquisition of 15 min. 11[C]-MET PET/CT images were acquired using two scanners (24 patients on a Siemens scan and 32 patients on a GE scan). Then, LIFEx software was used to delineate brain tumours using two different semi-automatic and user-independent segmentation approaches and to extract 44 radiomics features for each segmentation. A novel mixed descriptive-inferential sequential approach was used to identify a subset of relevant features that correlate with the grading of disease confirmed by pathological examination and clinical outcome. Finally, a machine learning model based on discriminant analysis was used in the evaluation of grading prediction (low grade CNS vs. high-grade CNS) of 11[C]-MET PET/CT. Results: The proposed machine learning model based on (i) two semi-automatic and user-independent segmentation processes, (ii) an innovative feature selection and reduction process, and (iii) the discriminant analysis, showed good performance in the prediction of tumour grade when the volumetric segmentation was used for feature extraction. In this case, the proposed model obtained an accuracy of ~85% (AUC ~79%) in the subgroup of patients who underwent Siemens tomography scans, of 80.51% (AUC 65.73%) in patients who underwent GE tomography scans, and of 70.31% (AUC 64.13%) in the whole patients’ dataset (Siemens and GE scans). Conclusions: This preliminary study on the use of an ML model demonstrated to be feasible and able to select radiomics features of 11[C]-MET PET with potential value in prediction of grading of disease. Further studies are needed to improve radiomics algorithms to personalize predictive and prognostic models and potentially support the medical decision process.
Collapse
Affiliation(s)
- Giorgio Russo
- Institute of Molecular Bioimaging and Physiology, National Research Council (CNR), 90015 Cefalù, Italy; (G.R.); (A.S.); (A.C.); (S.R.)
| | - Alessandro Stefano
- Institute of Molecular Bioimaging and Physiology, National Research Council (CNR), 90015 Cefalù, Italy; (G.R.); (A.S.); (A.C.); (S.R.)
| | - Pierpaolo Alongi
- Nuclear Medicine Unit, Fondazione Istituto G. Giglio, 90015 Cefalù, Italy; (B.C.); (C.M.); (C.L.)
- Correspondence:
| | - Albert Comelli
- Institute of Molecular Bioimaging and Physiology, National Research Council (CNR), 90015 Cefalù, Italy; (G.R.); (A.S.); (A.C.); (S.R.)
- Ri.MED Foundation, 90133 Palermo, Italy
| | - Barbara Catalfamo
- Nuclear Medicine Unit, Fondazione Istituto G. Giglio, 90015 Cefalù, Italy; (B.C.); (C.M.); (C.L.)
- Department of Biomedical and Dental Sciences and of Morpho-Functional Imaging, Nuclear Medicine Unit, University of Messina, 98168 Messina, Italy
| | - Cristina Mantarro
- Nuclear Medicine Unit, Fondazione Istituto G. Giglio, 90015 Cefalù, Italy; (B.C.); (C.M.); (C.L.)
- Department of Biomedical and Dental Sciences and of Morpho-Functional Imaging, Nuclear Medicine Unit, University of Messina, 98168 Messina, Italy
| | - Costanza Longo
- Nuclear Medicine Unit, Fondazione Istituto G. Giglio, 90015 Cefalù, Italy; (B.C.); (C.M.); (C.L.)
- Ri.MED Foundation, 90133 Palermo, Italy
| | - Roberto Altieri
- Neurosurgical Unit, AOU Policlinico “G. Rodolico-San Marco”, University of Catania, 95123 Catania, Italy; (R.A.); (F.C.); (G.M.V.B.)
- Interdisciplinary Research Center on Diagnosis and Management of Brain Tumors, University of Catania, 95123 Catania, Italy
| | - Francesco Certo
- Neurosurgical Unit, AOU Policlinico “G. Rodolico-San Marco”, University of Catania, 95123 Catania, Italy; (R.A.); (F.C.); (G.M.V.B.)
