1
|
Moya-Sáez E, de Luis-García R, Alberola-López C. Toward deep learning replacement of gadolinium in neuro-oncology: A review of contrast-enhanced synthetic MRI. FRONTIERS IN NEUROIMAGING 2023; 2:1055463. [PMID: 37554645 PMCID: PMC10406200 DOI: 10.3389/fnimg.2023.1055463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/04/2023] [Indexed: 08/10/2023]
Abstract
Gadolinium-based contrast agents (GBCAs) have become a crucial part of MRI acquisitions in neuro-oncology for the detection, characterization and monitoring of brain tumors. However, contrast-enhanced (CE) acquisitions not only raise safety concerns, but also lead to patient discomfort, the need of more skilled manpower and cost increase. Recently, several proposed deep learning works intend to reduce, or even eliminate, the need of GBCAs. This study reviews the published works related to the synthesis of CE images from low-dose and/or their native -non CE- counterparts. The data, type of neural network, and number of input modalities for each method are summarized as well as the evaluation methods. Based on this analysis, we discuss the main issues that these methods need to overcome in order to become suitable for their clinical usage. We also hypothesize some future trends that research on this topic may follow.
Collapse
Affiliation(s)
- Elisa Moya-Sáez
- Laboratorio de Procesado de Imagen, ETSI Telecomunicación, Universidad de Valladolid, Valladolid, Spain
| | | | | |
Collapse
|
2
|
Chen S, An L, Yang S. Low-Molecular-Weight Fe(III) Complexes for MRI Contrast Agents. Molecules 2022; 27:molecules27144573. [PMID: 35889445 PMCID: PMC9324404 DOI: 10.3390/molecules27144573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/02/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Fe(III) complexes have again attracted much attention for application as MRI contrast agents in recent years due to their high thermodynamic stability, low long-term toxicity, and large relaxivity at a higher magnetic field. This mini-review covers the recent progress on low-molecular-weight Fe(III) complexes, which have been considered as one of the promising alternatives to clinically used Gd(III)-based contrast agents. Two kinds of complexes including mononuclear Fe(III) complexes and multinuclear Fe(III) complexes are summarized in sequence, with a specific highlight of the structural relationships between the complexes and their relaxivity and thermodynamic stability. In additional, the future perspectives for the design of low-molecular-weight Fe(III) complexes for MRI contrast agents are suggested.
Collapse
Affiliation(s)
- Shangjun Chen
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, China;
| | - Lu An
- Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai 200234, China;
| | - Shiping Yang
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, China;
- Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai 200234, China;
- Correspondence:
| |
Collapse
|
3
|
Palagi L, Di Gregorio E, Costanzo D, Stefania R, Cavallotti C, Capozza M, Aime S, Gianolio E. Fe(deferasirox) 2: An Iron(III)-Based Magnetic Resonance Imaging T1 Contrast Agent Endowed with Remarkable Molecular and Functional Characteristics. J Am Chem Soc 2021; 143:14178-14188. [PMID: 34432442 DOI: 10.1021/jacs.1c04963] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The search for alternatives to Gd-containing magnetic resonance imaging (MRI) contrast agents addresses the field of Fe(III)-bearing species with the expectation that the use of an essential metal ion may avoid the issues raised by the exogenous Gd. Attention is currently devoted to highly stable Fe(III) complexes with hexacoordinating ligands, although they may lack any coordinated water molecule. We found that the hexacoordinated Fe(III) complex with two units of deferasirox, a largely used iron sequestering agent, owns properties that can make it a viable alternative to Gd-based agents. Fe(deferasirox)2 displays an outstanding thermodynamic stability, a high binding affinity to human serum albumin (three molecules of complex are simultaneously bound to the protein), and a good relaxivity that increases in the range 20-80 MHz. The relaxation enhancement is due to second sphere water molecules likely forming H-bonds with the coordinating phenoxide oxygens. A further enhancement was observed upon the formation of the supramolecular adduct with albumin. The binding sites of Fe(deferasirox)2 on albumin were characterized by relaxometric competitive assays. Preliminary in vivo imaging studies on a tumor-bearing mouse model indicate that, on a 3 T MRI scanner, the contrast ability of Fe(deferasirox)2 is comparable to the one shown by the commercial Gd(DTPA) agent. ICP-MS analyses on blood samples withdrawn from healthy mice administered with a dose of 0.1 mmol/kg of Fe(deferasirox)2 showed that the complex is completely removed in 24 h.