- Interdisciplinary Research Center on Diagnosis and Management of Brain Tumors, University of Catania, 95123 Catania, Italy
| | - Sebastiano Cosentino
- Nuclear Medicine Department, Cannizzaro Hospital, 95123 Catania, Italy; (S.C.); (M.G.S.); (M.I.)
| | - Maria Gabriella Sabini
- Nuclear Medicine Department, Cannizzaro Hospital, 95123 Catania, Italy; (S.C.); (M.G.S.); (M.I.)
| | - Selene Richiusa
- Institute of Molecular Bioimaging and Physiology, National Research Council (CNR), 90015 Cefalù, Italy; (G.R.); (A.S.); (A.C.); (S.R.)
| | - Giuseppe Maria Vincenzo Barbagallo
- Neurosurgical Unit, AOU Policlinico “G. Rodolico-San Marco”, University of Catania, 95123 Catania, Italy; (R.A.); (F.C.); (G.M.V.B.)
- Interdisciplinary Research Center on Diagnosis and Management of Brain Tumors, University of Catania, 95123 Catania, Italy
| | - Massimo Ippolito
- Nuclear Medicine Department, Cannizzaro Hospital, 95123 Catania, Italy; (S.C.); (M.G.S.); (M.I.)
| |
Collapse
|
4
|
Li C, Yi C, Chen Y, Xi S, Guo C, Yang Q, Wang J, Sai K, Zhang J, Ke C, Chen F, Lv Y, Zhang X, Chen Z. Identify glioma recurrence and treatment effects with triple-tracer PET/CT. BMC Med Imaging 2021; 21:92. [PMID: 34059015 PMCID: PMC8165792 DOI: 10.1186/s12880-021-00624-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/24/2021] [Indexed: 02/16/2023] Open
Abstract
Background Differential diagnosis of tumour recurrence (TuR) from treatment effects (TrE), mostly induced by radiotherapy and chemotherapy, is still difficult by using conventional computed tomography (CT) or magnetic resonance (MR) imaging. We have investigated the diagnostic performance of PET/CT with 3 tracers, 13N-NH3, 18F-FDOPA, and 18F-FDG, to identify TuR and TrE in glioma patients following treatment. Methods Forty-three patients with MR-suspected recurrent glioma were included. The maximum and mean standardized uptake values (SUVmax and SUVmean) of the lesion and the lesion-to-normal grey-matter cortex uptake (L/G) ratio were obtained from each tracer PET/CT. TuR or TrE was determined by histopathology or clinical MR follow-up for at least 6 months. Results In this cohort, 34 patients were confirmed to have TuR, and 9 patients met the diagnostic standard of TrE. The SUVmax and SUVmean of 13N-NH3 and 18F-FDOPA PET/CT at TuR lesions were significantly higher compared with normal brain tissue (13N-NH3 0.696 ± 0.558, 0.625 ± 0.507 vs 0.486 ± 0.413; 18F-FDOPA 0.455 ± 0.518, 0.415 ± 0.477 vs 0.194 ± 0.203; both P < 0.01), but there was no significant difference in 18F-FDG (6.918 ± 3.190, 6.016 ± 2.807 vs 6.356 ± 3.104, P = 0.290 and 0.493). L/G ratios of 13N-NH3 and 18F-FDOPA were significantly higher in TuR than in TrE group (13N-NH3, 1.573 ± 0.099 vs 1.025 ± 0.128, P = 0.008; 18F-FDOPA, 2.729 ± 0.131 vs 1.514 ± 0.141, P < 0.001). The sensitivity, specificity and AUC (area under the curve) by ROC (receiver operating characteristic) analysis were 57.7%, 100% and 0.803, for 13N-NH3; 84.6%, 100% and 0.938, for 18F-FDOPA; and 80.8%, 100%, and 0.952, for the combination, respectively. Conclusion Our results suggest that although multiple tracer PET/CT may improve differential diagnosis efficacy, for glioma TuR from TrE, 18F-FDOPA PET-CT is the most reliable. The combination of 18F-FDOPA and 13N-NH3 does not increase the diagnostic efficiency, while 18F-FDG is not worthy for differential diagnosis of glioma TuR and TrE.
Collapse
Affiliation(s)
- Cong Li
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Chang Yi
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yingshen Chen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Shaoyan Xi
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Chengcheng Guo
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Qunying Yang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Jian Wang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Ke Sai
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Ji Zhang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Chao Ke
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Fanfan Chen
- Department of Neurosurgery, The First Affiliated Hospital of Shenzhen University/Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Yanchun Lv
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Xiangsong Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Zhongping Chen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| |
Collapse
|
5
|
Long Y, Qiu J, Zhang B, He P, Shi X, He Q, Chen Z, Shen W, Li Z, Zhang X. Pharmacological Vitamin C Treatment Impedes the Growth of Endogenous Glutamine-Dependent Cancers by Targeting Glutamine Synthetase. Front Pharmacol 2021; 12:671902. [PMID: 34054545 PMCID: PMC8150514 DOI: 10.3389/fphar.2021.671902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/29/2021] [Indexed: 11/21/2022] Open
Abstract
Purpose: Glutamine synthetase (GS) is the only currently known enzyme responsible for synthesizing endogenous glutamine (Gln). GS exerts a critical role in the oncogenesis of endogenous Gln-dependent cancers, making it an attractive target for anti-tumor therapies. A mixed-function oxidation system consisting of vitamin C (VC), oxygen, and trace metals can oxidize GS and promote its degradation. The current study aims to explore the effect of pharmacological VC treatment on GS. Methods: Endogenous Gln-dependent cancer lines (breast cancer MCF7 and prostate cancer PC3) were selected to establish chronic Gln-deprived MCF7 and PC3 cell models. The expression of GS in parental and chronic Gln-deprived tumor cells exposed to VC treatment and control was determined by Western blot analysis. The anti-cancer effects of VC on parental and chronic Gln-deprived tumor cells were assessed by CCK-8 and annexin V-FITC/PI FACS assays. In addition, changes in cellular reactive oxygen species (ROS), glutathione (GSH) levels and NADPH/NADP + ratio were analyzed to explore the underlying mechanisms. Moreover, BALB/c nude mice xenografting with parental and chronic Gln-deprived prostate cancer cells were constructed to evaluate the in vivo therapeutic effect of VC. Finally, tumor 13N-ammonia uptake in mice bearing prostate cancer xenografts was analyzed following treatment with VC and the expression of GS in xenografts were detected by immunohistochemistry. Results: Cells overexpressing GS were obtained by chronic Gln deprivation. We found that the cytotoxic effect of VC on cancer cells was positively correlated with the expression of GS. Additionally, VC treatment led to a significant increase in ROS production, as well as GSH depletion and NADPH/NADP + reduction. These changes could be reversed by the antioxidant N-acetyl-L-cysteine (NAC). Furthermore, pharmacological VC treatment exhibited a more significant therapeutic effect on xenografts of prostate cancer cells overexpressing GS, that could be well monitored by 13N-ammonia PET/CT imaging. Conclusion: Our findings indicate that VC can kill cancer cells by targeting glutamine synthetase to induce oxidative stress. VC could be used as an anti-cancer treatment for endogenous glutamine-dependent cancers.
Collapse
Affiliation(s)
- Yali Long
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jia Qiu
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Bing Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Peng He
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xinchong Shi
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Qiao He
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zhifeng Chen
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wanqing Shen
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zhoulei Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiangsong Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
6
|
Ding L, Zhang F, He Q, Li Z, Shi X, Li R, Zhang X. Differentiation of suprasellar meningiomas from non-functioning pituitary macroadenomas by 18F-FDG and 13N-Ammonia PET/CT. BMC Cancer 2020; 20:564. [PMID: 32552842 PMCID: PMC7301455 DOI: 10.1186/s12885-020-06852-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 04/12/2020] [Indexed: 12/30/2022] Open
Abstract
Background Differentiation of suprasellar meningiomas (SSMs) from non-functioning pituitary macroadenomas (NFPMAs) is useful for clinical management. We investigated the utility of 13N-ammonia combined with 18F-FDG positron emission tomography (PET)/computed tomography (CT) in distinguishing SSMs from NFPMAs retrospectively. Methods Fourteen NFPMA patients and eleven SSM patients with histopathologic diagnosis were included in this study. Every patient underwent both 18F-FDG and 13N-ammonia PET/CT scans. The tumor to gray matter (T/G) ratios were calculated for the evaluation of tumor uptake. Results The uptake of 18F-FDG was higher in NFPMAs than SSMs, whereas the uptake of 13N-ammonia was obviously lower in NFPMAs than SSMs. The differences of 18F-FDG and 13N-ammonia uptake between the two groups were significant respectively (0.92[0.46] vs 0.59[0.29], P < 0.05, 18F-FDG; 1.58 ± 0.56 vs 2.80 ± 1.45, P < 0.05, 13N-ammonia). Tumor classification demonstrated a high overall accuracy of 96.0% for differential diagnosis. When the two traces were combined, only 1 SSM was misclassified into the NFPMA group. Conclusion SSMs and NFPMAs have different metabolic characteristics on 18F-FDG and 13N-ammonia PET images. The combination of these two tracers can effectively distinguish SSMs from NFPMAs.