Collapse
Affiliation(s)
- Lorenzo Palagi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Enza Di Gregorio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Diana Costanzo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Rachele Stefania
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | | | - Martina Capozza
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Silvio Aime
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
- IRCCS SDN, Via E. Gianturco 113, Napoli 80143, Italy
| | - Eliana Gianolio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| |
Collapse
|
4
|
Kalkowski L, Golubczyk D, Kwiatkowska J, Holak P, Milewska K, Janowski M, Oliveira JM, Walczak P, Malysz-Cymborska I. Two in One: Use of Divalent Manganese Ions as Both Cross-Linking and MRI Contrast Agent for Intrathecal Injection of Hydrogel-Embedded Stem Cells. Pharmaceutics 2021; 13:pharmaceutics13071076. [PMID: 34371767 PMCID: PMC8309201 DOI: 10.3390/pharmaceutics13071076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 12/04/2022] Open
Abstract
Cell therapy is a promising tool for treating central nervous system (CNS) disorders; though, the translational efforts are plagued by ineffective delivery methods. Due to the large contact surface with CNS and relatively easy access, the intrathecal route of administration is attractive in extensive or global diseases such as stroke or amyotrophic lateral sclerosis (ALS). However, the precision and efficacy of this approach are still a challenge. Hydrogels were introduced to minimize cell sedimentation and improve cell viability. At the same time, contrast agents were integrated to allow image-guided injection. Here, we report using manganese ions (Mn2+) as a dual agent for cross-linking alginate-based hydrogels and magnetic resonance imaging (MRI). We performed in vitro studies to test the Mn2+ alginate hydrogel formulations for biocompatibility, injectability, MRI signal retention time, and effect on cell viability. The selected formulation was injected intrathecally into pigs under MRI control. The biocompatibility test showed a lack of immune response, and cells suspended in the hydrogel showed greater viability than monolayer culture. Moreover, Mn2+-labeled hydrogel produced a strong T1 MRI signal, which enabled MRI-guided procedure. We confirmed the utility of Mn2+ alginate hydrogel as a carrier for cells in large animals and a contrast agent at the same time.
Collapse
Affiliation(s)
- Lukasz Kalkowski
- Department of Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland; (L.K.); (D.G.); (J.K.); (K.M.)
| | - Dominika Golubczyk
- Department of Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland; (L.K.); (D.G.); (J.K.); (K.M.)
| | - Joanna Kwiatkowska
- Department of Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland; (L.K.); (D.G.); (J.K.); (K.M.)
| | - Piotr Holak
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719 Olsztyn, Poland;
| | - Kamila Milewska
- Department of Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland; (L.K.); (D.G.); (J.K.); (K.M.)
| | - Miroslaw Janowski
- Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (M.J.); (P.W.)
| | - Joaquim Miguel Oliveira
- a3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Guimarães, Portugal
| | - Piotr Walczak
- Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (M.J.); (P.W.)
| | - Izabela Malysz-Cymborska
- Department of Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland; (L.K.); (D.G.); (J.K.); (K.M.)
- Correspondence: ; Tel.: +48-605118887
| |
Collapse
|
5
|
Pasumarthi S, Tamir JI, Christensen S, Zaharchuk G, Zhang T, Gong E. A generic deep learning model for reduced gadolinium dose in contrast-enhanced brain MRI. Magn Reson Med 2021; 86:1687-1700. [PMID: 33914965 DOI: 10.1002/mrm.28808] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 01/17/2023]
Abstract
PURPOSE With rising safety concerns over the use of gadolinium-based contrast agents (GBCAs) in contrast-enhanced MRI, there is a need for dose reduction while maintaining diagnostic capability. This work proposes comprehensive technical solutions for a deep learning (DL) model that predicts contrast-enhanced images of the brain with approximately 10% of the standard dose, across different sites and scanners. METHODS The proposed DL model consists of a set of methods that improve the model robustness and generalizability. The steps include multi-planar reconstruction, 2.5D model, enhancement-weighted L1, perceptual, and adversarial losses. The proposed model predicts contrast-enhanced images from corresponding pre-contrast and low-dose images. With IRB approval and informed consent, 640 heterogeneous patient scans (56 train, 13 validation, and 571 test) from 3 institutions consisting of 3D T1-weighted brain images were used. Quantitative metrics were computed and 50 randomly sampled test cases were evaluated by 2 board-certified radiologists. Quantitative tumor segmentation was performed on cases with abnormal enhancements. Ablation study was performed for systematic evaluation of proposed technical solutions. RESULTS The average peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) between full-dose and model prediction were 35.07 ± 3.84 dB and 0.92 ± 0.02 , respectively. Radiologists found the same enhancing pattern in 45/50 (90%) cases; discrepancies were minor differences in contrast intensity and artifacts, with no effect on diagnosis. The average segmentation Dice score between full-dose and synthesized images was 0.88 ± 0.06 (median = 0.91). CONCLUSIONS We have proposed a DL model with technical solutions for low-dose contrast-enhanced brain MRI with potential generalizability under diverse clinical settings.