Collapse
Affiliation(s)
- Lei Ding
- Department of the Medical Imaging, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, People's Republic of China
| | - Fangling Zhang
- Department of the Medical Imaging, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, People's Republic of China.,Department of Radiology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Stomatology, 56#, Cemetery west Road, Guangzhou, Guangdong Province, 510055, People's Republic of China
| | - Qiao He
- Department of the Medical Imaging, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, People's Republic of China
| | - Zhoulei Li
- Department of the Medical Imaging, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, People's Republic of China
| | - Xinchong Shi
- Department of the Medical Imaging, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, People's Republic of China
| | - Ruocheng Li
- Department of the Medical Imaging, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, People's Republic of China
| | - Xiangsong Zhang
- Department of the Medical Imaging, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, People's Republic of China.
| |
Collapse
|
7
|
Chang Y, Donglan Y, Xinchong S, Ganhua L, Bing Z, Yao L, Rutong Z, Qiao H, Xiangsong Z. One-day protocol for 18F-FDG and 13N-ammonia PET/CT with uptake decoupling score in differentiating untreated low-grade glioma from inflammation. Rev Esp Med Nucl Imagen Mol 2020; 39:68-74. [PMID: 32005511 DOI: 10.1016/j.remn.2019.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/27/2019] [Accepted: 08/27/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE Accurate identification of low-grade gliomas (LGGs; World Health Organization grades I and II) and their differentiation from brain inflammation lesions (BILs) remains difficult; however, it is essential for treatment. This study assessed whether a one-day protocol for voxel-wise 18F-FDG and 13N-ammonia PET/CT with uptake decoupling analysis could differentiate LGGs from BILs. MATERIALS AND METHODS Twenty-eight patients with LGGs and 16 patients with BILs underwent 18F-FDG and 13N-ammonia PET/CT on the same day before any type of therapy. The decoupling score and tumor-to-normal tissue (T/N) ratio of 18F-FDG and 13N-ammonia were calculated at each location. Student's t-test was used to compare values, and ROC curve analysis was used to establish a cut-off value for the T/N ratio and decoupling score. Area under the curve (AUC) was calculated to evaluate differential efficacy. RESULTS Significant differences were observed in 13N-ammonia T/N ratio (p=0.018) and decoupling score (p=0.003) between LGGs and BILs; however, the 18F-FDG T/N ratio did not show any differences (p=0.413). Optimal cut-off values for 18F-FDG T/N ratio, 13N-ammonia T/N ratio, and decoupling score were 0.73, 0.97, and 2.31, respectively, with corresponding AUCs of 0.48, 0.68, and 0.77. The respective sensitivity, specificity, and accuracy parameters using these cut-off values were 53.6%, 62.5%, and 56.8%, respectively, for 18F-FDG; 50.0%, 75.0%, and 59.1%, respectively, for 13N-ammonia; and 60.7%, 93.8%, and 72.7%, respectively, for decoupling score. CONCLUSIONS 18F-FDG/13N-ammonia uptake decoupling score can be used to discriminate between LGGs and BILs. Use of a decoupling map of these two tracers can improve visual analysis and diagnostic accuracy.
Collapse
Affiliation(s)
- Y Chang
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Y Donglan
- Department of Medical Engineering, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - S Xinchong
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - L Ganhua
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Z Bing
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - L Yao
- School of Data and Computer Science, Sun Yat-Sen University, Guangzhou, China
| | - Z Rutong
- School of Data and Computer Science, Sun Yat-Sen University, Guangzhou, China
| | - H Qiao
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Z Xiangsong
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
8
|
Albano D, Giubbini R, Bertagna F. 13N-NH 3 PET/CT in oncological disease. Jpn J Radiol 2019; 37:799-807. [PMID: 31599383 DOI: 10.1007/s11604-019-00883-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/30/2019] [Indexed: 01/21/2023]
Abstract
13N-Ammonia (13N-NH3) is widely used positron emission tomography/computed tomography (PET/CT) radiotracer for the measurement of myocardial blood perfusion; the possible role of 13N-NH3 PET or PET/CT in oncological disease is not yet clear. Aim of this review is to evaluate the diagnostic performances of 13N-NH3 PET in this field. A comprehensive computer literature search of the PubMed/MEDLINE, Scopus, and Embase databases was conducted including articles up to June 2019. Eighteen articles were finally included in the review. From the analyses of the selected studies, the following main findings could be drawn: (1) 13N-NH3 PET is useful in discriminating between gliomas and non-neoplastic brain lesions, and among gliomas between high-grade and low-grade gliomas; (2) 13N-NH3 PET have better diagnostic performance than 18F-FDG in studying gliomas; (3) a combination of 13N-NH3 PET and 18F-FDG PET may be useful to differentiate between several cerebral lesions (gliomas, cerebral lymphoma, meningioma); (4) only preliminary results about the positive impact in liver and prostate cancer.
Collapse
Affiliation(s)
- Domenico Albano
- Nuclear Medicine, University of Brescia and Spedali Civili Brescia, P.le Spedali Civili 1; 25123, Brescia, Italy.
| | - Raffaele Giubbini
- Nuclear Medicine, University of Brescia and Spedali Civili Brescia, P.le Spedali Civili 1; 25123, Brescia, Italy
| | - Francesco Bertagna
- Nuclear Medicine, University of Brescia and Spedali Civili Brescia, P.le Spedali Civili 1; 25123, Brescia, Italy
| |
Collapse
|
9
|
|
10
|
He Q, Zhang L, Zhang B, Shi X, Yi C, Zhang X. Diagnostic accuracy of 13N-ammonia PET, 11C-methionine PET and 18F-fluorodeoxyglucose PET: a comparative study in patients with suspected cerebral glioma. BMC Cancer 2019; 19:332. [PMID: 30961564 PMCID: PMC6454631 DOI: 10.1186/s12885-019-5560-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 03/31/2019] [Indexed: 11/10/2022] Open
Abstract
Background The treatment of patients with glioma depended on the nature of the lesion and on histological grade of the tumor. Positron emission tomography (PET) using 13N-ammonia (NH3), 11C-methionine (MET) and 18F-fluorodeoxyglucose (FDG) have been used to assess brain tumors. Our aim was to compare their diagnostic accuracies in patients with suspected cerebral glioma. Methods Ninety patients with suspicion of glioma based on previous CT/MRI, who underwent NH3 PET, MET PET and FDG PET, were prospectively enrolled in the study. The reference standard was established by histology or clinical and radiological follow-up. Images were interpreted by visual evaluation and semi-quantitative analysis using the lesion-to-normal white matter uptake ratio (L/WM ratio). Results Finally, 30 high-grade gliomas (HGG), 27 low-grade gliomas (LGG), 10 non-glioma tumors and 23 non-neoplastic lesions (NNL) were diagnosed. On visual evaluation, sensitivity and specificity for differentiating tumors from NNL were 62.7% (42/67) and 95.7% (22/23) for NH3 PET, 94.0% (63/67) and 56.5% (13/23) for MET PET, and 35.8% (24/67) and 65.2% (15/23) for FDG PET. On semi-quantitative analysis, brain tumors showed significantly higher L/WM ratios than NNL both in NH3 and MET PET (both P < 0.001). The sensitivity, specificity and the area under the curve (AUC) by receiver operating characteristic (ROC) analysis, respectively, were 64.2, 100% and 0.819 for NH3; and 89.6, 69.6% and 0.840 for MET. Besides, the L/WM ratios of NH3, MET and FDG PET in HGG all significantly higher than that in LGG (all P < 0.001). The predicted (by ROC) accuracy of the tracers (AUC shown in parentheses) were 86.0% (0.896) for NH3, 87.7% (0.928) for MET and 93.0% (0.964) for FDG. While no significant differences in the AUC were seen between them. Conclusion NH3 PET has remarkably high specificity for the differentiation of brain tumors from NNL, but low sensitivity for the detection of LGG. MET PET was found to be highly useful for detection of brain tumors. However, like FDG, high MET uptake is frequently observed in some NNL. NH3, MET and FDG PET all appears to be valuable for evaluating the histological grade of gliomas.