Collapse
Affiliation(s)
| | - Jonathan I Tamir
- Subtle Medical Inc., Menlo Park, CA, USA.,Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA
| | | | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Tao Zhang
- Subtle Medical Inc., Menlo Park, CA, USA
| | - Enhao Gong
- Subtle Medical Inc., Menlo Park, CA, USA
| |
Collapse
|
6
|
Verheggen ICM, Freeze WM, de Jong JJA, Jansen JFA, Postma AA, van Boxtel MPJ, Verhey FRJ, Backes WH. Application of contrast-enhanced magnetic resonance imaging in the assessment of blood-cerebrospinal fluid barrier integrity. Neurosci Biobehav Rev 2021; 127:171-183. [PMID: 33930471 DOI: 10.1016/j.neubiorev.2021.04.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/15/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
VERHEGGEN, I.C.M., W. Freeze, J. de Jong, J. Jansen, A. Postma, M. van Boxtel, F. Verhey and W. Backes. The application of contrast-enhanced MRI in the assessment of blood-cerebrospinal fluid barrier integrity. Choroid plexus epithelial cells form a barrier that enables active, bidirectional exchange between the blood plasma and cerebrospinal fluid (CSF), known as the blood-CSF barrier (BCSFB). Through its involvement in CSF composition, the BCSFB maintains homeostasis in the central nervous system. While the relation between blood-brain barrier disruption, aging and neurodegeneration is extensively studied using contrast-enhanced MRI, applying this technique to investigate BCSFB disruption in age-related neurodegeneration has received little attention. This review provides an overview of the current status of contrast-enhanced MRI to assess BCSFB permeability. Post-contrast ventricular gadolinium enhancement has been used to indicate BCSFB permeability. Moreover, new techniques highly sensitive to low gadolinium concentrations in the CSF, for instance heavily T2-weighted imaging with cerebrospinal fluid suppression, seem promising. Also, attempts are made at using other contrast agents, such as manganese ions or very small superparamagnetic iron oxide particles, that seem to be cleared from the brain at the choroid plexus. Advancing and applying new developments such as these could progress the assessment of BCSFB integrity.
Collapse
Affiliation(s)
- Inge C M Verheggen
- Alzheimer Center Limburg, Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands.