Collapse
Affiliation(s)
- Qiao He
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, People's Republic of China
| | - Linqi Zhang
- Department of Nuclear Medicine, Affiliated Cancer Hospital&Institute of Guangzhou Medical University, Guangzhou, 510095, People's Republic of China
| | - Bing Zhang
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, People's Republic of China
| | - Xinchong Shi
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, People's Republic of China
| | - Chang Yi
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, People's Republic of China
| | - Xiangsong Zhang
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, People's Republic of China.
| |
Collapse
|
11
|
Khangembam BC, Singhal A, Kumar R, Bal C. Tc-99m Glucoheptonate Single Photon Emission Computed Tomography-Computed Tomography for Detection of Recurrent Glioma: A Prospective Comparison with N-13 Ammonia Positron Emission Tomography-Computed Tomography. Indian J Nucl Med 2019; 34:107-117. [PMID: 31040521 PMCID: PMC6481207 DOI: 10.4103/ijnm.ijnm_164_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose of the Study: To assess the efficacies of Tc-99m glucoheptonate single photon emission computed tomography-computed tomography (Tc-99m GHA SPECT-CT) and N-13 ammonia positron emission tomography-computed tomography (N-13 NH3 PET-CT) in detecting recurrent glioma. Materials and Methods: Fifty-five consecutive, histologically proven, and previously treated glioma patients (age, 38.9 ± 12.2 years; 61.8% males) presenting with clinical suspicion of recurrence were evaluated with Tc-99m GHA SPECT-CT and N-13 NH3 PET-CT. Images were evaluated both qualitatively and semiquantitatively. A combination of clinicoradiological follow-up, repeat imaging, and/or biopsy (when available) was considered as the reference standard. Results: Based on the reference standard, 28/55 (50.9%) patients had recurrence. Sensitivity, specificity, positive predictive value, negative predictive value, accuracy of Tc-99m GHA SPECT-CT, and N-13 NH3 PET-CT were 85.7%, 85.2%, 85.7%, 85.2%, 85.5% and 78.6%, 88.9%, 88.0%, 80.0%, 83.6%, respectively (concordant findings in 46 patients). The performances of the two modalities were equivalent both in overall and subgroup McNemar analyses (P = 0.508, overall; P = 0.687, low grade; P = 1.000, high grade). Conclusion: Tc-99m GHA SPECT-CT is an alternative imaging modality equally efficacious as N-13 NH3 PET-CT in detecting recurrent glioma.
Collapse
Affiliation(s)
- Bangkim Chandra Khangembam
- Department of Nuclear Medicine, Institute of Liver and Biliary Sciences, New Delhi, India.,Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Abhinav Singhal
- Department of Nuclear Medicine, Institute of Liver and Biliary Sciences, New Delhi, India.,Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Rajeev Kumar
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Chandrasekhar Bal
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
12
|
The role of 13N-ammonia in the differential diagnosis of gliomas and brain inflammatory lesions. Ann Nucl Med 2018; 33:61-67. [PMID: 30350180 DOI: 10.1007/s12149-018-1308-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/30/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVE To investigate the utility of 13N-ammonia PET/CT imaging in the differential diagnosis of gliomas and brain inflammations. METHODS 13N-ammonia PET/CT imaging data of 77 patients with gliomas and 34 patients with brain inflammations were retrospectively analyzed. No patients received any treatment before 13N-ammonia imaging. All the patients were diagnosed by stereotactic biopsy or clinical follow-up. Visual and semi-quantitative analysis was performed to analyze the results of 13N-ammonia imaging. Finally, the uptake ratios of each lesion were calculated and its differences among different groups were tested with one-way ANOVA. RESULTS 29.4% inflammations, 51.6% low-grade gliomas and 91.3% high-grade gliomas were positive by visual analysis in 13N-ammonia imaging. The sensitivity, specificity and accuracy for the diagnosis of gliomas were 75.3%, 55.8% and 67.8%, respectively. As for semi-quantitative analysis, the T/G ratios of inflammatory lesions, low-grade gliomas and high-grade gliomas were 0.88 ± 0.24, 1.04 ± 0.43 and 1.43 ± 0.49, respectively. One-way ANOVA revealed that the T/G ratios of high-grade gliomas were significantly higher than those of low-grade gliomas and inflammations (P < 0.05), but there was no statistical difference between low-grade gliomas and inflammations (P = 0.118). Among the inflammatory lesions, T/G ratios were not statistically different between infectious and demyelinating lesions (P > 0.05). ROC curve analysis showed that the optimal cut-off value of T/G ratio in distinguishing gliomas from inflammations was 1.21 with the AUC 0.78. The sensitivity, specificity, accuracy, PPV and NPV were 52.9%, 94.4%, 65.3%, 95.7% and 45.9%, respectively. ROC curve analysis showed that the optimal cut-off value of T/G ratio in distinguishing high-grade gliomas from low-grade gliomas was 1.06 with the AUC 0.78. The sensitivity, specificity, accuracy, PPV and NPV were 81.5%, 67.7%, 76.5%, 81.5% and 67.7%, respectively. ROC curve analysis showed that the optimal cut-off value of T/G ratio in distinguishing high-grade gliomas from low-grade gliomas and inflammations was 1.19 with the AUC 0.84. The sensitivity, specificity, accuracy, PPV and NPV were 70.4%, 85.1%, 78.5%, 79.2% and 78.1%, respectively. CONCLUSIONS 13N-ammonia imaging is effective in distinguishing high-grade gliomas from low-grade gliomas and inflammations, but its role in the differential diagnosis of low-grade gliomas and brain inflammatory lesions is limited, and the accuracy needs to be improved.
Collapse
|
13
|
Abstract
A previous review published in 2012 demonstrated the role of clinical PET for diagnosis and management of brain tumors using mainly FDG, amino acid tracers, and 18F-fluorothymidine. This review provides an update on clinical PET studies, most of which are motivated by prediction of prognosis and planning and monitoring of therapy in gliomas. For FDG, there has been additional evidence supporting late scanning, and combination with 13N ammonia has yielded some promising results. Large neutral amino acid tracers have found widespread applications mostly based on 18F-labeled compounds fluoroethyltyrosine and fluorodopa for targeting biopsies, therapy planning and monitoring, and as outcome markers in clinical trials. 11C-alpha-methyltryptophan (AMT) has been proposed as an alternative to 11C-methionine, and there may also be a role for cyclic amino acid tracers. 18F-fluorothymidine has shown strengths for tumor grading and as an outcome marker. Studies using 18F-fluorocholine (FCH) and 68Ga-labeled compounds are promising but have not yet clearly defined their role. Studies on radiotherapy planning have explored the use of large neutral amino acid tracers to improve the delineation of tumor volume for irradiation and the use of hypoxia markers, in particular 18F-fluoromisonidazole. Many studies employed the combination of PET with advanced multimodal MR imaging methods, mostly demonstrating complementarity and some potential benefits of hybrid PET/MR.