| | - Whitney M Freeze
- Alzheimer Center Limburg, Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Department of Radiology, Leiden University Medical Center, Leiden, P.O. Box 9600, 2300 RC Leiden, the Netherlands
| | - Joost J A de Jong
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, the Netherlands
| | - Jacobus F A Jansen
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, the Netherlands
| | - Alida A Postma
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, the Netherlands
| | - Martin P J van Boxtel
- Alzheimer Center Limburg, Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Frans R J Verhey
- Alzheimer Center Limburg, Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Walter H Backes
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, the Netherlands; School for Cardiovascular Diseases (CARIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| |
Collapse
|
7
|
Physicochemical and Pharmacokinetic Profiles of Gadopiclenol: A New Macrocyclic Gadolinium Chelate With High T1 Relaxivity. Invest Radiol 2020; 54:475-484. [PMID: 30973459 PMCID: PMC6661244 DOI: 10.1097/rli.0000000000000563] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objectives We aimed to evaluate gadopiclenol, a newly developed extracellular nonspecific macrocyclic gadolinium-based contrast agent (GBCA) having high relaxivity properties, which was designed to increase lesion detection and characterization by magnetic resonance imaging. Methods We described the molecular structure of gadopiclenol and measured the r1 and r2 relaxivity properties at fields of 0.47 and 1.41 T in water and human serum. Nuclear magnetic relaxation dispersion profile measurements were performed from 0.24 mT to 7 T. Protonation and complexation constants were determined using pH-metric measurements, and we investigated the acid-assisted dissociation of gadopiclenol, gadodiamide, gadobutrol, and gadoterate at 37°C and pH 1.2. Applying the relaxometry technique (37°C, 0.47 T), we investigated the risk of dechelation of gadopiclenol, gadoterate, and gadodiamide in the presence of ZnCl2 (2.5 mM) and a phosphate buffer (335 mM). Pharmacokinetics studies of radiolabeled 153Gd-gadopiclenol were performed in Beagle dogs, and protein binding was measured in rats, dogs, and humans plasma and red blood cells. Results Gadopiclenol [gadolinium chelate of 2,2′,2″-(3,6,9-triaza-1(2,6)-pyridinacyclodecaphane-3,6,9-triyl)tris(5-((2,3-dihydroxypropyl)amino)-5-oxopentanoic acid); registry number 933983-75-6] is based on a pyclen macrocyclic structure. Gadopiclenol exhibited a very high relaxivity in water (r1 = 12.2 mM−1·s−1 at 1.41 T), and the r1 value in human serum at 37°C did not markedly change with increasing field (r1 = 12.8 mM−1·s−1 at 1.41 T and 11.6 mM−1·s−1 at 3 T). The relaxivity data in human serum did not indicate protein binding. The nuclear magnetic relaxation dispersion profile of gadopiclenol exhibited a high and stable relaxivity in a strong magnetic field. Gadopiclenol showed high kinetic inertness under acidic conditions, with a dissociation half-life of 20 ± 3 days compared with 4 ± 0.5 days for gadoterate, 18 hours for gadobutrol, and less than 5 seconds for gadodiamide and gadopentetate. The pharmacokinetic profile in dogs was typical of extracellular nonspecific GBCAs, showing distribution in the extracellular compartment and no metabolism. No protein binding was found in rats, dogs, and humans. Conclusions Gadopiclenol is a new extracellular and macrocyclic Gd chelate that exhibited high relaxivity, no protein binding, and high kinetic inertness. Its pharmacokinetic profile in dogs was similar to that of other extracellular nonspecific GBCAs.
Collapse
|
8
|
Varallyay CG, Nesbit E, Horvath A, Varallyay P, Fu R, Gahramanov S, Muldoon LL, Li X, Rooney WD, Neuwelt EA. Cerebral blood volume mapping with ferumoxytol in dynamic susceptibility contrast perfusion MRI: Comparison to standard of care. J Magn Reson Imaging 2018; 48:441-448. [PMID: 29314418 PMCID: PMC6034979 DOI: 10.1002/jmri.25943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 12/11/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cerebral blood volume (CBV) mapping with a dynamic susceptibility contrast (DSC) perfusion technique has become a clinical tool in diagnosing and follow-up of brain tumors. Ferumoxytol, a long-circulating iron oxide nanoparticle, has been tested for CBV mapping, but the optimal dose has not been established. PURPOSE To compare ferumoxytol DSC of two different doses to standard of care gadoteridol by analyzing time-intensity curves and CBV maps in normal-appearing brain regions. STUDY TYPE Retrospective. SUBJECTS Fifty-four patients with various brain disorders. FIELD STRENGTH/SEQUENCE 3T MRI. DSC-MRI was performed with 0.1 mmol/kg gadoteridol and 1 day later with ferumoxytol in doses of 1 or 2 mg/kg. ASSESSMENT Signal changes during first pass, relative CBV (rCBV) in normal-appearing thalamus, putamen, and globus pallidus, and contrast-to-noise ratio (CNR) of the CBV maps were compared between gadoteridol and various doses of ferumoxytol using an automated method. To subjectively assess the quality of the CBV maps, two blinded readers also assessed visual conspicuity of the putamen. STATISTICAL TESTS Linear mixed effect model was used for statistical comparison. RESULTS Compared to gadoteridol, 1 mg/kg ferumoxytol showed no difference in CNR (P = 0.6505), peak ΔR2*, and rCBV in the putamen (P = 0.2669, 0.0871) or in the thalamus (P = 0.517, 0.9787); 2 mg/kg ferumoxytol increased peak ΔR2* as well as the CNR (P < 0.0001), but also mildly increased rCBV in putamen and globus pallidus (P = 0.0005, 0.0012). Signal intensities during first pass remained highly above the noise level, with overlapping of 95% confidence intervals with noise only in 3 out of 162 tested regions. Compared to gadoteridol, the visual image quality showed mild improvement with 1 mg/kg (P = 0.02) and marked improvement with 2 mg/kg ferumoxytol (P < 0.0001). DATA CONCLUSION 1 mg/kg ferumoxytol provides similar imaging results to standard gadoteridol for DSC-MRI, and 2 mg/kg has a benefit of increased CNR, but may also result in mildly increased rCBV values. LEVEL OF EVIDENCE 3 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2018;48:441-448.
Collapse
Affiliation(s)
- Csanad G. Varallyay
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, OR
- Department of Neurology, Oregon Health & Science University, Portland, OR
| | - Eric Nesbit
- Department of Neurology, Oregon Health & Science University, Portland, OR
| | - Andrea Horvath
- Department of Neurology, Oregon Health & Science University, Portland, OR
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR
| | - Peter Varallyay
- National Institute of Clinical Neurosciences, Budapest, Hungary
| | - Rongwei Fu
- School of Public Health, Oregon Health & Science University, Portland, OR
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University
| | - Seymur Gahramanov
- Department of Neurosurgery, University of New Mexico, Albuquerque, NM
| | - Leslie L. Muldoon
- Department of Neurology, Oregon Health & Science University, Portland, OR
| | - Xin Li
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR
| | - William D. Rooney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR
| | - Edward A. Neuwelt
- Department of Neurology, Oregon Health & Science University, Portland, OR
- Department of Neurosurgery, Oregon Health & Science University, Portland, OR
- Portland Veterans Affairs Medical Center, Portland, OR
| |
Collapse
|
9
|
|
10
|
Ramalho M, Ramalho J, Burke LM, Semelka RC. Gadolinium Retention and Toxicity-An Update. Adv Chronic Kidney Dis 2017; 24:138-146. [PMID: 28501075 DOI: 10.1053/j.ackd.2017.03.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Until 2006, the main considerations regarding safety for all gadolinium-based contrast agents (GBCAs) were related to short-term adverse reactions. However, the administration of certain "high-risk" GBCAs to patients with renal failure resulted in multiple reported cases of nephrogenic systemic fibrosis. Findings have been reported regarding gadolinium deposition within the body and various reports of patients who report suffering from acute and chronic symptoms secondary to GBCA's exposure. At the present state of knowledge, it has been proved that gadolinium deposits also occur in the brain, irrespective of renal function and GBCAs stability class. To date, no definitive clinical findings are associated with gadolinium deposition in brain tissue. Gadolinium deposition disease is a newly described and probably infrequent entity. Patients presenting with gadolinium deposition disease may show signs and symptoms that somewhat follows a pattern similar but not identical, and also less severe, to those observed in nephrogenic systemic fibrosis. In this review, we will address gadolinium toxicity focusing on these 2 recently described concerns.
Collapse
|
11
|
Heshmatzadeh Behzadi A, Prince MR. Preventing Allergic Reactions to Gadolinium-Based Contrast Agents. Top Magn Reson Imaging 2016; 25:275-279. [PMID: 27748715 DOI: 10.1097/rmr.0000000000000106] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Although the low incidence of immediate-type gadolinium-based contrast agent (GBCA) allergic reactions is widely known, preventing these reactions and properly managing them to reduce their adverse sequel can improve the already exceedingly favorable GBCA safety profile. This review article should help those who order, supervise, or administer GBCA contrast agents, including recognizing and handling allergic reaction risks intrinsic to their use. Areas of focus include factors indicating increased allergic reaction risk, patient selection strategies, skin testing, premedication, and treatment of adverse events.
Collapse
Affiliation(s)
- Ashkan Heshmatzadeh Behzadi
- *Department of Radiology, Weill Cornell Medical Center †Department of Radiology, Columbia College of Physicians and Surgeons, New York, NY
| | | |
Collapse
|