Collapse
Affiliation(s)
- Karl Herholz
- The University of Manchester, Division of Neuroscience and Experimental Psychology Wolfson Molecular Imaging Centre, Manchester, England, United Kingdom.
| |
Collapse
|
14
|
13N-ammonia combined with 18F-FDG could discriminate between necrotic high-grade gliomas and brain abscess. Clin Nucl Med 2015; 40:195-9. [PMID: 25546194 DOI: 10.1097/rlu.0000000000000649] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE Accurate prediction of brain abscess is beneficial for timely management. In this study, we investigated the utility of 13N-ammonia and its combination with 18F-FDG in differentiating brain abscess from necrotic high-grade gliomas. PATIENTS AND METHODS Thirteen patients with ring-like enhancement high-grade gliomas and 11 patients with brain abscess were recruited in our study. All of them underwent both 18F-FDG and 13N-ammonia PET imaging. Lesion uptake was evaluated by lesion to normal gray matter ratio (L/N). Histopathology diagnosis was obtained for all the patients after PET imaging. RESULTS The L/N values of 18F-FDG were not significantly different between brain abscess and necrotic high-grade gliomas (P = 0.35). The uptake of 13N-ammonia in gliomas was higher than that in abscess lesions (L/N: 1.38 ± 0.31 vs 0.84 ± 0.18, P < 0.001). The receiver operating characteristic curve analysis determined the optimal L/N cutoff value (13N-ammonia) of 1.0 with the area under the curve of 0.94 and the overall accuracy of 87.5%. Discriminant analysis demonstrated that the combination of 18F-FDG and 13N-ammonia could distinguish the 2 clinical entities with higher accuracy of 95%, and only 1 necrotic glioma lesion was misclassified into the abscess group. CONCLUSIONS 13N-ammonia is effective in distinguishing brain abscess from necrotic high-grade gliomas, and its combination with 18F-FDG could further elevate the diagnostic accuracy.
Collapse
|
15
|
Khangembam BC, Karunanithi S, Sharma P, Kc SS, Kumar R, Julka PK, Kumar R, Bal C. Perfusion-metabolism coupling in recurrent gliomas: a prospective validation study with 13N-ammonia and 18F-fluorodeoxyglucose PET/CT. Neuroradiology 2014; 56:893-902. [PMID: 24989883 DOI: 10.1007/s00234-014-1389-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/03/2014] [Indexed: 10/25/2022]
Abstract
INTRODUCTION We assessed the validity of "perfusion-metabolism coupling" hypothesis in recurrent glioma with 13N-ammonia (13N-NH3) PET/CT and 18F-fluorodeoxyglucose (18F-FDG) PET/CT. METHODS Fifty-six consecutive patients (age, 38.8 ± 12.1 years; 62.5% males) with histologically proven and previously treated glioma presenting with clinical suspicion of recurrence were prospectively enrolled and evaluated with 13N-NH3 PET/CT and 18F-FDG PET/CT. PET/CT images were evaluated both qualitatively and semiquantitatively. Tumor to white matter uptake ratio (T/W) and tumor to gray matter uptake ratio (T/G) were calculated and analyzed for both the modalities. A combination of clinico-radiological follow-up, repeated imaging, and biopsy (when available) were considered as the reference standard. RESULTS Based on the reference standard, 27/56 patients had recurrence. 13N-NH3 PET/CT and 18F-FDG PET/CT were concordant in 55/56 patients. Overall sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of 13N-NH3PET/CT were 77.8, 86.2, 84.0, 80.7, and 82.1%, respectively, and for 18F-FDG PET/CT were 77.8, 89.7, 87.5, 81.2, and 83.9%, respectively. There was excellent agreement between results of 13N-NH3 PET/CT and 18F-FDG PET/CT (ĸ = 0.964; P < 0.001). The performances of 13N-NH3 PET/CT and 18F-FDG PET/CT were not significantly different between high-grade and low-grade glioma (P = 1.000). A strong positive correlation was noted between the uptake ratios derived on the two modalities (ρ = 0.866, P < 0.001 for T/W; ρ = 0.918, P < 0.001 for T/G). CONCLUSION A combination of 13N-NH3 PET/CT and 18F-FDG PET/CT demonstrates that perfusion and metabolism are coupled in recurrent gliomas. These tracers target two different but interrelated aspects of the same pathologic process and can be used as surrogates for each other.
Collapse
Affiliation(s)
- Bangkim Chandra Khangembam
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | | | | | | | | | | | | | | |
Collapse
|